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ABSTRACT We report a draft genome assembly of the causal agent of tomato vas-
cular wilt, Fusarium oxysporum f. sp. lycopersici isolate 59, obtained from the Andean
region in Colombia.

F usarium oxysporum f. sp. lycopersici is a soilborne fungus belonging to the F. oxy-
sporum species complex (FOSC). F. oxysporum f. sp. lycopersici causes fusarium wilt in

tomato (Solanum lycopersicum), which often leads to significant yield losses (1, 2). F. oxy-
sporum f. sp. lycopersici isolate 59 was isolated from root and stem tissue from a wilted
tomato plant grown in the Andean region of Colombia (3). Isolate 59 was classified as F.
oxysporum f. sp. lycopersici race 2, using PCR markers for phylogenetic analysis (3).

For whole-genome sequencing, fungal hyphae from a 6-day-old culture (Czapek-
Dox medium) were collected and lyophilized overnight. High-molecular-weight (HMW)
DNA was extracted using a modified phenol-chloroform/isoamyl alcohol method (4).
For Nanopore sequencing, a library was prepared using the ligation sequencing kit
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TABLE 1 Comparison of assembly statistics of Fusarium oxysporum f. sp. lycopersici isolates

Characteristic

Data for F. oxysporum f. sp. lycopersici strain:

59 4287 4287
Accession no. (database) PRJNA756266

(BioProject)
GCF_000149955.1
(GenBank assembly)

GCA_003315725.1
(GenBank
assembly)

Sequencing method Oxford Nanopore1
Illumina

Sanger PacBio1 Illumina

Total length (Gbp) 5.36 6.1 5.39
No. of contigs 361 1,362 504
Coverage (�) 75.5 6.5 76
Assembly size (Mb) 54.2 59.9 53.9
Longest contig (bp) 6,457,141 5,700,000
% GC 47.67 48.4 47.7
Contig N50 (bp) 3,035,620 95,416 1,338,693
Contig L50 7 184 11
Complete BUSCOs (%) 99.60 97.70 99.90
Total no. of BUSCOs 4,494 4,494 2,294
No. of duplicate BUSCOs 37 40 34
No. of fragmented BUSCOs 0 24 1
No. of missing BUSCOs 7 78 7
Reference This study 15 14
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(SQK-LSK109) according to the manufacturer’s instructions (Oxford Nanopore
Technologies, Oxford, UK) using 1 mg HMW DNA. The long-fragment buffer (LFB) sup-
plied in the kit was used to enrich long DNA fragments of .3 kb. An R9.4.1 flow cell
(Oxford Nanopore Technologies) was loaded and run for 24 h. Base calling was
performed using Guppy version 4.0.21 within MinKNOW (Oxford Nanopore
Technologies). Illumina sequencing was performed using a fungal sample collected
as previously described. Total DNA was isolated using the cetyltrimethylammonium
bromide (CTAB) protocol (5). DNA (350 ng/mL) was used for library preparation with
the Nextera DNA Flex library preparation kit in dual index format (Illumina, Inc., San
Diego, CA, USA) according to the manufacturer’s instructions. The library was
sequenced in paired-end format on the Illumina HiSeq 4000 sequencing system
(Macrogen, South Korea).

The quality of the Nanopore and Illumina reads was assessed via NanoPlot version 1.30.1
(6) and FastQC version 11.7 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
respectively. A total of 1,742,231 raw reads were generated from the Nanopore sequencing.
Approximately 16 million 151-bp paired-end reads were obtained from the Illumina
sequencing. The resulting long reads were first processed using Porechop version 0.2.4 to
divide chimeric sequences (https://github.com/rrwick/Porechop) (7); then, the reads were

FIG 1 Heatmap table of the average nucleotide identity (ANI) values generated from a pairwise comparison of 15 Fusarium isolates. An ANI
score greater than 95% between two genomes indicates that they are the same species. The genomes of the Fusarium isolates were
downloaded from NCBI: F. oxysporum f. sp. cubense race 4 (GenBank accession number GCA_000350365.1), F. circinatum strain FSP 34 (GCA
_000497325.3), F. oxysporum f. sp. melonis 26406 (GCA_002318975.1), F. oxysporum Fo47 (GCA_013085055.1), F. circinatum isolate V (GCA
_013168815.1), F. oxysporum f. sp. cubense race 1 isolate VCG01220 (GCA_016802225.1), F. proliferatum strain NRRL62905 (GCA_900029915.1),
F. verticillioides 7600 (GCF_000149555.1), F. oxysporum f. sp. lycopersici 4287 (GCA_003315725.1), F. graminearum PH-1 (GCF_000240135.3), F.
oxysporum f. sp. cubense tropical race 4 strain 54006 (GCF_000260195.1), F. oxysporum NRRL 32931 (GCF_000271745.1), F. proliferatum ET1
(GCF_900067095.1), F. fujikuroi IMI 58289 (GCF_900079805.1).
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filtered by length and quality using Filtlong version 0.2.0 (https://github.com/rrwick/
Filtlong). The N50 length of the Nanopore reads was 9.569 kbp. A total of 885,847 filtered
reads were assembled using the de novo long-read assembler Shasta version 0.1.0 (8). The
sequenced short reads were processed by first removing residual adapters and poor qual-
ity reads using Trim Galore version 0.6.5 (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/). Reads shorter than 100 bp were filtered using the FASTX-Toolkit
version 0.0.14 (fastx_trimmer; http://hannonlab.cshl.edu/fastx_toolkit). The de novo assem-
bly Nanopore and Illumina reads were polished using Racon version 1.4.13 (9) and Pilon
(10), respectively. Whole-genome assembly was carried out using a hybrid de novo assem-
bly approach, incorporating Nanopore long reads and Illumina short reads.

A summary of assembly statistics was generated using BBMap version 38.90 (11),
and the assembly completeness was evaluated using the Benchmarking Universal
Single-Copy Orthologs (BUSCO) version 4.0.6 software (12) (Table 1). PYANI version
0.2.10 was used to calculate the average nucleotide identity (ANI) and relatedness
measures of whole-genome comparisons among Fusarium species (13) (Fig. 1). The
draft assembly (combining long reads and Illumina short reads) has a total size of
54.2 Mb and a coverage of approximately 75.5�. The completeness of the assembly
was calculated using BUSCO with the Hypocreales_odb10 lineage gene data set; the
analysis showed that 4,441 out of 4,494 BUSCO markers were found, and only a few
duplicated or missing BUSCO orthologs were identified (Table 1).

The results of this study will contribute to building a more robust phylogenetic
framework that will guide inquiries concerning the evolution of important traits in the
FOSC group.

Data availability. The described genome assembly is available in GenBank under
BioProject accession number PRJNA756266. The Illumina and Oxford Nanopore reads
are deposited at the Sequence Read Archive (SAR) under accession numbers
SRX11976571 and SRX11976570, respectively. F. oxysporum f. sp. lycopersici strain 59
was registered in the National Collections Registry (RNC129) and was collected under
AGROSAVIA permit framework number 1466 from 2014, updated by resolution 04039
on 19 July 2018.
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