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Abstract

Antibiotic collateral sensitivity (CS) occurs when a bacterium that acquires resistance to a 

treatment drug exhibits decreased resistance to a different drug. Here we identify reciprocal CS 

networks and candidate genes in Burkholderia multivorans. B. multivorans was evolved to become 

resistant to each of six antibiotics. The antibiogram of the evolved strain was compared to the 

immediate parental strain to determine CS and cross-resistance (CR). The evolution process was 

continued for each resistant strain. CS interactions were observed in 170 of 279 evolved strains. 

CS patterns grouped into two clusters based on the treatment drug being a beta-lactam antibiotic 

or not. Reciprocal pairs of CS antibiotics arose in at least 25% of all evolved strains. Sixty-eight 

evolved strains were subjected to whole-genome sequencing and the resulting mutation patterns 

were correlated with antibiograms. Analysis revealed there was no single gene responsible for 

collateral sensitivity (CS), and that CS seen in B. multivorans is likely due to a combination of 

specific and non-specific mutations. The frequency of reciprocal CS, and the degree to which 

resistance changed, suggests a long-term treatment strategy; when resistance to one drug occurs, 

switch to use of the other member of the reciprocal pair. This switching could theoretically be 

continued indefinitely, allowing life-long treatment of chronic infections with just two antibiotics.
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1. Introduction

Burkholderia multivorans is a member of the Burkholderia cepacia complex (Bcc), a 

group of closely related Gram-negative bacterial species that are inherently resistant to 

many antibiotics. Several Bcc species can cause chronic and debilitating lung infections 
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in cystic fibrosis patients [1], and after establishment, Bcc infections are usually chronic 

and eradication is difficult. Antibiotic therapy use in CF patients is common, both 

prophylactically and in response to pulmonary exacerbations, and this therapy creates an 

environment that selects for resistant mutants.

Bacterial antimicrobial susceptibility profiles change in response to selective pressure. 

Collateral changes in susceptibility arise when a mutant has an increase or decrease in 

resistance to an antibiotic to which the bacterium has not been exposed. Cross resistance 

(CR) is when a strain has increased resistance to a non-treatment drug, and collateral 

susceptibility (CS) is when a strain has decreased resistance to a non-treatment drug 

[2–4]. Experiments on Escherichia coli [2, 4, 5], Pseudomonas aeruginosa [6–8], and 

Staphylococcus aureus [9] have demonstrated cross resistance and collateral susceptibility. 

Reciprocal CS, which occurs when a pair of antibiotics switch between resistance and 

susceptible over lineage evolution, is less common but has greater clinical significance [2, 

8].

Our laboratory has documented that collateral susceptibility (CS) and cross-resistance exists 

in a B. multivorans clinical isolate and occur in patterns based on the treatment drug [10]. 

We have previously reported on 13 independently evolved strains that exhibited CS and 

CR. Here, we further evolved 68 strains and document a pattern of reciprocal CS in B. 
multivorans. as well as report mutations acquired during selection which correlate with 

CS pairs. Reciprocal CS drug-pair combinations allow a treatment strategy of switching 

between two antibiotics instead of using a sequential therapy regiment that leads to 

pathogens with expanding antibiotic resistance.

2. Materials and Methods

2.1. Strains, culture conditions, and antibiotics

Strain AS149, a B. multivorans isolated from the sputum of a cystic fibrosis patient [11], 

as the ancestral parent. Bacteria were grown at 37° on LB for routine culturing and during 

experimental evolution and on Mueller-Hinton broth 2 (Sigma-Aldrich) for antimicrobial 

susceptibility testing.

Antibiotics involved in this study were chosen due to their inclusion in the CLSI [12] list 

of standard antibiotics tested against B. cepacia and for having varied targets, which we 

separated in βLA (meropenem [MEM], ceftazidime [CAZ]) and non-βLA (chloramphenicol 

[CHL], levofloxacin [LVX], minocycline [MIN], trimethoprim- sulfamethoxazole [SXT]) 

groups. BBL Sensi-Disc antimicrobial susceptibility test disks (BD) were used for all except 

minocycline (Oxoid). The minimum inhibitory concentration was determined using ETEST 

gradient strips.

2.2. Experimental evolution

Strains were evolved for resistance to one of six treatment drugs using a previously 

described method [13]. Evolved strains were classified as ‘resistant’ using CLSI zone 

of inhibition (ZOI) breakpoints or, for levofloxacin and chloramphenicol that lack disk 

diffusion breakpoints, when there was confluent growth up to the disk.
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Lineages were created from AS149. A “lineage” includes all progeny that started with one 

treatment drug. Treatments used for all lineages is demonstrated for meropenem (MEM): 

AS149 is exposed to MEM until resistant (Progeny1MEM-R). Disk diffusion testing is 

performed using the treatment drug, MEM, and five non-treatment drugs to ensure the 

MEM-R strain is resistant to MEM and not a persister or cheater. If the MEM-R strain 

exhibits a change in the ZOI for any of the five non-treatment drugs, it was used to evolve 

a new strain for resistance to the non-treatment drug (e.g., CAZ-R [Progeny2CAZ-R]). Each 

evolved strain (e.g., CAZ-R) was then examined for changes in susceptibility to the five non-

treatment drugs. If any collateral sensitivity interaction was observed, CAZ-R was subjected 

to the same treatment as was used with MEM-R to evolve progeny strains resistant to the 

CS non-treatment drugs. Reciprocal CS occurs if the Progeny2 strain loses resistance to the 

antibiotic used to select for the Progeny1 strain (i.e. if when Progeny1MEM-R is evolved 

to CAZ-R [i.e. becomes Progeny2CAZ-R] it simultaneously loses resistance to MEM). A 

lineage was terminated for one of two reasons: 1) the terminal strain had no CS or 2) 

reciprocal CS had been demonstrated twice.

2.3. Antimicrobial susceptibility testing and interpretation for collateral resistance and 
sensitivity

Antimicrobial susceptibility testing (AST) was performed as described previously [13]. 

The antibiogram of the evolved strain was compared to the antibiogram of the immediate 

parental strain to determine collateral sensitivity (CS) and cross-resistance (CR). Any 

change in zone of inhibition (ZOI) of 20% or greater for a non-treatment drug reflects 

collateral changes in susceptibility, with an increase in ZOI indicating CS and a decrease 

in ZOI indicating CR [10]. On strains having CS, an ETEST® was used to determine the 

minimum inhibitory concentration (MIC).

2.4. Statistical Analysis

All statistical analyses were performed with GraphPad Prism. An observed-versus-expected 

binomial one-tailed test was used to determine statistical significance of clustering in 

cross-resistance (CR) and collateral sensitivity (CS) regarding βLA and non-βLA clusters. 

Numbers of interactions, and not strains, were used since strains could contain more than 

one interaction. The null hypothesis was that any of the 5 non-treatment drugs had an equal 

chance to be the drug in the observed interaction. When the antibiotic was a βLA, expected 

values are 20% βLA (1 of 5) and 80% non-βLA (4 of 5); when a non-βLA, expected 

values are 40% βLA (2 of 5) and 60% non-βLA (3 of 5). Decreases in MICs are expressed 

as fold-changes for each non-treatment drug. Tests for normality (Anderson-Darling and 

Kolmogorov-Smirnov) were negative for all, so Kruskal-Wallis test and Dunn’s multiple 

comparisons test were run.

2.5. Genomic analysis

Sixty-eight independently evolved B. multivorans isolates, three parental AS149 biological 

replicates, and eight negative control biological replicates (2x five exposures, 10 exposures, 

15 exposures, and 20 exposures) were subjected to whole genome sequencing (WGS). 

Negative control strains were constructed by sequentially plating one colony grown 

without antibiotic selection under the same procedure as evolved strains to account for 
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mutations accumulated due to laboratory evolution. A single colony from each strain 

and two morphologically distinct colonies from control plates were sequenced by Omega 

Bioservices, using 151 bp paired end reads with an Illumina HiSeq 2500 platform. Variant 

filtering and analysis were performed as previously described [10].

To identify candidate genes likely involved in direct resistance and collateral sensitivity, 

starting with the evolved strains of interest, we first eliminated mutations from the ancestral 

parent, AS149, and those in the negative control strains. Mutations shared between pairs of 

reciprocal CS strains and mutations greater than 100 bp upstream of a downstream gene in 

intergenic regions were not accounted for in this analysis. Predicted protein loss of function 

mutations within structural genes were designated as high impact.

3. Results

3.1. Frequency of cross-resistance and collateral susceptibility

Of 279 evolved strains, 188 (67%) exhibited cross-resistance and 170 (61%) exhibited 

collateral susceptibility. The frequency for each of the six antibiotics is seen in Table 1. As 

was observed previously [10], interaction patterns were observed based upon the treatment 

drug; the beta lactam antibiotics (βLA) forming one cluster (134 strains [48%]) and the 

non-beta lactam antibiotics (non-βLA) forming the other (145 strains [52%]).

3.2. Cross-resistance patterns

The percentage of evolved strains exhibiting CR as well as the average CR interactions 

per strain were determined and compared for each of the six antibiotics being used as the 

treatment drug. The ratio of CR-exhibiting strains to total evolved strains for both βLA 

resistance groups was lower (61%, 82 of 134) than for the four non-βLA resistance groups 

(73%, 106 with CR of 145 evolved). For all 188 CR-exhibiting strains, there as an average 

of 1.9 CR interactions per strain. If treatment drugs are separated into βLA and non-βLA 

clusters, the range for n-βLAs is 1.7–2.3 and for βLA is 1.7–1.8.

Most cross-resistance interactions were observed within clusters (Fig. 1A). When the 

treatment drug was a non-βLA, any CR interaction observed was more likely to be with 

another non-βLA. The same pattern is seen in the βLA cluster; >70% of CR-exhibiting 

strains with a βLA treatment drug had CR interactions occur in the other βLA. Between-

cluster interactions were statistically more common when the treatment drug was a βLA 

than a non-βLA (see Fig. S1A). We performed an observed-versus-expected, one-tailed 

binomial statistical test; clustering was statistically significant for all treatment drugs.

3.3. Collateral susceptibility patterns

Of the 170 strains with collateral sensitivity (CS), the majority had CS in one or two non-

treatment drugs (NTD) with an average number of CS interactions per strain of 1.8 (Table 

1): 45% had increased sensitivity to only one non-treatment drug (NTD) and 41% increased 

sensitivity to two NTDs. Meropenem had the highest average of CS interactions per strain 

(2.1) and levofloxacin and minocycline had the lowest (1.3). Two groups, trimethoprim-

sulfamethoxazole and meropenem, had strains with 5 interactions, i.e. all non-treatment 
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drugs demonstrated CS. The absolute ratio of CS-exhibiting strains to total evolved strains 

did not significantly differ between these two clusters (59% for the βLA and 63% for the 

non-βLA).

The clusters identified from cross-resistance interaction patterns (βLA, non-βLA) were 

also present in collateral sensitivity patterns. Unlike CR interactions that were within 

clusters, most CS interactions were between clusters (Fig. 1B and Fig. S1B). Clustering 

was statistically significant for all treatment drugs.

3.4. Quantitative decrease in MIC for collateral sensitivity interactions

The degree to which an evolved strain changed resistance to a non-treatment drug was 

measured by comparing minimum inhibitory concentration (MIC) values obtained using 

ETEST for all non-treatment drugs. Ceftazidime showed the greatest decrease, with an 

average fold decrease of 86.1 (SD 204.2, range 1.3–1024); chloramphenicol (mean 2.9, 

SD 2.2, range 1.3–8) and levofloxacin (mean 2.8, SD 2.0, range 1.3–12) had the smallest 

decreases.

3.5. Reciprocal CS between antibiotic pairs

Identification of two treatment drugs which lead to collateral sensitivity in the other 

antibiotic, i.e. reciprocal CS, suggests a strategy to treat chronic infections. Candidate 

reciprocal CS pairs were selected as follows: each antibiotic of the pair has a relatively high 

percentage of strains with collateral sensitivity as the non-treatment drug when the other was 

the treatment drug. Pairs were ranked by their average, combined CS percentage. The top 

five pairs are given with the percentage of strains resistant to the treatment drug exhibiting 

CS to the other antibiotic in the pair presented in the subsequent parentheses. They are: 

trimethoprim-sulfamethoxazole (SXT) / meropenem (MEM) (non-treatment drug = MEM 

60% [i.e. 60% of strains resistant to SXT show CS to MEM], SXT 33%, average combined 

CS 46%), LVX/MEM (43, 32, 38), SXT/CAZ (40, 29, 35), minocycline (MIN)/MEM (21, 

43, 32), and LVX/CAZ (30, 26, 28). A diagram of these pairings is given in Fig. S2.

3.6. Genes involved in collateral resistance and reciprocal collateral sensitivity

Whole genome sequencing and mutational analysis were conducted on the parental and 

68 of the evolved strains. The average number of mutations per strain were 50.2 (range: 

13–120); 23 (range: 1–67) intergenic, and for coding regions, there were an average of 13.9 

(range: 2–31) synonymous and 13.3 (range: 4–25) nonsynonymous mutations.

Genetic analysis focused on two reciprocal pairs: MEM-LVX and CAZ-LVX (Table S1, S2). 

Because MEM and CAZ have similar mechanisms of action and both show reciprocal CS 

with LVX, comparing mutations acquired between these two pairs should reveal those most 

likely to be involved in CS.

Isolates evolved to treatment drug LVX with increased susceptibility to MEM acquired 

unique mutations within six structural genes and two intergenic regions (Table S3). Of the 

six structural genes, three genes acquired high impact mutations (rseP, dacB, and fimV). 

Isolates evolved to treatment drug MEM with increased susceptibility to LVX acquired 
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unique mutations within nine structural genes and nine intergenic regions. Three structural 

gene mutations were designated as high impact (rimO, snoaL-like polyketide cyclase, and 

rhaT).

Isolates evolved to treatment drug LVX with increased susceptibility to CAZ acquired 

unique mutations within eight structural genes and two intergenic regions (Table S4). Of the 

eight structural genes, three acquired high impact mutations (bpeR, fimV, phage lysozyme). 

Isolates evolved to treatment drug CAZ with increased susceptibility to LVX acquired 

unique mutations within eleven structural genes and seven intergenic regions. Of the eleven 

structural genes, five acquired high impact mutations (rne, tRNA-ser, dacB, fabI, and a 

transmembrane protein).

4. Discussion

This study identifies and quantitates reciprocal collateral sensitivity (CS) antibiotic pairs in 

B. multivorans, and identifies candidate genes involved in CS. The frequency of collateral 

susceptibility changes may be taxa-specific as what we observed was higher [14] and lower 

[2] than found previously with other organisms.

From the six antibiotics used in this study, representing multiple modes of action, collateral 

sensitivity (CS) patterns grouped into two clusters based on the treatment drug being a 

beta-lactam antibiotic (βLA) or not (non-βLA). The majority of cross-resistance (CR) 

interactions are within each cluster, consistent with a previous report [10]. Here we also 

observed more between-cluster CR interactions when the treatment was a βLA than when a 

non-βLA (Fig. S1A). Collateral sensitivity interactions were observed in 170 of 279 evolved 

strains, with the majority (55%) having more than one interaction. When present, these 

interactions were usually seen between clusters (Fig. 1B and S1B), with the sole exception 

being when minocycline is the treatment drug.

The relevance of collateral sensitivity (CS) to clinical use is influenced by the degree to 

which there is a collateral decrease in resistance and how reproducible are reciprocal CS 

pairs. When analyzing the degree of change in the MIC observed with collateral sensitivity, 

we noted that seven strains (12%) exhibited a decrease of greater than 100-fold, and almost 

half (49%, 28 strains) exhibited a decrease of >25-fold (data not shown). The highest 

change in MIC was observed with ceftazidime, with a 1024-fold decrease. For all other 

non-treatment drugs, the average fold decrease was 7.1 with a standard deviation of 11.8 

(data not shown). Reciprocal CS pairs arose in at least 25% of all evolved strains. The 

pairs having the highest CS frequency, and hence of most clinical use, include MEM-SXT, 

MEM-LVX, CAZ-SXT, MEM-MIN, and CAZ-LVX (Fig. S2).

Analysis of whole genome sequencing data revealed there was no single gene responsible 

for collateral sensitivity (CS), but instead is likely due to a combination of specific and 

non-specific mutations. Collateral sensitivity that we observed resulted from a combination 

of mutations in specific antibiotic targets and non-specific processes, polar effects from 

operon mutations, and mutations within efflux pump regulators [15,16].
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Mutations in specific antibiotic targets, such as penicillin binding protein PBP1a and class 

A beta-lactamase bla, were observed in both MEM and MEM/CAZ evolved isolates; 

respectively [17,18]. Isolates resistant to MEM acquired either a large disruptive insertion 

within PBP1a or missense mutations resulting in a BlaN145S substitution. Isolates that 

acquired a BlaD192G substitution alternatively showed an increase in susceptibility to MEM. 

In addition, isolated resistant to CAZ acquired a BlaE179G substitution (Fig. 2). This 

phenomenon was observed across diverse reciprocal pairs alluding to the position of amino 

acid substitution within a beta-lactamase playing a role in altering antibiotic specificity and 

resistance phenotype.

Non-specific mutations affecting membrane permeability were observed in LVX-MEM and 

CAZ-LVX reciprocal pairs. Resistance to LVX can be associated with one frameshift and 

three small deletions at the C’ terminus of the LPS heptosyltransferase (RfaF) protein 

affecting outer membrane porin concentration [19–21]. Isolates with increased susceptibility 

to MEM acquired a loss of function mutation in σE positive regulator, rseP. Previous work 

has shown σE plays a critical role in protecting Burkholderia from entry of meropenem [22].

ParB and known fluroquinolone target, ParC, are co-transcribed on the same operon, 

parCBA [23]. Mutations within parB may have polar effects on parC activity, however the 

consequence of mutations in parB and fluroquinolone activity have yet to be investigated. 

Altering mutations within bpeT, the regulator of fluroquinolone efflux pump BpeEF-OprC, 

determined the resistance (BpeTGlu177Gly) or susceptibility (BpeTGlu211Gly) to LVX in LVX-

CAZ reciprocal pair. A similar pattern was observed in B. pseudomallei bpeT [24,25].

All isolates acquired mutations that affect biofilm formation and/or motility (fimV or flgL) 

and mutations in genes that are associated with resistance to antibiotics not included 

in this study. For example, aminoglycosides (rimO, hflK, bpeR) [26–28], penicillin and 

monobactams (dacB) [29], sulfamethoxazole (purU) [30], vancomycin (lamB) [31], and 

fatty acid inhibitors (fabI) [32]. A potential bet-hedging strategy under continued selection 

for antibiotic resistance during evolution of the lineages.

Collateral sensitivity (CS) patterns in E. coli and P. aeruginosa have previously been shown 

to differ based upon ancillary mutations that arise during prior antibiotic exposure [8, 33, 

34]. The model is that mutations that arose during previous antibiotic exposure did not 

change the antibiotic resistance profile, but ameliorated the effect of subsequent mutations 

on antibiotic resistance. This pattern is validated by the reoccurrence of mutated genes in 

this extended study that were seen in the 13 first generation CS isolates [10].

Here we document the existence of multiple reciprocal CS pairs across numerous evolved 

generations in Burkholderia suggesting a long term treatment strategy; when resistance 

to one drug occurs, switch to use the other member of the reciprocal pair. If resistance 

to the second drug occurs, switch back to the initial class of drug. Further, we present 

genomic data analysis that identified candidate CS genes, highlighting potential mechanisms 

of antibiotic resistance and antibiotic susceptibility in B. multivorans.
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Highlights

• Burkholderia exhibits reciprocal antibiotic collateral sensitivity (CS)

• Candidate genes involved in CS are identified

• Reciprocal CS networks can be used to guide treatment of chronic infections
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Figure 1. 
Heat map of cross-resistance (CR) and collateral sensitivity (CS) interactions

For each treatment drug - chloramphenicol (CHL), ceftazidime (CAZ), levofloxacin (LVX), 

meropenem (MEM), minocycline (MIN), and trimethoprim-sulfamethoxazole (SXT) - used 

to evolve a strain (listed across the top) and the non-treatment drug to which the strain 

exhibits a change in sensitivity (on the left), the number of strains that demonstrated cross-

resistance (Panel A) or cross-sensitivity (Panel B) is indicated in each box. The percentage 

of evolved strains exhibiting the reaction to each non-treatment drug are represented by 

the intensity of the cell. Groupings within the βLA and non-βLA clusters are bordered by 

dashed lines.
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Figure 2: 
Schematic of Bla protein (NP80_4859). Bla1–51 is a signal peptide sequence at the 

N’ terminus followed by the main enzymatic region of the beta lactamase, Bla51–291, 

represented in blue and the C’ terminus, Bla291–302. The region in the protein where 

mutations were localized in CAZ and MEM CS are represented in the shaded box. This 

region’s amino acid sequence for parental strain, AS149, and representative sequences for 

strains exhibiting CS is given below. The TD or NTD is specified next to the sequence and 

amino acid change is bolded and highlighted for respective strain.
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Table 1.

Strains evolved and collateral changes observed.

Results of experimental evolution are shown by treatment drugs: chloramphenicol (CHL), ceftazidime (CAZ), 

levofloxacin (LVX), meropenem (MEM), minocycline (MIN), and trimethoprim-sulfamethoxazole (SXT). 

Information for each treatment drug includes the total number of strains evolved, the percentage of strains 

showing cross-resistance (CR) and collateral sensitivity (CS), and the average number and range of CS 

interactions per CS-exhibiting strain.

Treatment Drug Total # strains 
evolved

Percentage with 
CR

Percentage with 
CS

Avg # CS interactions 
per strain w/CS

Range of CS interactions 
per strain

CHL 20 90% 65% 1.6 1–3

CAZ 62 65% 56% 1.7 1–4

LVX 44 75% 59% 1.3 1–3

MEM 72 58% 61% 2.1 1–5

MIN 34 71% 56% 1.3 1–3

SXT 47 66% 70% 2.0 1–5

TOTALS 279 67% 61% 1.8 1–5
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