Skip to main content
. 2022 Jan 14;4(1):lqab122. doi: 10.1093/nargab/lqab122

Table 3.

The performance of prediction methods using the missense variants

Order Methods Accuracy Precision Recall F1-score
1 PredictSNP2 0.6983 0.7042 0.7609 0.7315
2 DANN 0.6716 0.6642 0.7928 0.7228
3 FATHMM-MKL 0.6793 0.6884 0.7422 0.7143
4 FunSeq2 0.5947 0.6046 0.7211 0.6577
5 CADD 0.7198 0.7453 0.7312 0.7382
6 SIFT 0.7146 0.7771 0.6612 0.7145
7 PROVEAN 0.7267 0.7476 0.7457 0.7467
8 MetaLR 0.7964 0.8360 0.7751 0.8044
9 MetaSVM 0.8015 0.8409 0.7802 0.8094
10 MutationAssessor 0.7163 0.7797 0.6617 0.7159
11 PrimateAI 0.6877 0.6939 0.7546 0.7230
12 M-CAP 0.8040 0.8494 0.7744 0.8101
13 REVEL 0.8305 0.8578 0.8226 0.8398
14 MISTIC 0.8216 0.8604 0.7994 0.8288