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Abstract

Recent advances in computer vision and machine learning underpin a collection of algorithms 

with an impressive ability to decipher the content of images. These deep learning algorithms are 

being applied to biological images and are transforming the analysis and interpretation of imaging 

data. These advances are positioned to render difficult analyses routine and to enable researchers 

to carry out new, previously impossible experiments. Here we review the intersection between 

deep learning and cellular image analysis and provide an overview of both the mathematical 

mechanics and the programming frameworks of deep learning that are pertinent to life scientists. 

We survey the field’s progress in four key applications: image classification, image segmentation, 

object tracking, and augmented microscopy. Last, we relay our labs’ experience with three key 

aspects of implementing deep learning in the laboratory: annotating training data, selecting and 

training a range of neural network architectures, and deploying solutions. We also highlight 

existing datasets and implementations for each surveyed application.

Advances in imaging have transformed the biological sciences, enabling researchers 

to access temporal and spatial variations inherent in living systems. Progress in 

optics has yielded microscopes capable of imaging over a range of spatial scales, 

from single molecules to entire organisms. Concurrently, improvements in fluorescent 

probes have enhanced the brightness, photostability, and spectral range of fluorescent 

proteins and of small-molecule dyes. Combined, these advances allow for a variety of 

dynamic measurements in living cells, from long-term imaging of single molecules1,2, to 

simultaneous measurements of multiple biosensors3,4, to observations of the development 

of entire organisms5–9. They have also led to impressive measurements in fixed samples, 

with spatial genomics now driving the simultaneous measurement of dozens of proteins 

or thousands of mRNA species in fixed cells and tissues while preserving spatial 

information10–12.
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Concurrent with these technological advances has been an increasing demand in the 

biosciences for image analysis. Modern imaging data increasingly require quantification 

to be informative13. Typical tasks include unsupervised image exploration (comparing 

features of collections of images, for example, by identifying changes in cellular 

morphology in an imaging-based drug screen), image classification (predicting a label 

for an image—for example, determining whether a stem cell has differentiated), image 

segmentation (identifying the parts of an image that correspond to distinct objects—for 

example, identifying single cells in images), and object tracking (following an object—

for example, a single cell in a live embryo—among frames of a movie). In response to 

this demand, researchers and companies have developed software libraries, use-case-based 

implementations, and general-purpose computer vision ecosystems. MATLAB was one of 

the first commercial platforms to support solutions for computer vision and continues to 

enjoy frequent use. Recently, the development of open-source data-science libraries for 

Python (e.g., NumPy14, SciPy15, Pandas16, Scikit-image17, Scikit-learn18, Matplotlib19, 

and Jupyter20) has led to a rise in Python’s popularity. Both MATLAB and Python now 

contain ready-made implementations of common computer-vision algorithms. Traditionally, 

experimentalists wrote software tools that drew from these libraries. As analysis tasks 

became more common, several software tools were created to improve accessibility 

through a graphical front-end. For example, there are tools for single-cell analysis of 

bacteria (SuperSegger21, Oufti22, Morphometries23), single-cell analysis of mammalian 

cells (CellProfiler24,25, Ilastik26, Microscopy Image Browser27), and general-purpose image 

analysis (ImageJ28, OMERO29). These tools and ecosystems have transformed experimental 

design, rendered quantitative and statistical analyses automatable and high-throughput, and 

yielded a plethora of critical biological insights.

Excitingly, deep learning has expanded the range of problems that computer vision 

can solve30. Here, “deep learning” refers to a set of machine-learning techniques, 

specifically, neural networks that learn effective representations of data with multiple 

levels of abstraction30. Note the contrast with conventional machine learning, in which 

representations are manually designed through feature engineering. In deep learning, the 

learning can be supervised or unsupervised. Supervised approaches, which have been the 

most successful, attempt to maximize performance on an annotated dataset. Unsupervised 

approaches are used to reconstruct original data after compression into a low-dimensional 

space. Although these techniques have existed in mathematical form for several decades, 

they gained attention when a deep-learning-based method won the 2012 ImageNet Large 

Scale Visual Recognition Challenge31. Since then, there has been a major increase in the 

variety of problems that can be solved with deep learning. In addition, improvements in 

computer hardware and deep learning frameworks have placed these tools within reach 

of the typical software developer. While deep learning has been predominantly applied 

commercially, it is now starting to emerge in the physical32–34, chemical35,36, medical37,38, 

and biological sciences39–42 with applications for images and other data types.

Given the central role that observation—and therefore imaging—plays in the biological 

sciences, deep learning has the potential to revolutionize understanding of the inner 

workings of living systems. Indeed, currently a ‘gold rush’ is taking place, with numerous 

groups seeking to apply these methods to their data in order to extract novel biological 
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insights. Nonetheless, deep learning has yet to be widely adopted throughout the life and 

medical sciences. Importantly, many of the software tools mentioned above (with the recent 

exceptions of CellProfiler25 and ImageJ43) do not yet feature deep learning. In our opinion, 

for deep learning to truly transform the life sciences, its application needs to be as routine 

as BLAST searches. The barriers to spreading deep learning throughout biology labs are 

both cultural and technical. The mathematics renders some of the inner workings of deep 

learning algorithms opaque; the unique requirements of deep learning necessitate a different 

way of thinking about writing software. Specifically, the need for annotated data means that 

data and software must be jointly developed—an approach recently termed Software 2.044 

(Fig. 1). The amount of data and the computational resources required for deep learning 

constitute a significant barrier to adoption, as does the knowledge required to optimize 

model performance and to interpret what deep learning models have learned. To harness the 

full power of these tools, life scientists must familiarize themselves with them to enhance 

their existing workflows and to set the stage for currently unforeseen analyses.

By focusing on use cases that are common in quantitative cell biology, this Review serves as 

a practical introduction to deep learning for the analysis of biological images. It builds 

on prior reviews of the intersection of deep learning and the life sciences42,45–47 by 

incorporating a discussion of our labs’ joint experiences in applying these methods to 

cellular imaging data, and is meant to make these methods less opaque to new adopters. 

First, we review the practical mechanics of deep learning, including the mathematical 

underpinnings, recent advances in neural-network architectures, and existing software 

frameworks. Next, we outline what we feel are the key components of effective, laboratory-

scale deep learning solutions. We then review four use cases: image classification, image 

segmentation, object tracking, and augmented microscopy. For each use case, we cover 

problem specification, the state of the field with respect to algorithms and biological 

applications, and publicly available datasets. We close by sharing some of the lessons that 

our labs have learned while adapting these methods to biological data, and by suggesting 

directions for future work.

The practical mechanics of deep learning

In deep learning, an algorithm learns effective representations for a given task entirely from 

data. An introduction to the mathematics underlying the training of deep learning models 

is given in Box 1, troubleshooting advice is given in Box 2, and a glossary of commonly 

used terms is given in Box 3. Because the most successful solutions have been supervised, 

we believe that there are three essential components to the successful application of deep 

learning to biological image analysis: construction of a pertinent and annotated training 

dataset, effective training of deep learning models on that dataset, and deployment of trained 

models on new data.

Training data are critical to successful applications of deep learning; this requirement is 

one of the key disadvantages of this method. In our experience, assembling sufficient 

high-quality data often takes as much, if not more, time as programming the deep learning 

solution. Robust solutions require datasets that capture the diversity of images likely to be 

encountered during analysis. As much as possible, annotations for these datasets need to be 
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error free, because errors can be learned. While training data may be limited, computational 

approaches can extract the most utility out of existing data. Image normalization reduces 

variation from distinct acquisition conditions42,48. Data-augmentation operations such as 

rotation, flipping, and zooming can also increase the image diversity in a limited dataset; 

these operations are generally standard practices regardless of the dataset size or type49. 

Transfer learning is another approach for creating robust models with limited data. In 

transfer learning, a deep learning model is trained on a large dataset to learn general image 

features, and then is fine-tuned on a smaller dataset to learn to perform a specific task50,51. 

While these approaches enable well-performing networks to emerge from limited datasets, 

considerable performance boosts arise from large annotated datasets52. For some uses, such 

as the detection of diffraction-limited spots, it has been possible to produce simulated 

images with a known annotation53. In other strategies, the curated outputs of traditional 

computer-vision pipelines have been used as training data54. Training data have also been 

produced manually by experts using annotation tools such as Fiji/ImageJ48, Cellprofiler52, 

and the Allen Cell Structure Segmenter55. Crowdsourcing, a cost-effective source of large 

datasets, is extensively used in fields such as automated driving; existing tools are being 

adapted for biological images. Enterprise commercial solutions include Figure Eight, which 

was recently acquired by Appen, and Samasource. The Quanti.us56 tool features a graphical 

user interface for biological image annotation for use on Amazon Mechanical Turk, as 

does Amazon’s Ground Truth tool, which uses active learning to reduce data-labeling costs. 

Gamification has also yielded some very promising results57. Importantly, the community 

acknowledges that the annotated datasets that power deep learning algorithms should 

be publicly available, as a comprehensive and expansive set of training data specific to 

biological problems would aid the development of deep learning algorithms considerably.

Once training data have been acquired, a deep learning model can be trained to accurately 

make predictions for new data. This task has several unique software and hardware 

requirements. Currently, Python is the most popular language for deep learning; existing 

frameworks include Tensorflow/Keras58,59, PyTorch60, MXNet61, CNTK62, Theano63, and 

Caffe64. Although these frameworks have important differences, there are also several 

commonalities. First, all of them construct a computation graph that outlines all the 

computations made by a deep learning model as input data are transformed into the final 

output. Second, they all automatically perform derivatives, which enables them to carry 

out optimizations like those described in Box 1 without additional work by the user once 

the computation graph is specified. Third, they provide an easy gateway for specialized 

hardware such as graphical processing units (GPUs) and tensor processing units65–67. 

Because deep learning models often contain millions of parameters, specialized hardware 

is needed to perform these computations quickly. Fourth, these frameworks all contain 

implementations of common mathematical objects, optimization algorithms, hyperparameter 

settings, and performance metrics—meaning that users can quickly apply deep learning to 

their data without having to reproduce these implementations on their own. Although a 

considerable amount of programming is still required to adapt these frameworks to cellular 

imaging data, they substantially reduce the barrier to entry.

These frameworks have greatly simplified the training and deployment of deep learning 

models. Programming aspects are often reduced to finding a deep learning architecture 
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that yields the best performance for a particular task. Recent strategies have incorporated a 

search throughout the space of potential architectures to identify the most effective model 

architecture68–70 (Fig. 2). In our experience, the choice of architectural features often comes 

down to a tradeoff between overfitting and underfitting; this is also known as the bias–

variance tradeoff in statistical modeling71 (Fig. 2j). Overfitting occurs when models perform 

well on a training dataset but perform poorly on a withheld validation dataset, whereas 

underfitting occurs when models perform poorly on training data because they are unable 

to capture the variation in a training dataset. These two outcomes are often (but not always) 

two faces of the same coin, which we call model capacity: the representational power of a 

deep learning model. Models with high model capacity perform well on large datasets but 

are prone to overfitting. Models with lower model capacity may generalize better but are at 

risk for underfitting. Overfit models can be unreliable on unseen data, and underfit models 

have suboptimal performance71. Overfitting is a particularly important issue with small 

datasets. Techniques for mitigating overfitting are discussed in Box 2 and Fig. 2j–m. Recent 

years have seen architectural advances, such as residual networks68, that have increased 

model capacity, which can lead to overfitting72. We recommend using model architectures 

with high model capacity only when enough data are present to avoid the model fragility 

that comes with overfitting. When data are limited, models with limited capacity and trained 

with regularization techniques are more likely to be robust. An alternative approach is to use 

transfer learning when adapting deep learning models to small datasets. This strategy often 

requires that pretrained models be modified to be compatible with the new dataset and task 

(changing the number of channels for an input image, etc.); users often are unable to make 

substantial changes to the model architecture. Despite these limitations, transfer learning 

can be very effective when data are limited. Whether training datasets are sufficiently large 

can be assessed with a cross-validation analysis. In this approach, one computes the degree 

of overfitting on models trained on varying fractions of the available training data. If the 

amount of data is sufficient, then the degree of overfitting should be stable even when the 

size of the training dataset is reduced. While overfitting is an important issue, other practical 

concerns come into play (Box 2), including optimization of hyperparameters such as the 

learning rate, choice of training algorithm, and issues surrounding class balancing.

Once trained, deep learning models must be deployed to process new data. While 

deployment can be achieved with scripts and Jupyter Notebooks48, an alternative and 

arguably more effective approach is to use built-in deployment tools in several frameworks. 

For instance, both Tensorflow and MXNet have built-in deployment features that enable 

models to be deployed on a server and accessed through standard internet communication 

protocols73, which allows the models to be shared beyond the original user. Associated 

software and hardware requirements mean that additional layers of software engineering 

beyond what is typical for academic software are often required for a deployment solution 

to be useful. First, containerization tools such as Docker74 have been essential for the 

creation of reproducible environments for developing and deploying deep learning models. 

Second, the need for GPUs has been a barrier, as a considerable amount of Unix system 

administration experience is necessary to ensure that all the requisite drivers and software 

packages are operational. While some vendors such as NVIDIA and Lambda Labs provide 

combined software and hardware solutions, increasingly, cloud computing is used because 
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it both removes variability in hardware and enables users to match their computational 

power to their workload. Further, it empowers new users of deep learning by providing the 

requisite hardware quickly and affordably. The cloud was a key feature of the CDeep3M 

tool75 and was also used by Keren et al.11 to deploy deep learning models to quantify spatial 

proteomics data of the tumor microenvironment.

Biological applications of deep learning

Now, we discuss the application of deep learning to four critical use cases: image 

classification, image segmentation, object tracking, and augmented microscopy. For each 

use case, we describe the existing deep learning methodologies and their specific application 

to cellular analysis.

Image classification.

Image classification, the task of assigning a meaningful label to an image, was one of 

the first high-profile successes of deep learning. A classic example is the discrimination 

between images of cats and dogs; a biologically motivated example would be identifying 

whether a protein is expressed in the cytoplasm or the nucleus on the basis of fluorescence. 

A schematic of image classification and its biological application is shown in Fig. 3. 

Because of the utility of image classification, much of the recent work in computer vision 

has focused on improving performance on standard datasets such as ImageNet68,69. The 

architectures underlying biological applications are very similar to, if not the same as, those 

in commercial applications. Because of this similarity, and because of the relative lack of 

annotated training data for biological images, transfer learning has featured prominently 

in the creation of image classifiers that perform well on biological data50,76. One can 

implement transfer learning in these cases by starting with an image classifier that has been 

trained on a large dataset, such as ImageNet, replacing the final layer with one suitable for 

the new classification task, and then retraining on a smaller set of annotated data50.

Previous applications of deep-learning-based image classification to biological data 

demonstrate the technical advantages of deep learning for biological discovery. For example, 

most work on the interpretation of imaging-based high-throughput screens has focused on 

the generation of classifiers that identify conditions and compounds that lead to meaningful 

changes in cell morphology77. To account for changes in cell morphology that might not 

be captured in labeled data, several approaches have used deep learning models to extract 

feature vectors instead of labels, and then clustered those vectors76,78,79. Image classifiers 

have also been used to identify changes in cell state79,80: in a recent study, scientists used a 

fluorescent marker of differentiation to establish a ground truth and then trained a classifier 

to identify differentiated cells directly from bright-field images81. Deep learning has also 

been used to classify spatial patterns in fluorescence images and to determine protein 

localization in large datasets from yeast82–84 and humans57. Last, deep-learning-based 

image classification was recently combined with microfluidics to produce a platform for 

intelligent, image-activated cell sorting85. Using this technology, Nitta et al.85 isolated cells 

on the basis of protein localization and cell-to-cell interactions. These studies highlight the 
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fact that deep learning is an accessible tool that can help biologists understand their imaging 

data.

Image segmentation.

Image segmentation is the task of partitioning an image into several parts to identify 

meaningful objects or features (Fig. 4). One specific biological example is the need to 

identify single cells in microscope images, a common problem encountered in analyses of 

biological images. It is important to distinguish between semantic segmentation and instance 

segmentation because these two tasks feature prominently in the deep learning literature. 

Semantic segmentation is the task of partitioning an image into semantically meaningful 

parts and assigning each part a class label—for example, labeling each pixel of an image 

as cytoplasmic, nuclear, or background. Although this partitioning produces a pixel-level 

annotation, ‘object-ness’ is not necessarily preserved (in our example, two neighboring 

nuclei might not be separated into two distinct objects). In contrast, instance segmentation 

is the task of identifying each instance of a class in an image. Single-cell segmentation 

falls into this category and is the focus of this section. While there are numerous problems, 

such as spot detection in single-molecule experiments53, that have benefited from deep 

learning, and many more that eventually will, most of the available training data center on 

the identification of single cells through microscopy. All the approaches discussed below can 

be adapted to other image-segmentation problems through the collection of new, relevant 

training data.

Deep learning schemas exist for instance segmentation; post-processing is particularly 

important (Fig. 4b). Two of the earliest software packages to apply deep-learning-enabled 

instance segmentation to single-cell analysis, U-Net43,86 and DeepCell48, treat segmentation 

as a pixel-level classification task and generate pixel-level predictions of cell interiors, 

cell edges, and background. Thresholding of the final probability maps yields the final 

segmentation mask. Deep learning has also been adapted to learn a distance transform 

(that is, how far a given pixel is from the image’s background), which can be fed into a 

watershed transform, a common computer-vision operation, to produce a final segmentation 

mask87. This approach was recently applied to single-cell segmentation, with very promising 

results88. Object-detection-based deep learning methods have also been adapted for instance 

segmentation. These methods, which include Faster R-CNN89 and Retinanet90, predict 

bounding boxes for all objects in an image and use non-maximum suppression to remove 

redundant bounding-box predictions. Mask R-CNN91, one of the most accurate methods for 

instance segmentation on general-purpose datasets, builds on these methods to predict an 

object mask for each bounding box. These methods have been successful when adapted to 

cellular data92–94. Recent work has treated the segmentation problem as a vector embedding 

problem95,96: a discriminative loss function assigns pixels in the same object to the same 

vector and pixels in different objects to different vectors, with unsupervised clustering on 

the embedding space identifying objects. This approach has yielded deep learning models 

that perform accurate instance segmentation even when objects overlap—a common case 

in images of cells. Last, generative approaches have recently been applied to segmentation, 

with promising results97–99.
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While most of the models described here have focused on 2D segmentation, recent 

approaches have adapted these models to 3D data75,100. So far, there is no consensus 

approach to 2D or 3D data, and we suspect that the optimal method varies depending on 

the amount of training data and the segmentation task. For instance, bounding-box methods 

perform well on images of cell nuclei but might not be well suited to the segmentation 

of images of filamentous bacteria or fluorescent microtubules. We recommend that users 

focus their initial efforts on the existing DeepCell, CDeep3M, U-Net, CellProfiler, or Mask 

R-CNN software libraries, as these methods have been applied successfully to a variety of 

data types, provide pretrained models, and support both model training and deployment on 

new data.

The potential use cases of image segmentation are vast, and the improved accuracy of 

deep-learning-based approaches both automates traditional computer-vision workflows and 

makes previously impossible segmentation tasks possible. These approaches have been 

applied to the segmentation of neurons in images from cryo-electron microscopy101, with 

enough accuracy to place imaging-based connectomics within reach102. Single-cell image 

segmentation is another key application of this technology. U-Net86 was the first application 

of deep learning to single-cell analysis; work from our own groups has demonstrated that 

images of cells spanning the domains of life can be segmented with deep learning even 

with limited training data48. Larger datasets, such as those featured in the 2018 Kaggle Data 

Science Bowl103, render these approaches even more accurate52. Improved segmentation 

accuracy improves object tracking in both live-cell imaging and tracking of diffraction-

limited objects. Accurate identification of the cytoplasm in mammalian cells improves the 

quantitation of localization-based live-cell reporters48,53 and was recently used to explore 

mechanisms of cell-size control in fission yeast104. Excitingly, deep learning recently 

was used for instance segmentation in pathology images99,105,106, positioning Keren et 

al.11 to quantify interactions between tumor cells and immune cells in spatial-proteomics 

measurements of formalin-fixed, paraffin-embedded tissues105 (Fig. 4c). We anticipate that 

deep learning will be critical for development of the Human Cell Atlas107,108, as image 

analysis is common to all spatial transcriptomics and proteomics experiments. Overall, 

easier deployment of machine-learning models should benefit nearly every experiment 

that involves cellular imaging. Links to existing tools for users who wish to apply these 

techniques to their own data are provided in Table 1.

Object tracking.

Object tracking is the task of following objects through a series of time-lapse images. 

One example of a biological application of this is the tracking of single cells in live-cell 

imaging movies. During a typical movie, cells can move from one side of the imaging 

chamber to the other. Single-cell analysis requires that the cells be identified in every frame 

and that these detections be linked together over time. Although object tracking can be 

challenging, successful solutions have made it useful in a variety of biological analyses, 

including quantification of signaling dynamics109, efforts to understand cell motility110, and 

attempts to unravel the laws of bacterial cell growth111. The task is complex because of the 

number of objects in biological images—often hundreds to thousands—and complications 

that arise from image acquisition. Phototoxicity during imaging often limits the frame 
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rate, and photobleaching causes objects to become dimmer over time. Objects can touch, 

disappear, merge (mitochondria or P-bodies), or split (e.g., by cell division). These issues 

have made it challenging to adapt existing object-tracking algorithms to biological data.

Object tracking consists of two tasks: object detection and object linkage. The optimal 

approach to object detection varies depending on the data. In many cases, objects 

can be represented as points; the object centroids in each frame are the information 

used for tracking. Classical approaches include nearest-neighbor search112, state-space 

models113–116, and linear programming117. When objects cannot be treated as points, 

instance segmentation is typically solved in each frame. In linear-programming approaches, 

multiple cues such as object centroids, intensity, and morphology are combined into 

a similarity score to link objects between frames118. Complex behaviors such as 

disappearance, splitting, and merging can be treated with linear programming, as in the now 

classic investigation by Jaqaman et al.119. In that work, a linear-assignment problem was 

solved to provide a globally optimal solution for both frame-by-frame object association and 

the assignment of division/splitting events to newly appeared or disappeared objects. This 

approach has been implemented in software packages such as uTrack119, CellProfiler24,25, 

and TrackMate120, which can be applied to images of particles or cells. Two recent 

investigations approached cell tracking in live-cell movies with probabilistic models121,122 

and active contours123, with good success.

Deep learning has recently been adapted to track diffraction-limited particles, animals, and 

cells. While training data in this space are limited, software packages for curation are 

mitigating this issue121. Most work so far has focused on object detection, primarily because 

of limited training data; the 3D nature of object tracking means that training data are harder 

to produce. Nonetheless, deep learning improves segmentation accuracy, as tracking success 

is highly dependent on accurate identification of the objects to be tracked in every frame. For 

example, deep learning substantially improves object detection for particle tracking53, and 

work by us48 and others93,124 has shown that improved segmentation accuracy facilitates 

the tracking of cell nuclei in live-cell imaging. Deep learning has also been used to 

detect rare events such as mitosis; accurate detection of these events is likely to improve 

tracking performance125–127. The object-tracking package DeepLabCut, originally based 

on deep learning approaches to object detection and pose estimation, tracked appendages 

of flies and mice to quantify behavior during neuroscience experiments128. Impressively, 

by exploiting transfer learning, DeepLabCut performs remarkably well even with only 

a few dozen annotated examples. The recent software package LEAP129 builds on this 

work by incorporating a graphical user interface to assist in data annotation129, while the 

idtracker.ai130 software package tracks multiple organisms by using deep-learning-based 

image classifiers to identify animals that cross paths. Deep learning approaches to object 

linkage perform well on general-purpose datasets, by tracking a single object131–133, 

attempting to learn a similarity score directly from data for use in a linear-programming 

framework134, or treating tracking as a reinforcement learning problem135. Although 

promising, these approaches have yet to see extensive use with cellular images. One recent 

application used deep learning to segment and track single neurons in a time series of 3D 

images and to quantify calcium dynamics136. Interested users should first use deep learning 

to solve the object-detection portion of the tracking task. If this strategy does not sufficiently 
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boost the performance of existing tracking algorithms, then relevant training data need to 

be collected and an appropriate deep-learning-based object linkage approach should be 

implemented.

Augmented microscopy.

Augmented microscopy is the extraction of latent information from biological images, such 

as the identification of the locations of cellular nuclei in bright-field images137. Although 

bright-field imaging methods such as phase-contrast microscopy and differential interference 

contrast microscopy can generate information on biological structures (e.g., the nucleus and 

the cytoplasm), it has been extremely difficult to computationally extract that information. 

Scientists solved this problem recently by recasting it as a supervised-learning problem (Fig. 

5). Fluorescence images of biological structures serve as the ground truth, and the task is to 

predict this ground truth directly from the bright-field images138,139.

Augmented microscopy is well suited to deep learning138–144. Each approach used so far has 

compared spatially synchronized transmitted light images with images from other modalities 

to uncover meaningful relationships among the corresponding images. For example, to 

create morphological models of the cell membrane and nucleus, researchers at the Allen 

Institute used a conditional generative model to create photo-realistic 3D fluorescence 

microscopy images, including the structural and functional information that the images are 

meant to represent, from 3D transmitted light microscopy images138,140,142,143. Their model 

featured two unique networks: one to learn variations in nucleus and cell shape, and another 

to learn the relationships among subcellular structures140. Researchers at Google, along with 

their external partners, used a modular approach to predict the location and intensity of 

various fluorescent labels on a per-pixel basis139. Their work made extensive use of multi-

task and transfer learning to produce networks that were robust against varying imaging 

conditions, modalities, labels, sample types, and acquisition conditions. Their models were 

also trained on samples stained with propidium iodide, and thus their predictions included 

information on cell state and viability139.

Augmented microscopy is not limited to the association of fluorescence traces with 

transmitted light images145. Other groups use deep learning to provide content-aware image 

denoising146, to improve image resolution147, and to mitigate axial undersampling148 (to 

minimize phototoxicity) in real time. We anticipate that these new augmented-microscopy 

techniques will open the door to a new set of ‘computationally multiplexed’ experiments. 

While these computational approaches are currently restricted by the same limitations 

on training images (such as spectral limitations on probes), transfer learning on imaging 

platforms could enjoy a high degree of multiplexing10,12,149. These new tools are 

broadly applicable for improving image quality and overcoming limitations from spectral 

availability. Once the tools have been trained on broader datasets, bright-field images could 

be used as a source of supplementary ‘standard’ information (such as the locations of 

nuclei), freeing up spectral space for probes of other cell characteristics.
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Looking forward

Although the application of deep learning to biological image analysis is still in its early 

days, there has already been remarkable progress in adapting deep learning to biological 

discovery. What can be done to encourage wider use of these tools? How can members 

of the field improve the performance of existing tools and support the development of 

new ones? First, there needs to be a concerted effort to produce large curated datasets that 

cover the image-analysis needs of most life scientists. This ‘cellular ImageNet’ should be 

open-access, as it will draw talented machine-learning scientists to biological problems. 

Attention must be paid to metadata, which will help researchers map their own acquisition 

conditions onto pre-existing datasets, thereby saving them the time currently needed to 

produce new annotations specific to their data. Given that crowdsourcing is likely to 

feature prominently in these efforts, we encourage sharing of crowdsourcing experiences—

including common errors and solutions. We expect that tools for creating training data using 

a human-in-the-loop model150 will become increasingly valuable. Collections of models and 

model components pretrained on specific tasks would simplify the use of transfer learning; 

we expect tools like Tensorflow Hub to be valuable for this effort. Recent advances in 

neural architecture search151,152 may yield a set of deep learning architectures optimized for 

cellular image analysis. Importantly, good deployment solutions should be made accessible 

to new users while direct access to the code base is retained for advanced users. While 

the existing feature offerings for deep learning are impressive, we anticipate that they will 

be extended to new data types. For instance, cell segmentation should work in 2D and 3D 

tissues for multiple subcellular structures aside from the nucleus, such as the cytoplasm, 

plasma membrane, mitochondria, and endoplasmic reticulum. Augmented microscopy may 

be extended to predict 3D images from 2D data153 or to obtain high-quality confocal images 

from wide-field microscopy, and object tracking could be adapted to automate cell tracking 

and lineage construction. All these developments would greatly aid researchers who conduct 

live-cell imaging experiments and those involved in spatial genomics, by replacing existing 

analysis pipelines with more accurate deep learning counterparts, thus saving countless 

person-hours of curation. Additional applications are no doubt waiting to be uncovered. 

Finally, we recommend integrating tool building with biological discovery. Deep learning is 

a data science, and few know data better than those who acquire it. In our experience, better 

tools and better insights arise when bench scientists and computational scientists work side 

by side—even exchanging tasks—to drive discovery.

Acknowledgements

We thank A. Anandkumar, M. Angelo, L. Cai, S. Cooper, M. Elowitz, K.C. Huang, G. Johnson, A. Karpathy, L. 
Keren, A. Raj, T. Vora, and R. Wollman for helpful discussions and comments. This work was supported by several 
funding sources, including the Allen Discovery Center (award supporting W.G.; award supporting T.K., M.C., and 
D.V.V.), the Burroughs Wellcome Fund Postdoctoral Enrichment Program, a Figure Eight AI for Everyone award, 
and the NIH (subaward U24CA224309-01 to D.V.V.).

Data availability

Links to the data referred to in this Review can be found in Table 2.

Moen et al. Page 11

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Grimm JB et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. 
Methods 14, 987–994 (2017). [PubMed: 28869757] 

2. Liu H et al. Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling. 
Proc. Natl. Acad. Sci. USA 115, 343–348 (2018). [PubMed: 29284749] 

3. Regot S, Hughey JJ, Bajar BT, Carrasco S & Covert MW High-sensitivity measurements of multiple 
kinase activities in live single cells. Cell 157, 1724–1734 (2014). [PubMed: 24949979] 

4. Sampattavanich S et al. Encoding growth factor identity in the temporal dynamics of FOXO3 
under the combinatorial control of ERK and AKT kinases. Cell Syst. 6, 664–678 (2018). [PubMed: 
29886111] 

5. Megason SG In toto imaging of embryogenesis with confocal time-lapse microscopy. Methods Mol. 
Biol. 546, 317–332 (2009). [PubMed: 19378112] 

6. Udan RS, Piazza VG, Hsu CW, Hadjantonakis A-K & Dickinson ME Quantitative imaging of cell 
dynamics in mouse embryos using light-sheet microscopy. Development 141, 4406–4414 (2014). 
[PubMed: 25344073] 

7. Chen B-C et al. Lattice light-sheet microscopy: imaging molecules to embryos at high 
spatiotemporal resolution. Science 346, 1257998 (2014). [PubMed: 25342811] 

8. Royer LA et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living 
organisms. Nat. Biotechnol. 34, 1267–1278 (2016). [PubMed: 27798562] 

9. McDole K et al. In toto imaging and reconstruction of post-implantation mouse development at the 
single-cell level. Cell 175, 859–876 (2018). [PubMed: 30318151] 

10. Shah S, Lubeck E, Zhou W & Cai L seqFISH accurately detects transcripts in single cells and 
reveals robust spatial organization in the hippocampus. Neuron 94, 752–758 (2017). [PubMed: 
28521130] 

11. Keren L et al. A structured tumor-immune microenvironment in triple negative breast cancer 
revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018). [PubMed: 30193111] 

12. Lin J-R et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using 
t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018). [PubMed: 29993362] 

13. Caicedo JC et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 
(2017). [PubMed: 28858338] 

14. van der Walt S, Colbert SC & Varoquaux G The NumPy array: a structure for efficient numerical 
computation. Comput. Sci. Eng 13, 22–30 (2011).

15. Jones E et al. SciPy: open source scientific tools for Python. https://www.scipy.org/ (2001).

16. McKinney W Data structures for statistical computing in Python. In Proc. 9th Python in Science 
Conference (eds. van der Walt S & Millman J) 51–56 (SciPy, 2010).

17. van der Walt S et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014). [PubMed: 
25024921] 

18. Pedregosa F et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res 12, 2825–2830 
(2011).

19. Hunter JD Matplotlib: a 2D graphics environment. Comput. Sci. Eng 9, 90–95 (2007).

20. Kluyver T et al. Jupyter Notebooks—a publishing format for reproducible computational 
workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds. 
Loizides F & Schmidt B) 87–90 (IOS Press, 2016).

21. Stylianidou S, Brennan C, Nissen SB, Kuwada NJ & Wiggins PA SuperSegger: robust image 
segmentation, analysis and lineage tracking of bacterial cells. Mol. Microbiol 102, 690–700 
(2016). [PubMed: 27569113] 

22. Paintdakhi A et al. Oufti: an integrated software package for high-accuracy, high-throughput 
quantitative microscopy analysis. Mol. Microbiol 99, 767–777 (2016). [PubMed: 26538279] 

23. Ursell T et al. Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale 
knockout library. BMC Biol. 15, 17 (2017). [PubMed: 28222723] 

24. Carpenter AE et al. CellProfiler: image analysis software for identifying and quantifying cell 
phenotypes. Genome Biol. 7, R100 (2006). [PubMed: 17076895] 

Moen et al. Page 12

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.scipy.org/


25. McQuin C et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, 
e2005970 (2018). [PubMed: 29969450] 

26. Sommer C, Straehle C, Köthe U & Hamprecht FA Ilastik: interactive learning and segmentation 
toolkit. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 
(Wright S, Pan X & Liebling M) 230–233 (IEEE, 2011).

27. Belevich I, Joensuu M, Kumar D, Vihinen H & Jokitalo E Microscopy Image Browser: a platform 
for segmentation and analysis of multidimensional datasets. PLoS Biol. 14, e1002340 (2016). 
[PubMed: 26727152] 

28. Schindelin J et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 
676–682 (2012). [PubMed: 22743772] 

29. Allan C et al. OMERO: flexible, model-driven data management for experimental biology. Nat. 
Methods 9, 245–253 (2012). [PubMed: 22373911] 

30. LeCun Y, Bengio Y & Hinton G Deep learning. Nature 521, 436–444 (2015). [PubMed: 26017442] 

31. Krizhevsky A, Sutskever I & Hinton GE ImageNet classification with deep convolutional neural 
networks. In Proc. 25th International Conference on Neural Information Processing Systems (eds. 
Pereira F et al.) 1090–1098 (Curran Associates, 2012).

32. Carrasquilla J & Melko RG Machine learning phases of matter. Nat. Phys 13, 431–434 (2017).

33. Nguyen TQ et al. Topology classification with deep learning to improve real-time event selection at 
the LHC. Preprint available at https://arxiv.org/abs/1807.00083 (2018).

34. Castelvecchi D Artificial intelligence called in to tackle LHC data deluge. Nature 528, 18–19 
(2015). [PubMed: 26632567] 

35. Ramsundar B et al. Massively multitask networks for drug discovery. Preprint available at http://
arxiv.org/abs/1502.02072 (2015).

36. Feinberg EN et al. Spatial graph convolutions for drug discovery. Preprint available at http://
arxiv.org/abs/1803.04465 (2018).

37. Coudray N et al. Classification and mutation prediction from non-small cell lung cancer 
histopathology images using deep learning. Nat. Med 24, 1559–1567 (2018). [PubMed: 30224757] 

38. Esteva A et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 
542, 115–118 (2017). [PubMed: 28117445] 

39. Poplin R et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. 
Biotechnol. 36, 983–987 (2018). [PubMed: 30247488] 

40. Zhou J et al. Deep learning sequence-based ab initio prediction of variant effects on expression and 
disease risk. Nat. Genet 50, 1171–1179 (2018). [PubMed: 30013180] 

41. Alipanahi B, Delong A, Weirauch MT & Frey BJ Predicting the sequence specificities of DNA-
and RNA-binding proteins by deep learning. Nat. Biotechnol 33, 831–838 (2015). [PubMed: 
26213851] 

42. Angermueller C, Pärnamaa T, Parts L & Stegle O Deep learning for computational biology. Mol. 
Syst. Biol 12, 878 (2016). [PubMed: 27474269] 

43. Falk T et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 
67–70 (2019). [PubMed: 30559429] 

44. Karpathy A Software 2.0. Medium https://medium.com/@karpathy/software-2-0-a64152b37c35 
(2017).

45. Litjens G et al. A survey on deep learning in medical image analysis. Med. Image Anal 42, 60–88 
(2017). [PubMed: 28778026] 

46. Xing F, Xie F, Su H, Liu F & Yang L Deep learning in microscopy image analysis: a survey. IEEE 
Trans. Neural Netw. Learn. Syst 29, 4550–4568 (2018). [PubMed: 29989994] 

47. Smith K et al. Phenotypic image analysis software tools for exploring and understanding big image 
data from cell-based assays. Cell Syst. 6, 636–653 (2018). [PubMed: 29953863] 

48. Van Valen DA et al. Deep learning automates the quantitative analysis of individual cells in 
live-cell imaging experiments. PLOS Comput. Biol 12, e1005177 (2016). [PubMed: 27814364] 

49. Cire§an DC, Meier U, Gambardella LM & Schmidhuber J Deep, big, simple neural nets for 
handwritten digit recognition. Neural Comput. 22, 3207–3220 (2010). [PubMed: 20858131] 

Moen et al. Page 13

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1807.00083
http://arxiv.org/abs/1502.02072
http://arxiv.org/abs/1502.02072
http://arxiv.org/abs/1803.04465
http://arxiv.org/abs/1803.04465
https://medium.com/@karpathy/software-2-0-a64152b37c35


50. Zhang W et al. Deep model based transfer and multi-task learning for biological image analysis. 
IEEE Trans. Big Data 10.1109/TBDATA.2016.2573280 (2016).

51. Yosinski J, Clune J, Bengio Y & Lipson H How transferable are features in deep neural 
networks? In Proc. 27th International Conference on Neural Information Processing Systems (eds. 
Ghahramani Z et al.) 3320–3328 (MIT Press, 2014).

52. Caicedo JC et al. Evaluation of deep learning strategies for nucleus segmentation in fluorescence 
images. Preprint available at https://www.biorxiv.org/content/early/2018/06/16/335216 (2018).

53. Newby JM, Schaefer AM, Lee PT, Forest MG & Lai SK Convolutional neural networks automate 
detection for tracking of submicron-scale particles in 2D and 3D. Proc. Natl. Acad. Sci. USA 115, 
9026–9031 (2018). [PubMed: 30135100] 

54. Sadanandan SK, Ranefall P, Le Guyader S & Wählby C Automated training of deep convolutional 
neural networks for cell segmentation. Sci. Rep 7, 7860 (2017). [PubMed: 28798336] 

55. Chen J et al. The Allen Cell Structure Segmenter: a new open source toolkit for segmenting 
3D intracellular structures in fluorescence microscopy images. Preprint available at https://
www.biorxiv.org/content/early/2018/12/08/491035 (2018).

56. Hughes AJ et al. Quanti.us: a tool for rapid, flexible, crowd-based annotation of images. Nat. 
Methods 15, 587–590 (2018). [PubMed: 30065368] 

57. Sullivan DP et al. Deep learning is combined with massive-scale citizen science to improve 
large-scale image classification. Nat. Biotechnol 36, 820–828 (2018). [PubMed: 30125267] 

58. Abadi M et al. TensorFlow: a system for large-scale machine learning. In Proc. 12th USENIX 
Conference on Operating Systems Design and Implementation (eds. Keeton K & Roscoe T) 265–
283 (USENIX Association, 2016).

59. Chollet F Keras. GitHub https://github.com/keras-team/keras (2015).

60. Paszke A et al. Automatic differentiation in PyTorch. Oral presentation at NIPS 2017 Workshop on 
Automatic Differentiation, Long Beach, CA, USA, 9 December 2017.

61. Chen T et al. MXNet: a flexible and efficient machine learning library for heterogeneous 
distributed systems. Preprint available at http://arxiv.org/abs/1512.01274 (2015).

62. Seide F & Agarwal A CNTK: Microsoft’s open-source deep-learning toolkit. In Proc. 22nd ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining (eds. Krishnapuram 
B et al.) 2135 (ACM, 2016).

63. Bergstra J et al. Theano: deep learning on GPUs with Python. Paper presented at Big Learning 
2011: NIPS 2011 Workshop on Algorithms, Systems, and Tools for Learning at Scale, Sierra 
Nevada, Spain, 16–17 December 2011.

64. Jia Y et al. Caffe: convolutional architecture for fast feature embedding. In Proc. 22nd ACM 
International Conference on Multimedia (eds. Hua KA et al.) 675–678 (ACM, 2014).

65. Jouppi NP et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th 
Annual International Symposium on Computer Architecture (eds. Moshovos A et al.) 1–12 (ACM, 
2017).

66. Owens JD et al. GPU computing. Proc. IEEE 96, 879–899 (2008).

67. Chetlur S et al. cuDNN: efficient primitives for deep learning. Preprint available at http://
arxiv.org/abs/1410.0759 (2014).

68. He K, Zhang X, Ren S & Sun J Deep residual learning for image recognition. In Proc. 29th IEEE 
Conference on Computer Vision and Pattern Recognition (eds. Agapito L et al.) 770–778 (IEEE, 
2016).

69. Huang G, Liu Z, van der Maaten L & Weinberger KQ Densely connected convolutional networks. 
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Liu Y et al.) 
2261–2269 (IEEE, 2017).

70. Pelt DM & Sethian JA A mixed-scale dense convolutional neural network for image analysis. Proc. 
Natl. Acad. Sci. USA 115, 254–259 (2018). [PubMed: 29279403] 

71. Bishop CM Pattern Recognition and Machine Learning (Information Science and Statistics) 
(Springer-Verlag, 2006).

72. Ebrahimi MS & Abadi HK Study of residual networks for image recognition. Preprint available at 
http://arxiv.org/abs/1805.00325 (2018).

Moen et al. Page 14

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.biorxiv.org/content/early/2018/06/16/335216
https://www.biorxiv.org/content/early/2018/12/08/491035
https://www.biorxiv.org/content/early/2018/12/08/491035
https://github.com/keras-team/keras
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1805.00325


73. Richardson L & Ruby S RESTful Web Services (O’Reilly Media, 2007).

74. Merkel D Docker: lightweight Linux containers for consistent development and deployment. Linux 
J. 2014, 2 (2014).

75. Haberl MG et al. CDeep3M-Plug-and-Play cloud-based deep learning for image segmentation. 
Nat. Methods 15, 677–680 (2018). [PubMed: 30171236] 

76. Pawlowski N, Caicedo JC, Singh S, Carpenter AE & Storkey A Automating morphological 
profiling with generic deep convolutional networks. Preprint available at https://www.biorxiv.org/
content/early/2016/11/02/085118 (2016).

77. Godinez WJ, Hossain I, Lazic SE, Davies JW & Zhang X A multi-scale convolutional neural 
network for phenotyping high-content cellular images. Bioinformatics 33, 2010–2019 (2017). 
[PubMed: 28203779] 

78. Kandaswamy C, Silva LM, Alexandre LA & Santos JM High-content analysis of breast cancer 
using single-cell deep transfer learning. J. Biomol. Screen 21, 252–259 (2016). [PubMed: 
26746583] 

79. Sommer C, Hoefler R, Samwer M & Gerlich DW A deep learning and novelty detection 
framework for rapid phenotyping in high-content screening. Mol. Biol. Cell 28, 3428–3436 
(2017). [PubMed: 28954863] 

80. Simm J et al. Repurposing high-throughput image assays enables biological activity prediction for 
drug discovery. Cell Chem. Biol 25, 611–618 (2018). [PubMed: 29503208] 

81. Buggenthin F et al. Prospective identification of hematopoietic lineage choice by deep learning. 
Nat. Methods 14, 403–406 (2017). [PubMed: 28218899] 

82. Kraus OZ, Ba JL & Frey BJ Classifying and segmenting microscopy images with deep multiple 
instance learning. Bioinformatics 32, i52–i59 (2016). [PubMed: 27307644] 

83. Kraus OZ et al. Automated analysis of high-content microscopy data with deep learning. Mol. 
Syst. Biol 13, 924 (2017). [PubMed: 28420678] 

84. Pärnamaa T & Parts L Accurate classification of protein subcellular localization from high-
throughput microscopy images using deep learning. G3 (Bethesda) 7, 1385–1392 (2017). 
[PubMed: 28391243] 

85. Nitta N et al. Intelligent image-activated cell sorting. Cell 175, 266–276 (2018). [PubMed: 
30166209] 

86. Ronneberger O, Fischer P & Brox T U-Net: convolutional networks for biomedical image 
segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 
(eds. Navab N et al.) 234–241 (Springer, 2015).

87. Bai M & Urtasun R Deep watershed transform for instance segmentation. In 2017 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Liu Y et al.) 2858–2866 
(IEEE, 2017).

88. Wang W et al. Learn to segment single cells with deep distance estimator and deep cell detector. 
Preprint available at https://arxiv.org/abs/1803.10829 (2018).

89. Ren S, He K, Girshick R & Sun J Faster R-CNN: towards real-time object detection with region 
proposal networks. In Advances in Neural Information Processing Systems 28 (eds. Cortes C et 
al.) 91–99 (Curran Associates, 2015).

90. Lin T, Goyal P, Girshick R, He K & Dollar P Focal loss for dense object detection. In 2017 IEEE 
International Conference on Computer Vision (ICCV) (eds. Ikeuchi K et al.) 2999–3007 (IEEE, 
2018).

91. He K, Gkioxari G, Dollar P & Girshick R Mask R-CNN. In 2017 IEEE International Conference 
on Computer Vision (ICCV) (eds. Ikeuchi K et al.) 2980–2988 (IEEE, 2018).

92. Johnson JW Adapting Mask-RCNN for automatic nucleus segmentation. Preprint available at 
http://arxiv.org/abs/1805.00500 (2018).

93. Tsai H-F, Gajda J, Sloan TFW, Rares A & Shen AQ Usiigaci: instance-aware cell tracking in 
stain-free phase contrast microscopy enabled by machine learning. Preprint available at https://
www.biorxiv.org/content/early/2019/01/18/524041 (2019).

94. Hollandi R et al. A deep learning framework for nucleus segmentation using image style transfer. 
Preprint available at https://www.biorxiv.org/content/10.1101/580605v1 (2019).

Moen et al. Page 15

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.biorxiv.org/content/early/2016/11/02/085118
https://www.biorxiv.org/content/early/2016/11/02/085118
https://arxiv.org/abs/1803.10829
http://arxiv.org/abs/1805.00500
https://www.biorxiv.org/content/early/2019/01/18/524041
https://www.biorxiv.org/content/early/2019/01/18/524041
https://www.biorxiv.org/content/10.1101/580605v1


95. De Brabandere B, Neven D & Van Gool L Semantic instance segmentation with a discriminative 
loss function. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops 
(eds. Liu Y et al.) 478–480 (IEEE, 2017).

96. Payer C, Štern D, Neff T, Bischof H & Urschler M Instance segmentation and tracking with 
cosine embeddings and recurrent hourglass networks. In Medical Image Computing and Computer 
Assisted Intervention—MICCAI 2018 (eds. Frangi AF et al.) 3–11 (Springer, 2018).

97. Zhu J-Y, Park T, Isola P & Efros AA Unpaired image-to-image translation using cycle-consistent 
adversarial networks. Preprint available at http://arxiv.org/abs/1703.10593 (2017).

98. Haering M, Grosshans J, Wolf F & Eule S Automated segmentation of epithelial tissue using cycle-
consistent generative adversarial networks. Preprint available at https://www.biorxiv.org/content/
early/2018/04/30/311373 (2018).

99. Mahmood F et al. Deep adversarial training for multi-organ nuclei segmentation in histopathology 
images. Preprint available at http://arxiv.org/abs/1810.00236 (2018).

100. Tokuoka Y et al. Convolutional neural network-based instance segmentation algorithm to acquire 
quantitative criteria of early mouse development. Preprint available at https://www.biorxiv.org/
content/early/2018/06/01/324186 (2018).

101. Januszewski M et al. High-precision automated reconstruction of neurons with flood-filling 
networks. Nat. Methods 15, 605–610 (2018). [PubMed: 30013046] 

102. Li PH et al. Automated reconstruction of a serial-section EM Drosophila brain with flood-filling 
networks and local realignment. Preprint at https://www.biorxiv.org/content/10.1101/605634v1 
(2019).

103. Booz Allen Hamilton. 2018 Data Science Bowl. Kaggle https://www.kaggle.com/c/data-science-
bowl-2018 (2018).

104. Facchetti G, Knapp B, Flor-Parra I, Chang F & Howard M Reprogramming Cdr2-dependent 
geometry-based cell size control in fission yeast. Curr. Biol 29, 350–358 (2019). [PubMed: 
30639107] 

105. Khoshdeli M, Winkelmaier G & Parvin B Fusion of encoder-decoder deep networks improves 
delineation of multiple nuclear phenotypes. BMC Bioinforma. 19, 294 (2018).

106. Kumar N et al. A dataset and a technique for generalized nuclear segmentation for computational 
pathology. IEEE Trans. Med. Imaging 36, 1550–1560 (2017). [PubMed: 28287963] 

107. Regev A et al. The Human Cell Atlas. eLife 6, e27041 (2017). [PubMed: 29206104] 

108. Rozenblatt-Rosen O, Stubbington MJT, Regev A & Teichmann SA The Human Cell Atlas: from 
vision to reality. Nature 550, 451–453 (2017). [PubMed: 29072289] 

109. Purvis JE & Lahav G Encoding and decoding cellular information through signaling dynamics. 
Cell 152, 945–956 (2013). [PubMed: 23452846] 

110. Kimmel JC, Chang AY, Brack AS & Marshall WF Inferring cell state by quantitative motility 
analysis reveals a dynamic state system and broken detailed balance. PLoS Comput. Biol. 14, 
e1005927 (2018). [PubMed: 29338005] 

111. Wang P et al. Robust growth of Escherichia coli. Curr. Biol 20, 1099–1103 (2010). [PubMed: 
20537537] 

112. Dow JA, Lackie JM & Crocket KV A simple microcomputer-based system for real-time analysis 
of cell behaviour. J. Cell Sci 87, 171–182 (1987). [PubMed: 3667712] 

113. Levine MD, Youssef YM, Noble PB & Boyarsky A The quantification of blood cell motion by a 
method of automatic digital picture processing. IEEE Trans. Pattern Anal. Mach. Intell PAMI-2, 
444–450 (1980).

114. Smal I, Niessen W & Meijering E Bayesian tracking for fluorescence microscopic imaging. In 3rd 
IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006 (eds. Kovačević J 
et al.) 550–553 (IEEE, 2006).

115. Godinez W et al. Tracking of virus particles in time-lapse fluorescence microscopy image 
sequences. In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to 
Macro (eds. Fessler J et al.) 256–259 (IEEE, 2007).

116. Ngoc SN, Briquet-Laugier F, Boulin C & Olivo J-C Adaptive detection for tracking moving 
biological objects in video microscopy sequences. In Proc. International Conference on Image 
Processing (eds. Chang S-F et al.) 484–487 (IEEE, 1997).

Moen et al. Page 16

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1703.10593
https://www.biorxiv.org/content/early/2018/04/30/311373
https://www.biorxiv.org/content/early/2018/04/30/311373
http://arxiv.org/abs/1810.00236
https://www.biorxiv.org/content/early/2018/06/01/324186
https://www.biorxiv.org/content/early/2018/06/01/324186
https://www.biorxiv.org/content/10.1101/605634v1
https://www.kaggle.com/c/data-science-bowl-2018
https://www.kaggle.com/c/data-science-bowl-2018


117. Kachouie NN & Fieguth PW Extended-Hungarian-JPDA: exact single-frame stem cell tracking. 
IEEE Trans. Biomed. Eng 54, 2011–2019 (2007). [PubMed: 18018696] 

118. Meijering E, Dzyubachyk O, Smal I & van Cappellen WA Tracking in cell and developmental 
biology. Semin. Cell Dev. Biol 20, 894–902 (2009). [PubMed: 19660567] 

119. Jaqaman K et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 
5, 695–702 (2008). [PubMed: 18641657] 

120. Tinevez J-Y et al. TrackMate: an open and extensible platform for single-particle tracking. 
Methods 115, 80–90 (2017). [PubMed: 27713081] 

121. Cooper S, Barr AR, Glen R & Bakal C NucliTrack: an integrated nuclei tracking application. 
Bioinformatics 33, 3320–3322 (2017). [PubMed: 28637183] 

122. Magnusson KEG, Jalden J, Gilbert PM & Blau HM Global linking of cell tracks using the Viterbi 
algorithm. IEEE Trans. Med. Imaging 34, 911–929 (2015). [PubMed: 25415983] 

123. Amat F et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence 
microscopy data. Nat. Methods 11, 951–958 (2014). [PubMed: 25042785] 

124. Akram SU, Kannala J, Eklund L & Heikkilä J Cell tracking via proposal generation and selection. 
Preprint available at https://arxiv.org/abs/1705.03386 (2017).

125. Cire§an DC, Giusti A, Gambardella LM & Schmidhuber J Mitosis detection in breast cancer 
histology images with deep neural networks. In Medical Image Computing and Computer-
Assisted Intervention—MICCAI 2013 (eds. Mori K et al.) 411–418 (Springer, 2013).

126. Nie W-Z, Li W-H, Liu A-A, Hao T & Su Y-T 3D convolutional networks-based mitotic event 
detection in time-lapse phase contrast microscopy image sequences of stem cell populations. In 
2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (eds. Agapito L 
et al.) 55–62 (IEEE, 2016).

127. Mao Y & Yin Z A hierarchical convolutional neural network for mitosis detection in phase-
contrast microscopy images. In Medical Image Computing and Computer-Assisted Intervention
—MICCAI 2016 (eds. Ourselin S et al.) 685–692 (Springer, 2016).

128. Mathis A et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep 
learning. Nat. Neurosci 21, 1281–1289 (2018). [PubMed: 30127430] 

129. Pereira TD et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 
117–125 (2019). [PubMed: 30573820] 

130. Romero-Ferrero F, Bergomi MG, Hinz RC, Heras FJH & de Polavieja GG idtracker.ai: tracking 
all individuals in small or large collectives of unmarked animals. Nat. Methods 16, 179–182 
(2019). [PubMed: 30643215] 

131. Gordon D, Farhadi A & Fox D Re3 : real-time recurrent regression networks for visual tracking of 
generic objects. IEEE Robot. Autom. Lett 3, 788–795 (2018).

132. Cui Z, Xiao S, Feng J & Yan S Recurrently target-attending tracking. In 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (eds. Agapito L et al.) 1449–1458 (IEEE, 2016).

133. Wang Y, Mao H & Yi Z Stem cell motion-tracking by using deep neural networks with multi-
output. Neural Comput. Appl 10.1007/s00521-017-3291-2 (2017).

134. Sadeghian A, Alahi A & Savarese S Tracking the untrackable: learning to track multiple cues 
with long-term dependencies. In 2017 IEEE International Conference on Computer Vision (eds. 
Ikeuchi K et al.) 300–311 (IEEE, 2017).

135. Zhang D, Maei H, Wang X & Wang Y-F Deep reinforcement learning for visual object tracking in 
videos. Preprint available at http://arxiv.org/abs/1701.08936 (2017).

136. Wen C et al. Deep-learning-based flexible pipeline for segmenting and tracking cells in 3D image 
time series for whole brain imaging. Preprint available at https://www.biorxiv.org/content/early/
2018/08/06/385567 (2018).

137. Sullivan DP & Lundberg E Seeing more: a future of augmented microscopy. Cell 173, 546–548 
(2018). [PubMed: 29677507] 

138. Ounkomol C et al. Three dimensional cross-modal image inference: label-free methods 
for subcellular structure prediction. Preprint available at https://www.biorxiv.org/content/
10.1101/216606v4 (2017).

Moen et al. Page 17

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1705.03386
http://arxiv.org/abs/1701.08936
https://www.biorxiv.org/content/early/2018/08/06/385567
https://www.biorxiv.org/content/early/2018/08/06/385567
https://www.biorxiv.org/content/10.1101/216606v4
https://www.biorxiv.org/content/10.1101/216606v4


139. Christiansen EM et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 
173, 792–803 (2018). [PubMed: 29656897] 

140. Johnson GR, Donovan-Maiye RM & Maleckar MM Building a 3D integrated cell. Preprint 
available at https://www.biorxiv.org/content/early/2017/12/21/238378 (2017).

141. Osokin A, Chessel A, Salas REC & Vaggi F GANs for biological image synthesis. In 2017 IEEE 
International Conference on Computer Vision (eds. Ikeuchi K et al.) 2252–2261 (IEEE, 2017).

142. Ounkomol C, Seshamani S, Maleckar MM, Collman F & Johnson GR Label-free prediction 
of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 
917–920 (2018). [PubMed: 30224672] 

143. Johnson G, Donovan-Maiye R, Ounkomol C & Maleckar MM Studying stem cell organization 
using “label-free” methods and a novel generative adversarial model. Biophys. J 114, 43a (2018).

144. Stumpe M & Mermel C An augmented reality microscope for cancer detection. Google AI Blog 
https://ai.googleblog.com/2018/04/an-augmented-reality-microscope.html (2018).

145. Belthangady C & Royer LA Applications, promises, and pitfalls of deep learning for fluorescence 
image reconstruction. Preprint available at https://www.preprints.org/manuscript/201812.0137/v1 
(2018).

146. Weigert M et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. 
Preprint available at https://www.biorxiv.org/content/early/2018/07/03/236463 (2018).

147. Wang H et al. Deep learning achieves super-resolution in fluorescence microscopy. Preprint 
available at https://www.biorxiv.org/content/early/2018/04/27/309641 (2018).

148. Rivenson Y et al. Deep learning microscopy. Optica 4, 1437–1443 (2017).

149. Angelo M et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med 20, 436–442 
(2014). [PubMed: 24584119] 

150. Acuna D, Ling H, Kar A & Fidler S Efficient interactive annotation of segmentation datasets with 
Polygon-RNN++. Preprint available at http://arxiv.org/abs/1803.09693 (2018).

151. Zoph B & Le QV Neural architecture search with reinforcement learning. Preprint available at 
http://arxiv.org/abs/1611.01578 (2016).

152. Zoph B, Vasudevan V, Shlens J & Le QV Learning transferable architectures for scalable image 
recognition. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(eds. Forsyth D et al.) 8697–8710 (IEEE, 2018).

153. Jackson AS, Bulat A, Argyriou V & Tzimiropoulos G Large pose 3D face reconstruction from 
a single image via direct volumetric CNN regression. Preprint available at http://arxiv.org/abs/
1703.07834 (2017).

154. Nair V & Hinton GE Rectified linear units improve restricted Boltzmann machines. In Proc. 
27th International Conference on Machine Learning (eds. Fürnkranz J & Joachims T) 807–814 
(Omnipress, 2010).

155. Li H, Zhao R & Wang X Highly efficient forward and backward propagation of convolutional 
neural networks for pixelwise classification. Preprint available at http://arxiv.org/abs/1412.4526 
(2014).

156. Chollet F Xception: deep learning with depthwise separable convolutions. In Proc. 30th IEEE 
Conference on Computer Vision and Pattern Recognition (eds. Liu Y et al.) 1800–1807 (IEEE, 
2017).

157. Howard AG et al. MobileNets: efficient convolutional neural networks for mobile vision 
applications. Preprint available at https://arxiv.org/abs/1704.04861v1 (2017).

158. Lin T et al. Feature pyramid networks for object detection. In Proc. 30th IEEE Conference on 
Computer Vision and Pattern Recognition (eds. Liu Y et al.) 936–944 (IEEE, 2017).

159. Ioffe S & Szegedy C Batch normalization: accelerating deep network training by reducing 
internal covariate shift. Preprint available at http://arxiv.org/abs/1502.03167 (2015).

160. Santurkar S, Tsipras D, Ilyas A & Madry A How does batch normalization help optimization? 
(No, it is not about internal covariate shift). Preprint available at http://arxiv.org/abs/1805.11604 
(2018).

161. Srivastava N, Hinton G, Krizhevsky A, Sutskever I & Salakhutdinov R Dropout: a simple way to 
prevent neural networks from overfitting. J. Mach. Learn. Res 15, 1929–1958 (2014).

Moen et al. Page 18

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.biorxiv.org/content/early/2017/12/21/238378
https://ai.googleblog.com/2018/04/an-augmented-reality-microscope.html
https://www.preprints.org/manuscript/201812.0137/v1
https://www.biorxiv.org/content/early/2018/07/03/236463
https://www.biorxiv.org/content/early/2018/04/27/309641
http://arxiv.org/abs/1803.09693
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1703.07834
http://arxiv.org/abs/1703.07834
http://arxiv.org/abs/1412.4526
https://arxiv.org/abs/1704.04861v1
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1805.11604


162. Li X, Chen S, Hu X & Yang J Understanding the disharmony between dropout and batch 
normalization by variance shift. Preprint available at http://arxiv.org/abs/1801.05134 (2018).

163. Bannon D et al. DeepCell 2.0: automated cloud deployment of deep learning models for 
large-scale cellular image analysis. Preprint available at https://www.biorxiv.org/content/early/
2018/12/22/505032 (2018).

164. Thul PJ et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017). [PubMed: 
28495876] 

165. Ljosa V, Sokolnicki KL & Carpenter AE Annotated high-throughput microscopy image sets for 
validation. Nat. Methods 9, 637 (2012). [PubMed: 22743765] 

166. Maška M et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 
1609–1617 (2014). [PubMed: 24526711] 

167. He K, Zhang X, Ren S & Sun J Delving deep into rectifiers: surpassing human-level performance 
on ImageNet classification. In Proc. 2015 IEEE International Conference on Computer Vision 
(eds. Bajcsy R et al.) 1026–1034 (IEEE, 2015).

168. Polyak BT Some methods of speeding up the convergence of iteration methods. USSR Comput. 
Math. Math. Phys 4, 1–17 (1964).

169. Nesterov YE A method for solving the convex programming problem with convergence rate O 
(1/k2). Dokl. Akad. Nauk SSSR 269, 543–547 (1983).

170. Sutskever I, Martens J, Dahl G & Hinton G On the importance of initialization and momentum in 
deep learning. Proc. Mach. Learn. Res 28, 1139–1147 (2013).

171. Tieleman T & Hinton G Neural Networks for Machine Learning lecture 6.5—rmsprop: divide the 
gradient by a running average of its recent magnitude. Coursera https://www.coursera.org/learn/
neural-networks (2012).

172. Duchi J, Hazan E & Singer Y Adaptive subgradient methods for online learning and stochastic 
optimization. J. Mach. Learn. Res 12, 2121–2159 (2011).

173. Zeiler MD ADADELTA: an adaptive learning rate method. Preprint available at http://
arxiv.org/abs/1212.5701 (2012).

174. Kingma DP & Ba J Adam: a method for stochastic optimization. Preprint available at http://
arxiv.org/abs/1412.6980 (2014).

175. Wilson AC, Roelofs R, Stern M, Srebro N & Recht B The marginal value of adaptive gradient 
methods in machine learning. In Advances in Neural Information Processing Systems 30 (eds. 
Guyon I et al.) 4148–4158 (Curran Associates, Inc., 2017).

176. Keskar NS & Socher R Improving generalization performance by switching from Adam to SGD. 
Preprint available at http://arxiv.org/abs/1712.07628 (2017).

177. Rumelhart DE, Hinton GE & Williams RJ Learning representations by back-propagating errors. 
Nature 323, 533–536 (1986).

178. Sjoberg J & Ljung L Overtraining, regularization and searching for a minimum, with application 
to neural networks. Int. J. Control 62, 1391–1407 (1995).

179. Ting KM Confusion matrix. In Encyclopedia of Machine Learning and Data Mining (eds. 
Sammut C & Webb GI) 260–260 (Springer, 2017).

180. Bajcsy P et al. Survey statistics of automated segmentations applied to optical imaging of 
mammalian cells. BMC Bioinforma. 16, 330 (2015).

181. Sokolova M & Lapalme G A systematic analysis of performance measures for classification tasks. 
Inf. Process. Manag 45, 427–437 (2009).

182. Everingham M, Van Gool L, Williams CK, Winn J & Zisserman A The Pascal Visual Object 
Classes (voc) challenge. Int. J. Comput. Vis 88, 303–338 (2010).

183. Kotila M Hyperparameter Optimization for Keras Models (Autonomio, 2018).

Moen et al. Page 19

Nat Methods. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1801.05134
https://www.biorxiv.org/content/early/2018/12/22/505032
https://www.biorxiv.org/content/early/2018/12/22/505032
https://www.coursera.org/learn/neural-networks
https://www.coursera.org/learn/neural-networks
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1712.07628


Box 1 |

Training a linear image classifier

To illustrate the workflow for training a deep learning model in a supervised manner, here 

we consider the case of training a linear classifier to recognize grayscale images of cats 

and dogs. Each image is an array of size (Nx, Ny, 1), where Nx and Ny are the number 

of pixels in the x and y dimensions, respectively, and 1 is the number of channels in 

the image. For this exercise, we collapse the image into a vector of size (NxNy, 1). The 

classification task is to construct a function that takes this vector as input and predicts 

a label (0 for cats, 1 for dogs). A linear classifier performs this task by producing class 

scores that are a linear function of each pixel value. Mathematically, this is written as

y0
y1

=
w0, 0 ⋯ w0, NxNy − 1
w1, 0 ⋯ w1, NxNy − 1

x0
⋮

xNxNy − 1
=

∑w0, jxj
∑w1, jxj

where y0 and y1 are the class scores, W is a matrix of class weights, and x is the image 

vector. The class with the highest score is the predicted class. The learning task then 

tunes the wi,j values so that a loss function that measures the classifier’s performance 

on some training dataset is minimized. A common loss function is the cross-entropy, or 

softmax, loss. To arrive at this loss function, we first transform our class scores y0 and y1 

into probabilities by defining

pi = eClass i score
ΣAll classeseClass score

These probabilities reflect the model’s certainty that an image belongs in class i. The loss 

evaluated for a collection of images is defined as

Loss = − ∑
Images

log pCorrect + λ∑
i, j

wi, j2

where pCorrect is the probability assigned to the correct class for that image. This equation 

has two terms. The first can be thought of as the negative log likelihood of choosing the 

correct class. The second term is called L2 regularization; it penalizes large weights to 

control against overfitting.

To minimize the loss function, most optimization algorithms used in deep learning are 

a variation of stochastic gradient descent. First, the weights are randomly initialized to 

some small value. The choice of initialization can affect the training of deep models 

considerably; best practices for initialization include the initialization settings of He et 

al.167. Next, we select a small batch of images, called a minibatch, and identify the 

direction in which to change the weights so that the loss function will be reduced the 

most when evaluated on that minibatch. We then perturb the weights a small amount in 

that direction. The correct direction in which to perturb the weights is captured by the 
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gradient of the loss function with respect to the weights. Mathematically, this gradient 

leads to the update rule

wi, j wi, j − lr ∂loss
∂wi, j

where lr, the scalar that scales the gradient at each step, is the learning rate. For the case 

of the linear classifier, we can compute these gradients analytically. The gradient for one 

image is given by

∂loss
∂wi, j

= xj(pi − 1(i is correct label)) + 2λwi, j

where 1() is an indicator function that is 1 when the statement inside the parentheses 

is true and 0 when false. The gradient for the minibatch of images is the sum of the 

gradients for all images in the batch. This equation provides some information on how 

gradient descent changes the weights. The first term leads to an increase in weights that 

correspond to the correct class and a decrease in weights that correspond to the incorrect 

class. If the model is certain (pi ≈ 1) and correct, the contribution will be minimal; the 

opposite is true if the model is certain and wrong. The gradient is scaled by the relevant 

pixel value xj, which causes the model to pay attention to bright pixels. The contribution 

of the regularization term pushes weights toward zero, preventing any one weight from 

getting too big. Once the weights are updated, the user then selects another batch of 

images and repeats the process until the loss is sufficiently minimized. The accuracy and 

loss of the algorithm on the validation dataset are often used to develop stopping criteria. 

Training is often stopped when the validation loss ceases to improve or when the training 

and validation error curves start to diverge, signifying overfitting.

While the linear classifier highlights several key features of training, in practice there 

are some important differences. Variants of the loss function shown above have been 

developed to address issues surrounding class imbalance in datasets. Several variants 

of stochastic gradient descent exist, including with momentum168–170, RMSprop171, 

Adagrad172, Adadelta173, and Adam174. Recent work suggests that networks trained with 

stochastic gradient descent with momentum have better performance with respect to 

generalization175,176. We have presented the learning rate as a static parameter, but in 

practice it often decreases as training progresses.

Importantly, the mathematical structure of deep learning models is more complicated 

than the linear model presented here. While this simplification may appear problematic 

with respect to analytical computation of the gradients for training, all deep learning 

models are compositional. This allows one to iteratively use the chain rule177 to derive 

analytical expressions for the gradients, even for complicated functions, as shown in the 

figure in this box.
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Computing gradients with backpropagation. a, During the forward pass, local derivatives 

are computed alongside the original computation. b, During the backward pass, the chain 

rule is used in conjunction with the local derivatives to compute the derivative of the loss 

function with respect to each weight.
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Box 2 |

Troubleshooting

While deep learning can solve many problems in biological image analysis, the creation 

of well-performing models often requires a substantial amount of troubleshooting. Here 

we provide guidance on navigating common issues that arise in the training of deep 

learning models.

Training performance.

Very poor performance during training, defined as a classification error equal to or 

worse than random chance, can usually be traced to an issue with data or with training 

parameters. For small datasets, errors in training data can lead to poor performance. 

These errors often go unnoticed until the training data are manually inspected. Improper 

image normalization can lead to poor performance, as images can lose their informative 

features. Errors in the code that performs image augmentation and feeds data into the 

training pipeline can also yield poor performance. The learning rate is often the first 

parameter to be adjusted when the training data are free of errors and the performance is 

still very poor. Changing the model architecture to increase model capacity can also be an 

effective solution.

Overfitting.

Deep learning models can learn complex relationships among data and annotations. As a 

result, there may be concern as to whether a deep learning model has learned something 

general that will work on real data or whether the model’s learning is unique to the 

training dataset. This phenomenon is called overfitting and is generally measured as the 

difference between model accuracy for a training dataset and that for a validation dataset. 

The amount of overfitting that can be tolerated varies by task; several percentage points 

may be tolerable for segmentation but might cause an image classifier to misclassify 

important rare categories. Several regularization techniques exist to mitigate overfitting, 

but they often come at the expense of model capacity. Batch normalization159 has strong 

regularization properties, as does dropout161. Typically, only one of these methods is 

used in a model, as performance can suffer if both are used simultaneously162. Increasing 

the strength of L2 regularization also mitigates overfitting, but at the expense of model 

capacity. Increasing the range of data-augmentation operations creates a more varied 

training dataset and hence more robust models49. Because overfitting often gets worse 

the longer that training proceeds, stopping training early can also be effective178. The 

choice of model architecture is especially important for small datasets. Architectures 

with large model capacities can be especially prone to overfitting on small datasets, 

although this tendency can be somewhat mitigated with transfer learning by pretraining 

on larger datasets50. Finally, the training algorithm used affects overfitting: recent work 

has demonstrated that models trained with stochastic gradient descent with momentum 

generalize better than models trained with other algorithms175,176.

Class imbalance.
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Training datasets for classification tasks often have different numbers of examples for 

each label, which can lead to poorly performing models. As an example, consider a 

dataset in which 90% of the examples are label A and 10% are label B. The deep 

learning model may learn to predict everything as being class A and then report an 

overall classification accuracy of 90%. However, the reported accuracy is misleading, and 

the model is too inaccurate on class B to be used. There are several solutions to class 

imbalance. Resampling the training data to yield an identical number of elements in each 

class is one approach. This strategy can include downsampling to match the smallest 

class size, upsampling to match the largest class size, or both. Caution must be taken with 

downsampling when the least-represented class is much smaller (approximately tenfold) 

than all the other classes, as the diversity of the training data will be severely reduced. 

Another way to account for class imbalance is to introduce a class weight term into the 

loss function. This term, which is often taken as (NTotal examples/NExamples in class i) × 

(1/NClasses) for each class i, multiplies each example data’s individual contribution to the 

loss. This class weight term can be comPuted for the entire training dataset or for each 

minibatch on the fly.

Assessing performance.

Following performance metrics during and after training is an important part of creating 

deep learning models. For performance assessment, the training data are often split into 

two portions, one for training and one for validation. If the performance on the validation 

dataset is used to modify training parameters, then it is possible to overfit the model 

to the validation data, even though these data were not used explicitly during training. 

Therefore, some researchers split their data into three parts: one for training, one for 

validation during training, and one for testing real-world performance. Our groups have 

achieved good success by reserving 10–20% of annotated data for testing.

Once the dataset is split, the remaining issue is choosing a performance metric. As seen 

from the class imbalance example, simple metrics such as accuracy can misrepresent 

performance. Useful metrics vary by problem type. For classification tasks, assessment 

of the accuracy for each individual class is more informative than an average across 

all classes. A confusion matrix179 goes one step further, as it reveals the frequency of 

each type of misclassification. For segmentation tasks, both pixel-level (for example, 

the Dice and Jaccard indices180) and instance-level metrics (precision181, recall181, and 

mean average precision182) can be used to measure performance. Quantification of the 

rates at which specific errors occur, such as false splitting or merging of instance masks, 

has yielded important insights into the failure modes of deep learning models52. The 

appropriate metrics should be used on both training and validation datasets at the end of 

each training epoch.

Hyperparameter optimization.

A hyperparameter is a parameter that is set before learning begins. Hyperparameters 

include L2 regularization strength, learning rate, initialization settings for parameters, 

and details of the deep learning architecture (number of layers, types of layers, number 

of filters in each layer, etc.). The optimization of hyperparameters, an essential part of 

the training process for deep learning models, usually consists of three phases: selection 
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of an initial condition, selection of an optimization objective, and a search to find the 

best hyperparameters. While choosing initial conditions can be tricky, packages like 

Keras come with best-practice default settings for hyperparameters such as learning 

rate, L2 regularization strength, and weight initialization59. In practice, our groups 

often use the per-class training and validation accuracies as targets, with the goal of 

maximizing the training accuracies across classes while minimizing the gap between 

training and validation accuracies to minimize overfitting. Finally, there are several 

strategies for searching hyperparameter space. Grid searches in which the learning rate 

and regularization strength are tuned are often effective. Model architecture can also be 

modified; our groups often use the tradeoff between model capacity and overfitting as a 

guide to determine the changes that should be made. Our prior work has shown that it is 

important to match a model’s receptive field size with the relevant feature size in order 

to produce a well-performing model for biological images48. The Python package Talos 

is a convenient tool for Keras59 users that helps to automate hyperparameter optimization 

through grid searches183.

Software engineering.

We have found that modern software-development practices have substantially improved 

the programming experience, as well as the stability of the underlying hardware. Our 

groups routinely use Git and Docker74 to develop and deploy deep learning models. Git 

is a version-control software, and the associated web platform GitHub allows code to be 

jointly developed by team members. Docker is a containerization tool that enables the 

production of reproducible programming environments.

Dimension mismatch.

Mismatches between the dimensions of adjacent layers are common errors that often 

arise. Although most frameworks automatically infer the dimension sizes for each layer, 

this error can still occur. Our typical solution is to map out the dimensions of each layer 

to identify and correct dimension mismatches.
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Box 3 |

Glossary

Deep learning: a set of machine-learning methods—specifically, neural networks—that 

are capable of learning representations from data with increasing levels of abstraction30.

Hyperparameter: a parameter whose value is set before training. Examples include the 

learning rate, L2 regularization strength, and deep learning model architecture.

Cross-validation: the use of held-out data to test model performance during training71. 

N-fold cross-validation splits data into N partitions and uses one of the partitions as 

validation data during an iteration through the training data.

Generalization: the ability of a machine-learning model to perform well on held-out 

data. Models that generalize have presumably learned important, general features of the 

data.

Underfitting: the inability of a machine-learning model to capture the variance present in 

training data71. Underfit models have suboptimal performance on training data.

Overfitting: the inability of a machine-learning model to perform well on held-out 

data, despite good performance on training data71. Overfit models learn features that 

are specific to the training data, which leads to reduced performance on held-out data. 

Overfitting can be quantified by measurement of the difference between a model’s 

classification error for training and testing data.

Model capacity: the representational power of a machine-learning model.

Transfer learning: repurposing of a trained machine-learning model for a new task. 

In deep learning, transfer learning entails training a model on a large dataset and then 

fine-tuning the model for a different task using a new, smaller dataset.

Epoch: one iteration through the entire training dataset during stochastic gradient 

descent.

Recall: the fraction of positive examples detected by a model181. Mathematically, for a 

two-class classification problem, recall is calculated as (True positives)/(True positives + 

False negatives).

Precision: the percentage of positive predictions from a model that are true181. 

Mathematically, for a two-class prediction problem, precision is calculated as (True 

positives)/(True positives + False positives).

Mean average precision: summary of the precision-recall score. For object detection, 

the mean average precision is defined as the mean of the precisions found at a set of 

equally spaced recall levels. Traditionally, 11 recall levels (0, 0.1, …, 1.0) are used182.

F1 score: the harmonic mean between precision and recall181. Mathematically, the F1 

score is defined as 2((Precision × Recall)/(Precision + Recall)).
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Jaccard index: a metric for segmentation accuracy180; intersection over union. 

Mathematically, if R is a reference segmentation and S is a predicted segmentation, then 

the Jaccard index is given by R ∩ S/R ∪ S.

Dice index: a metric for segmentation accuracy180, defined mathematically as 2 |R ∩ 
S|/(|R| + |S|).
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Fig. 1 |. Software 2.0 combines data annotations with deep learning to produce intelligent 
software.
Annotations produced by expert annotators or by a crowd can be used to train deep learning 

models to extract insights from data. Once trained, these models can be deployed to process 

new, unannotated data. The human-in-the-loop extension involves the identification of model 

errors, error correction to produce new training data, and retraining on an updated dataset.
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Fig. 2 |. Common mathematical components of deep learning models.
a, Convolutions extract local features in images, and the weights of each filter can be 

tuned to extract the best feature for a given dataset and task. b, Transfer functions such 

as those applied by the common rectified linear unit (ReLU) make possible the learning 

of nonlinear relationships. c, Pooling operations like max pooling downsample to produce 

spatially coarse feature maps154. Deep learning architectures often use iterative rounds of the 

three operations in a-c to produce low-dimensional representations of images. d, Dilations 

allow convolutional and pooling kernels to increase their spatial extent while keeping 

the number of parameters fixed48,155. When used correctly, dilations allow classification 

networks trained on image patches to be used for dense pixel-level prediction. e-i, Modern 

deep learning models make use of several architectural elements. e, Separable convolutions 

perform the convolution operation on each channel separately, which reduces the computing 

power while preserving accuracy156,157. f, Residual networks learn the identity mapping 

plus a small residual and enable the construction of very deep networks68. g, Dense 

networks allow each layer to see every prior layer69, which improves error propagation and 

encourages both feature reuse and parameter efficiency69,70. h, Multi-resolution networks 

allow the classification layers to see both fine and coarse feature maps86. i, Through 

feature pyramids, object-detection models detect objects at distinct length scales91,158. j, 
A plot of the training error during training reveals the relationships among overfitting, 

underfitting, and model capacity. The tradeoff among these attributes determines which 

network architectures are suitable for a given task. “Underfitting” refers to models with 

insufficient representational power, and “overfitting” refers to models that have learned 

features specific to training data and hence generalize poorly to new, unseen data. Increased 

model capacity reduces underfitting but can increase the risk of overfitting. k-m, Numerous 

regularization techniques ensure that deep learning models learn general features from 

data. k, Batch normalization both regularizes networks and reduces the time needed for 

training159. It was initially created to mitigate covariate shift but was recently found to 

smooth the landscape of the loss function160. l, Dropout randomly turns off filters during 

training161, which regularizes the network by forcing it to not overly rely on any one feature 

to make predictions. Batch normalization and dropout are typically not used together in the 

same model162. m, L2 regularization penalizes large weights and reduces overfitting.
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Fig. 3 |. Image classification applied to biological images.
a, A deep-learning-based image classifier accurately identifies spatial patterns of protein 

expression in fluorescence images. b, Deep-learning-based image classifiers can accurately 

interpret changes in cell morphology in imaging-based high-throughput screening. These 

models are trained on classification tasks and then used to extract feature vectors from 

images, which can be clustered to identify novel cell phenotypes.
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Fig. 4 |. Image segmentation applied to biological images.
a, Instance segmentation identifies every instance of an object type, such as cell nuclei. 

b, Processing schema for instance segmentation. Pixel-classification approaches attempt to 

accurately predict object boundaries, deep watershed approaches learn a distance transform, 

object-detection methods predict a bounding box for each object, and embedding methods 

assign pixels in different objects to different vectors. c, Application of deep-learning-based 

image segmentation to spatial proteomics of breast cancer by Keren et al.11. Segmentation 

masks were used to measure signal intensity for each channel in each cell. This information 

was used by clustering algorithms to identify cell types and cell states. The ability to 

accurately segment single cells allowed Keren et al. to quantify immune behavior in the 

tumor microenvironment. Adapted with permission from ref. 11, Elsevier.
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Fig. 5 |. Augmenting microscopy images with deep learning.
a, Deep learning accesses latent data in biological images by using fluorescence images 

of biological structures as a guide. This strategy yields predictions of fluorescence images 

and can also be used to improve image quality. b,c, This deep learning model infers which 

neurons are alive or dead directly from bright-field images. Adapted with permission from 

ref. 139, Elsevier.
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