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Abstract

Background.—Substance use occurs at a high rate in persons with a psychiatric disorder. 

Genetically informative studies have the potential to elucidate the etiology of these phenomena. 

Recent developments in genome-wide association studies (GWAS) allow new avenues of 

investigation.

Method.—Using results of GWAS meta-analyses, we performed a factor analysis of the genetic 

correlation structure, a genome-wide search of shared loci, and causally informative tests for six 

substance use phenotypes (four smoking, one alcohol, and one cannabis use) and five psychiatric 

disorders (ADHD, anorexia, depression, bipolar disorder, and schizophrenia).

Results.—Two correlated externalizing and internalizing/psychosis factor were found, although 

model fit was beneath conventional standards. Of 458 loci reported in previous univariate 

GWAS of substance use and psychiatric disorders, about 50% (230 loci) were pleiotropic with 

additional 111 pleiotropic loci not reported from past GWAS. Of the 341 pleiotropic loci, 152 

were associated with both substance use and psychiatric disorders, implicating neurodevelopment, 

cell morphogenesis, biological adhesion pathways, and enrichment in 13 different brain tissues. 

Seventy-five and 114 pleiotropic loci were specific to either psychiatric disorders or substance 

use phenotypes, implicating neuronal signaling pathway and clathrin-binding functions/structures, 

respectively. No consistent evidence for phenotypic causation was found across different 

Mendelian randomization methods.

Conclusions.—Genetic etiology of substance use and psychiatric disorders is highly pleiotropic 

and involves shared neurodevelopmental path, neurotransmission, and intracellular trafficking. In 

aggregate, the patterns are not consistent with vertical pleiotropy, more likely reflecting horizontal 

pleiotropy or more complex forms of phenotypic causation.
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Introduction

Substance use is a leading cause of global mortality (Ezzati, Lopez, Rodgers, Vander Hoorn, 

& Murray, 2002) and shows a close association with psychiatric disorders. Individuals who 

have a prior lifetime history of psychiatric disorders (Conway, Swendsen, Husky, He, & 

Merikangas, 2016) as well as those with a current diagnosis show higher rates of substance 

use across a variety of substances, including tobacco (Lasser et al., 2000; Weinberger et al., 

2017), alcohol (Weitzman, 2004), and cannabis (Blanco et al., 2016). For example, relative 

to general population, individuals with severe psychotic disorders showed an increased risk 

of smoking [odds ratio (OR) = 4.6], heavy alcohol use (OR = 4.0), and heavy cannabis 

use (OR = 3.5) (Hartz et al., 2014). Substance use has been found to predict psychiatric 

disorders prospectively, including depressive disorders (Brook, Cohen, & Brook, 1998), 

anxiety disorders (Johnson et al., 2000), and psychotic disorders (van Os et al., 2002). At 

the same time, early psychiatric problems have also been found to predict later substance 

use (King, Iacono, & McGue, 2004; Miettunen et al., 2014). The elevated use of substances 

is associated with poorer outcomes such as medication non-adherence (Margolese, Malchy, 

Negrete, Tempier, & Gill, 2004), more psychiatric hospitalizations (Dalton, Cate-Carter, 

Mundo, Parikh, & Kennedy, 2003), and increased suicide rates (Kask et al., 2016), which 

is partly responsible for the excess mortality due to smoking and alcohol-related diseases 

(Brown, Inskip, & Barraclough, 2000; Hjorthøj et al., 2015). The high comorbidity and 

accompanying mortality naturally leads to questions about shared etiology among these 

behaviors of high public health impact (Barkus & Murray, 2010; Gregg, Barrowclough, & 

Haddock, 2007).

Numerous studies have demonstrated shared genetic vulnerability to substance use and 

psychiatric disorder, especially those conceptualized as externalizing disorders such as 

ADHD and conduct disorder (Hicks, Krueger, Iacono, McGue, & Patrick, 2004; Kendler 

et al., 2011; Rosenström et al., 2019; Young et al., 2009). Young et al. (2009) reported a 

moderately heritable factor loading on substance use (alcohol, tobacco, marijuana, and other 

illicit drugs), conduct disorder, ADHD, and novelty-seeking traits at the start and the end 

of adolescence, using structural equation ACE models on the family data of 293 twin pairs. 

Similarly, Hicks et al. (2004) reported a highly heritable, general vulnerability factor that 

accounts for the correlations among conduct disorder, adult antisocial behavior, and alcohol 

and drug dependence in a sample of 542 twin families. Of note, most studies reporting 

such findings are based on known familial relationships (e.g. twins), rather than direct 

measurement of genetic markers. Genome-wide association studies (GWAS) have now 

identified hundreds of risk loci for substance use and psychiatric disorders, providing new 

opportunities to evaluate the pattern of relationships among these phenomena. Moreover, 

GWAS allows one to test not only the existence of shared genetic risk, but to interrogate 

individual genomic locations and related genes, with the potential to inform biology 

associated with the shared liability. The largest substance use GWAS to date identified 

Jang et al. Page 2

Psychol Med. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



many sets of genes and relevant tissues contributing to individual differences in alcohol 

and tobacco use such as nicotinic, dopaminergic, glutamatergic neurotransmission and 

developmental biology (Liu et al., 2019). Gene-sets relevant to cannabis use also included 

neurogenesis and dopaminergic neurotransmission (Pasman et al., 2018). Investigating 

genetic overlap can further elaborate knowledge on how these biological systems relate 

to psychiatric disorders or more specifically to certain types of substance use measures.

Pleiotropy - that variation within a given locus is associated with variation in two or 

more phenotypes - is abundant for complex traits (Paaby & Rockman, 2013). Evidence 

for pleiotropy comes from family studies and population studies of genome-wide genetic 

covariances among phenotypes, as well as associations between multiple phenotypes and 

variation within individual genes or genomic loci. These avenues of research are informative 

about whether pleiotropy exists, but do not readily distinguish different types of pleiotropy. 

Horizontal pleiotropy arises when genetic variation affects two or more phenotypes 

independently [or, alternatively, independently affect some intermediate process(es), which 

then affects the two phenotypes]. Vertical pleiotropy arises when genetic variation affects 

one phenotype, the experience/expression of which then causes a second phenotype; 

this is the type of pleiotropy Mendelian randomization (MR) mainly attempts to detect. 

Genetic covariances can arise under either form of pleiotropy (Solovieff, Cotsapas, Lee, 

Purcell, & Smoller, 2013). Distinguishing horizontal from vertical pleiotropy would have 

implications for many existing causal theories of psychopathology and substance use, 

some of which posit that psychiatric disorders cause substance use (e.g. self-medication; 

Khantzian, 1997), or that substance use is a causal risk factor of psychiatric disorders 

(Weiser & Noy, 2005). In contrast, the existence of horizontal pleiotropy would support 

conceptualizations of psychopathology as a product of more general liabilities to the 

manifestation of psychopathology and substance use or dependence (Kotov et al., 2017; 

Krueger & Markon, 2006). Such causal hypotheses can in theory be tested with MR through 

the use of genetic instruments (Davey Smith & Ebrahim, 2003). Different MR methods 

provide complementary ways to test causal associations, and here we take advantage of two 

recently developed methods (O’Connor & Price, 2018; Pickrell et al., 2016).

The aim of this paper is to inform the nature of shared genetic influences on substance 

use and psychiatric disorders by (1) examining the structure of genetic correlations 

using genome-wide methods and directly measured genetic variation (i.e. GWAS), (2) 

characterizing individual loci that are associated with two or more phenotypes, and (3) 

testing potential causal relations - horizontal or vertical pleiotropy - between substance use 

and psychiatric disorders. Although several GWAS meta-analyses have been conducted on 

the genetic overlap between various individual pairs of psychiatric disorders (Lee et al., 

2019; van Hulzen et al., 2017), the overlap between multiple forms of substance use and a 

variety of psychiatric disorders has not been evaluated.

Materials and methods

Quality control

Publicly available European ancestry GWAS summary statistics, the largest to date, were 

collected for six substance use and five psychiatric disorder phenotypes. Any well-powered 
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meta-analysis GWAS of substance use and psychiatric disorders covering externalizing, 

internalizing, and psychotic disorders were considered for inclusion. Among these, those 

reporting at least five significant loci in European ancestry and whose summary statistics 

were publicly available before mid-2019 were included. Additionally, education and height 

were included as controls to serve as a reference for interpreting the results. Quality controls, 

including variants filtering and LD clumping, were applied to ensure that problematic 

variants were excluded and different sets of summary statistics were as comparable as 

possible. Study characteristics after QC and details of QC procedure are reported in Table 1 

and the Supplementary Note, respectively. Note that LDSC intercept values for the smoking 

and alcohol use traits are <1.0, consistent with the fact that these summary statistics were 

originally generated using genomic control (Liu et al., 2019).

Factor analysis

We used genomicSEM (Grotzinger et al., 2019) to perform factor analysis on the 

multivariate covariance matrix. The matrix was first constructed with SNPs filtered to 

those polymorphic in HapMap3 Europeans with minor allele frequency >0.01. We fit a 

hypothesized three-factor model as well as exploratory factor analysis (EFA) with 1–3 

factors. Fit for all models were compared using confirmatory factor analysis (CFA). EFA 

was performed with promax rotation and maximum likelihood estimation using factanal() in 

the R package stats v.3.6.1. CFA was conducted with Diagonally Weighted Least Square 

estimation and implemented in genomicSEM, which provides standard fit information 

including the χ2 fit statistic, Akaike Information Criterion (Akaike, 1974; Vrieze, 2012), 

comparative fit index (CFI), and standardized root mean square residual (SRMR). While no 

doubt the confirmatory models based on the EFA were overfitted, the CFA allowed us to 

evaluate fit indices for best-case (indeed, over-fitted) scenarios.

Bivariate locus-wise association

To identify pleiotropic loci, we used gwas-pw (Pickrell et al., 2016; Ruderfer et al., 2018), 

a bivariate association method used to identify loci associated with pairs of phenotypes 

(here, 78 total pairs). The method is a Bayesian hierarchical modeling approach developed 

to compare the posterior probability of four competing models for a given approximately 

independent LD block. Models 1 and 2 assume the block harbors a causal variant that is 

associated with either only the first or only the second phenotype in a pair, respectively. 

Model 3 assumes the block harbors a variant that is associated with both phenotypes 

simultaneously, and model 4 assumes the block contains two distinct variants, each 

associated with only one of the two phenotypes. As in the original publication of the 

method, genomic regions were defined a priori by splitting chromosomes into approximately 

independent LD blocks (mean block size: 1.5 M base-pairs) (Berisa & Pickrell, 2016). The 

method empirically estimates priors for each regional model by using effect size information 

of variants in a given LD block and applies sample overlap correction (here we used effect 

size correlations between variants with p value >0.1 in both studies; online Supplementary 

Table S1) to generate posterior probabilities. A region was deemed pleiotropic if the 

posterior probability of model 3 was >0.9. SNPs showing the highest posterior probability 

within the shared locus were chosen as lead SNPs for that region. This method has been 

shown to detect shared loci at a false discovery rate of 10% (Pickrell et al., 2016).
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Functional annotations and tissue/gene-set enrichment analysis

First, we tested whether pleiotropic loci harbor more or less deleterious variants compared 

to non-pleiotropic loci using Combined Annotation Dependent Depletion (CADD) scores, 

which predict deleteriousness of variants based on protein function and structure (Kircher et 

al., 2014). Second, we tested whether variants from pleiotropic loci are more or less likely 

to harbor variants of different functional classes (e.g. nonsynonymous, intronic, intergenic, 

etc.). Lead SNPs and their LD partners (r2 > 0.4, ld-window 500 kb) were annotated with 

CADD and SEQMINER using refGene (retrieved 18 September 2019; Ye et al., 2010). 

Next, we performed tissue and gene-set enrichment analysis to test whether genes mapped to 

pleiotropic loci were enriched in certain tissue or gene-sets. A given region was categorized 

depending on whether it is associated with both substance use and psychiatric or associated 

with only one or the other. Tissue- and gene-set enrichment analyses were conducted 

by extracting nearest genes of the lead SNPs in these regions using a hypergeometric 

association test implemented in FUMA (Watanabe, Taskesen, van Bochoven, & Posthuma, 

2017). Gene-sets surviving Bonferroni correction for tissue specificity p < 0.5/54, and FDR 

of 0.05 for gene-set analysis were considered significantly enriched.

Testing for vertical pleiotropy

To test causal associations, we applied bidirectional MR (Pickrell et al., 2016) and the 

Latent Causal Variable model (LCV) (O’Connor & Price, 2018), two recently developed 

methods applicable to GWAS summary statistics. They are designed to be relatively robust 

to horizontal pleiotropy which is prevalent for complex traits (Verbanck, Chen, Neale, & Do, 

2018). Both methods are based on simple intuition: if phenotype A causally influences 

phenotype B (e.g. smoking causing lung cancer), then any variant associated with A 

(smoking) will have correlated effects on B (lung cancer). However, variants associated 

with B (lung cancer) will not necessarily have correlated effects on A (smoking), as there 

will be many genetic causes of B (lung cancer) that are independent of A (e.g. asbestos 

exposure). In bidirectional MR, two sets of correlations are calculated on genetic association 

effect sizes, first using genome-wide significant (GWS) variants of the first phenotype and 

then repeating the same procedure using GWS variants for the second phenotype. These 

correlations are used to evaluate evidence for four models: in models 1 and 2, phenotype 

A or B causes B or A; in model 3, there are no causal relationships; in model 4, two 

phenotypes are very closely related (e.g. two alternate measurements of a single entity or 

one could be the major highly penetrant causal factor for the other). A relative likelihood for 

causal (models 1 and 2) v. non-causal (models 3 and 4) model (rl) <0.01 was interpreted as 

supporting the causality. In the LCV model, a latent variable mediates the genetic correlation 

between phenotypes A and B, having causal effects on both traits. A genetic causality 

proportion (GCP) is estimated (ranging from 0 to 1), which quantifies the degree of genetic 

causality, using mixed fourth moments of marginal effect sizes of all available SNPs. A 

high GCP indicates the genetic component of phenotype A is at least partially causal for 

phenotype B, while low GCP values suggest a lack of causal effects. Phenotype pairs with 

GCP >0.6 and p values surviving Bonferroni correction (here, p < 0.00064) were identified 

as potential phenotypes in causal relations (O’Connor & Price, 2018). Finally, the LCV and 

bidirectional MR results were compared to two-sample MR results obtained using MRbase 

v.0.5.3 (Hemani et al., 2018) in R 3.6.1 on substance use-psychiatric phenotype pairs, for 
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integration with the broad MR literature (see Supplementary Note for a detailed procedure 

for each method).

Results

Structure of genetic correlations

The first five eigenvalues of the genetic correlation matrix were 2.9, 1.1, 0.72, 0.13, and 0.07 

(online Supplementary Fig. S1). We fit EFAs with 1–4 factors. Only the two-factor model 

was free of Heywood cases (loadings ⩾1.0), rendering model interpretation difficult. All 

EFA results are reported in online Supplementary Table S2. The two-factor model consisted 

of an externalizing factor loading on all three smoking phenotypes and ADHD, and an 

internalizing-psychosis factor loading on depression, anorexia, schizophrenia, and bipolar 

disorder (χ2 = 838.92, df = 26, p = 4.31 × 10−160, AIC = 876.92, CFI = 0.80, SRMR = 

0.11). This procedure of fitting exploratory models and then similar confirmatory models in 

the same dataset will lead to overfitting, so these values should be considered an absolute 

best-case scenario. The four-factor model, roughly having an internalizing, psychosis, 

externalizing, and substance use factor, achieved the best fit. However, to converge, we had 

to drop drinks per week and constrain multiple uniquenesses to have >0 variance. Overall, 

models with 3–4 factors, including our hypothesized three-factor model, resulted in negative 

variances for several variables. As a sensitivity analysis, we conducted CFA using summary 

statistics for smoking and drinking to which no genomic controls had been applied, and this 

did not change the fit. CFA results are presented in online Supplementary Table S3 and Fig. 

S2.

Shared loci

Complete results on pleiotropic loci are available in online Supplementary Tables S4–8. 

Of all 30 possible substance use-psychiatric phenotype pairs, ever smoker and ADHD had 

the highest number of shared loci (N = 40), followed by age of smoking initiation and 

ADHD (N = 22). Within psychiatric disorder pairs, bipolar disorder and schizophrenia 

showed the highest number of shared loci (N = 108). Within substance use pairs, age of 

smoking initiation and ever smoker showed the highest number (N = 58). In contrast, height 

shared few loci with substance use and psychiatric disorders despite its large number of 

GWAS signals, but years of education showed substantial overlap with both substance use 

and psychopathology (Fig. 1). Of note, the number of pleiotropic regions reflects both 

degree of genetic overlap and statistical power of the original GWAS, rendering between-

pair comparisons difficult. The lead SNPs in shared loci mostly agreed with the expected 

direction based on the genetic correlation (i.e. the more substance use, the higher risk of 

psychiatric disorder) (Fig. 1).

A total of 341 loci showed evidence for association with two or more substance use or 

psychiatric disorder phenotypes. This number includes 230 loci reported in past GWAS 

of respective phenotypes, and 111 additional loci not reported in those studies (online 

Supplementary Table S8). Of these 341 loci, 152 loci (45%) were associated with both 

substance use and psychiatric phenotypes; 114 (33%) were associated with multiple 
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substance use phenotypes but no psychiatric disorder, and 75 (22%) were associated with 

multiple psychiatric disorders but no substance use phenotypes.

When 152 shared loci were classified depending on type of substance, 10 loci were 

associated with the use of all three types of substances [i.e. smoking, cannabis, and 

alcohol (Table 2)]. A gene encoding the D2 subtype of the dopamine receptor, DRD2, on 

chromosome 11 was located in these multi-substance shared loci along with cell-adhesion 

protein coding genes including NCAM1 and CADM2. Five loci were associated with 

alcohol and psychiatric disorder, including Utr3 region of FUT2, a gene involved in 

bifidobacterial diversity in the intestine and plasma levels of B12 vitamins (Mitchell, Conus, 

& Kaput, 2014). Five loci were associated specifically with cannabis use and psychiatric 

disorder, including intron region of WSCD2, a gene previously associated with extraversion 

and risky behaviors (Linnér et al., 2019; Lo et al., 2017). Perhaps notably, nicotinic receptor 

genes (e.g. CHRNA4 and CHRNA5) did not belong to the 152 shared loci and instead 

were associated only with smoking (CHRNA4) and smoking and drinking phenotypes 

(CHRNA5).

Genes harboring lead SNPs of the 152 shared loci were overexpressed in all 13 brain 

tissues in GTEx v8 database and down-regulated in six tissues including substantia nigra, 

kidney cortex, and liver (Aguet et al., 2019). They are enriched in 90 Gene Ontology (GO) 

biological processes, 10 molecular function, and 34 cellular components gene-sets. The 

top 3 most strongly associated biological processes were ‘neurogenesis’, ‘cell projection 

organization’, ‘regulation of nervous system development’. Enriched molecular functions 

include protein dimerization, transcription factor binding, and cell adhesion molecule 

binding, and the enriched cellular components encompass various parts of neuron including 

glutamatergic synapse. The 75 psychiatric-specific shared loci were overexpressed in four 

brain tissues (anterior cingulate cortex, frontal cortex, amygdala, and hippocampus) but 

not downregulated in any tissues. They were enriched in 11 biological processes, five 

molecular function, and 20 cellular components gene-sets. Most of the enriched gene-sets 

concerned neuronal signaling-related activity (e.g. voltage-gated ion channel activity) and 

cell structures (e.g. synaptic membrane). Finally, the 114 substance use-specific shared 

loci were overexpressed in the cerebellar hemisphere, cortex, and artery tibial, and 

downregulated in seven tissues including kidney cortex, liver, and pancreas. They are 

enriched in one molecular function, ‘clathrin binding’ and 12 cellular components most 

of which are located in neurons, including ‘dopaminergic synapse’ (Fig. 2; see online 

Supplementary Tables S9 and 10 for full tissue and gene-set enrichment results).

The median CADD rank scores were not significantly different across lead SNPs from 

substance-psychiatric pleiotropic loci, either psychiatric or substance use-specific pleiotropic 

loci, and non-pleiotropic loci (p = 0.34; online Supplementary Fig. S3). Most of the lead 

SNPs fell in intergenic or intronic regions (>90%) and their distribution across functional 

categories did not differ across different groups of pleiotropic and non-pleiotropic loci (p = 

0.26; online Supplementary Fig. S4; online Supplementary Table S11).
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Causally informative analyses

Of 78 pairs submitted to the analysis, none showed evidence of vertical pleiotropy from 

bidirectional MR and LCV. As a sensitivity analysis, bidirectional MR was conducted 

with the GWAS variants originally reported by each study and LCV was repeated with 

summary statistics for smoking and drinking without genomic control, both yielding the 

same pattern of results. Eight causal associations were significant in more than half of the 

four two-sample MR tests performed (Table 3). Full results of bidirectional MR and LCV, 

and two-sample MR are in online Supplementary Tables S12 and 13, respectively.

Discussion

We coordinated and analyzed GWAS results of six substance use and five psychiatric 

phenotypes to investigate the genetic correlation structure, multivariate association, and 

causal links among these phenotypes. The two-factor structure performed better than the 

single-factor model, but did not achieve a good model fit (e.g. CFI = 0.8, SRMR = 

0.11, AIC = 876.92). Modification indices suggested that internalizing factor might not 

be well captured by covariance between depression and anorexia and residual covariance 

exists between schizophrenia and bipolar disorder as well as among some substance use 

phenotypes. In line with this diagnosis, the four-factor model achieved a better fit (e.g. 

CFI = 0.87, SRMR = 0.08, AIC = 709.62), which additionally fit separate substance 

use and psychosis factor. This model also aligns with current conceptualizations of the 

meta-structure of psychopathology (i.e. correlated externalizing, internalizing, and psychosis 

factors) (Kotov et al., 2017). However, caution is required in interpreting the four-factor 

model since the solution could be ill-specified (Heywood cases) and over-fitted (same data 

were used to both construct and test the model). The joint factor structure of substance 

use and psychiatric disorders should be further tested in independent samples, especially as 

large-scale GWAS on related phenotypes continue to be published.

We identified a total of 341 loci that showed at least one bivariate pleiotropic association 

with substance use or psychiatric phenotypes, which included about half of the loci 

reported in previous GWAS (~50% of the 458 univariate GWAS associations), confirming 

the presence of extensive pleiotropy. Genes nearest to the loci shared by both substance 

use and psychiatric disorders simultaneously (152 loci) were over-expressed in broad 

regions of the brain and enriched in neurodevelopmental pathways, suggesting that general 

neurodevelopmental processes (e.g. neurogenesis and neuron differentiation) may underlie 

the risk of both psychiatric disorders and substance use. For example, DCC, a gene 

involved in axonal growth and white matter projections (Jamuar et al., 2017), was mapped 

to the most pleiotropic locus in a recent fixed-effect meta-analysis of eight psychiatric 

disorders (Lee et al., 2019). The same gene was mapped to highly pleiotropic locus in the 

current analysis, associated with the age of smoking initiation, ever smoker, depression, 

schizophrenia, and education. Biological adhesion and cellular morphogenesis/organization 

pathways were prominent among the neurodevelopmental pathways enriched in the 152 

shared loci. Cell adhesion molecules have been reported to regulate synapse number, 

maturation, and plasticity (Sytnyk, Leshchyns’ka, & Schachner, 2017), serving essential 

functions in neural development. On the other hand, genes nearest to the pleiotropic loci 
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specific to psychiatric disorders were mostly enriched in neuronal signaling pathways such 

as voltage-gated ion channel activity while those specific to substance use were enriched in 

clathrin binding-related functions and cell structures. The potential role of clathrin binding is 

less clear, but it plays a key role in receptor endocytosis and vesicle recycling at th synapse 

(Jung & Haucke, 2007; Kaksonen & Roux, 2018) and has been implicated in drug-evoked 

neural plasticity in animal studies of addiction, including amphetamine (Brebner et al., 

2005), heroin (Van den Oever et al., 2008), and morphine (Morón et al., 2007). For example, 

inhibiting clathrin-dependent postsynaptic AMPA receptor endocytosis in ventral mPFC and 

nucleus accumbens reduced drug-seeking behaviors in rats (Brebner et al., 2005; Van den 

Oever et al., 2008). Current results provide converging evidence as to the role of clathrin 

binding as a risk factor relatively specific to drug use and addiction.

Our bidirectional MR and LCV analysis detected no causally associated pairs, consistent 

with the notion that genetic correlations among these traits arise from horizontal pleiotropy. 

MR Egger, a classic two-sample method more robust to confounding by horizontal 

pleiotropy, also detected no pairs in vertical pleiotropy. In contrast, the other two-sample 

MR analyses more susceptible to such confounding (Verbanck et al., 2018) reported multiple 

pairs of causal associations, similar to past findings: genetic liability to ADHD associated 

with increased risk of smoking initiation (Fluharty, Sallis, & Munafò, 2018) and vice versa 
(Treur et al., 2019), and genetic liability to smoking associated with increased risk of 

schizophrenia and depression and vice versa (Wootton et al., in press; Yao et al., in press); 

but see also some null MR findings (Gage et al., 2017; Hodgson et al., 2020; Taylor et 

al., 2014). Heterogeneity statistics from classic MR were significant for five out of eight 

associations (p < 0.05), indicating further the potential presence of horizontal pleiotropy for 

these five pairs (Bowden, Hemani, & Davey Smith, 2018). Three pairs, i.e. ADHD lowering 

the age of smoking initiation, ever smoker increasing risk for ADHD, and depression, 

showed non-significant heterogeneity statistics thus may be causally related. However, their 

genetic correlations were rather high (i.e. rg = −0.6, 0.57, 0.35 for each pair in order), a 

condition which can produce excess false positives in classic MR (O’Connor & Price, 2018).

On the other hand, LCV and bidirectional MR showed relatively well-calibrated type 

1 and 2 errors in such a scenario (O’Connor & Price, 2018). Taken together, vertical 

pleiotropy, at least a single causal direction, may not explain the well-known high rate of 

co-occurrence among psychopathology and substance use. Related causal hypotheses such 

as self-medication or substance use as a causal risk factor for psychopathology are not well 

supported by current results. For example, GCP for major depression and ever smoker (0.04, 

S.E.: 0.06) and that for cannabis use and schizophrenia (−0.15, S.E.: 0.20) were close to zero 

and significantly different from 1.

Our findings should be interpreted in light of several limitations. First, the number of 

manifest variables may be still insufficient to fit CFA models with more than three factors. 

We also stress again that CFA fit could be overestimated to some unknown degree since 

the models were built on EFA results in the same sample. Current results should be tested 

in replication sample with more manifest variables especially those for internalizing. From 

a more technical standpoint, some of the constituent GSCAN cohorts used linear mixed 

models (LMM) and this may have exerted a subtle influence on CFA fit due to model 
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misspecification between linear regression-based LDSC model and LMM (Yang, Zaitlen, 

Goddard, Visscher, & Price, 2014). The degree and remedy for this potential bias should 

be further studied. For pleiotropic loci analysis, the size of LD blocks used in this method 

is relatively large (mean 1.5 Mb) yielding limited resolution, and the posterior probability 

threshold to detect pleiotropy is almost certainly less stringent than the typical family-wise 

error rate of 5% in GWAS. We used the more liberal threshold (corresponding to an FDR of 

~10%) since the focus of the current study was to assess the scope of pleiotropy in known 

associated loci, rather than declaring high confidence novel loci. In the simulation performed 

in the original article, gwas-pw overall gave a slight overestimation for model 3 (pleiotropy). 

In the presence of high sample overlap, it additionally gave modest overestimation for model 

4 (two separate effects in a single locus) over model 1 or 2 (only one effect for either trait 

in a single locus), requiring caution in interpretation. It is also not possible to distinguish a 

single variant influencing both traits from two causal variants in strong LD affecting each 

trait separately. Regarding causal inference, although the results were mainly interpreted in 

light of shared genetic effects, cyclical feedback loops between phenotypes may exist to 

some degree, possibly for all pairs of phenotypes. This type of causality can evade LCV 

and bidirectional MR but can still be detected by two-sample MR methods to some extent. 

Last, the GWAS were all performed on individuals of European ancestry, which limits 

the generalizability of current findings. Increasing availability of trans-ancestry GWAS can 

improve the generalizability of this kind of analyses in the future.

Despite these limitations, the current study provides comprehensive analyses of the genetic 

overlap between substance use measures and psychiatric disorders based on GWAS results. 

It offers novel insights into the structure, biology, and causal nature of this overlap and 

points toward the future directions for methodological and etiology research. Refining our 

understanding of the biological underpinnings of the externalizing spectrum (e.g. salient 

developmental processes and periods) will be helpful to tackle adverse outcomes associated 

with it. Continuing to study multiple layers of biology such as those underlying addiction 

to various substance types (e.g. clathrin-mediated endocytocis of AMPA receptors) and that 

pertaining to specific substance-psychiatric disorder association can add rich information to 

the etiology of the two phenomena. Finally, the current study applied novel causal inference 

methods developed to address pervasive horizontal pleiotropy in complex traits and adds to 

the fast-growing causal inference literature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The bottom triangle of panel A shows genetic correlations estimated by bivariate LDSC 

(online Supplementary Table S14). Non-significant correlations after Bonferroni correction 

are in gray. The upper triangle shows the number of loci shared between corresponding 

phenotype pairs. The numbers in the diagonal are the total number of genome-wide 

significant hits from original, univariate GWAS (ascertained by LD clumping). The 

background colors of the upper triangle indicate following pairs of domains: blue - between 

substance uses, purple - between substance use and psychiatric disorders, green - between 

psychiatric disorders, brown - between control phenotypes and all other phenotypes. Panel B 

shows the sign concordance of effect for lead SNPs in shared loci for a given phenotype pair. 

More reddish color indicates higher concordance. In each box, the left-side number indicates 

the number of lead SNPs having concordant directions of effects while the right-side number 

indicates the total number of lead SNPs in pleiotropic loci for a given pair. Note that smaller 

value of Age of Smoking Initiation indicates earlier age of smoking initiation and higher 

values of Smoking Cessation, Ever Smoker, and Lifetime Cannabis Use indicate current 

smoker, ever smoker, and ever cannabis user, respectively. Higher values of psychiatric 

disorders indicate the presence of the disorder.
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Fig. 2. 
Panel A shows results for up-regulated Differentially Expressed Gene (DEG) set tests while 

panel B shows results from the down-regulated DEG set test. X-axis and Y-axis each 

represents tissue types and log10 p value. The bar higher than the dashed line indicates 

significantly enriched tissue type after Bonferroni correction. The white bar represents genes 

from loci pleiotropic for both substance use and psychiatric disorders while gray and black 

bars represent genes from loci pleiotropic within psychiatric disorders or substance use.
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