Table 3.
The performance of prediction methods using the missense variants
| Order | Methods | Accuracy | Precision | Recall | F1-score |
|---|---|---|---|---|---|
| 1 | PredictSNP2 | 0.6983 | 0.7042 | 0.7609 | 0.7315 |
| 2 | DANN | 0.6716 | 0.6642 | 0.7928 | 0.7228 |
| 3 | FATHMM-MKL | 0.6793 | 0.6884 | 0.7422 | 0.7143 |
| 4 | FunSeq2 | 0.5947 | 0.6046 | 0.7211 | 0.6577 |
| 5 | CADD | 0.7198 | 0.7453 | 0.7312 | 0.7382 |
| 6 | SIFT | 0.7146 | 0.7771 | 0.6612 | 0.7145 |
| 7 | PROVEAN | 0.7267 | 0.7476 | 0.7457 | 0.7467 |
| 8 | MetaLR | 0.7964 | 0.8360 | 0.7751 | 0.8044 |
| 9 | MetaSVM | 0.8015 | 0.8409 | 0.7802 | 0.8094 |
| 10 | MutationAssessor | 0.7163 | 0.7797 | 0.6617 | 0.7159 |
| 11 | PrimateAI | 0.6877 | 0.6939 | 0.7546 | 0.7230 |
| 12 | M-CAP | 0.8040 | 0.8494 | 0.7744 | 0.8101 |
| 13 | REVEL | 0.8305 | 0.8578 | 0.8226 | 0.8398 |
| 14 | MISTIC | 0.8216 | 0.8604 | 0.7994 | 0.8288 |