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Fog computing (FC) based sensor networks have emerged as a propitious archetype for next-generation wireless communication
technology with caching, communication, and storage capacity services in the edge. Mobile edge computing (MEC) is a new era of
digital communication and has a rising demand for intelligent devices and applications. It faces performance deterioration and
quality of service (QoS) degradation problems, especially in the Internet of *ings (IoT) based scenarios. *erefore, existing
caching strategies need to be enhanced to augment the cache hit ratio and manage the limited storage to accelerate content
deliveries. Alternatively, quantum computing (QC) appears to be a prospect of more or less every typical computing problem.*e
framework is basically a merger of a deep learning (DL) agent deployed at the network edge with a quantum memory module
(QMM). Firstly, the DL agent prioritizes caching contents via self organizing maps (SOMs) algorithm, and secondly, the
prioritized contents are stored in QMM using a Two-Level Spin Quantum Phenomenon (TLSQP). After selecting the most
appropriate lattice map (32× 32) in 750,000 iterations using SOMs, the data points below the dark blue region are mapped onto
the data frame to get the videos. *ese videos are considered a high priority for trending according to the input parameters
provided in the dataset. Similarly, the light-blue color region is also mapped to get medium-prioritized content. After the SOMs
algorithm’s training, the topographic error (TE) value together with quantization error (QE) value (i.e., 0.0000235) plotted the
most appropriate map after 750,000 iterations. In addition, the power of QC is due to the inherent quantum parallelism (QP)
associated with the superposition and entanglement principles. A quantum computer taking “n” qubits that can be stored and
execute 2n presumable combinations of qubits simultaneously reduces the utilization of resources compared to conventional
computing. It can be analyzed that the cache hit ratio will be improved by ranking the content, removing redundant and least
important content, storing the content having high and medium prioritization using QP efficiently, and delivering precise results.
*e experiments for content prioritization are conducted using Google Colab, and IBM’s Quantum Experience is considered to
simulate the quantum phenomena.

1. Introduction

Fog computing (FC), at the edge of a sensor network, as an
extension to cloud computing, offers storage, processing,
and communication control services [1, 2]. In the period of

next-generation telecommunication and through the mas-
sive development of the Internet of*ings (IoT) based smart
devices, applications required ultralow latency because IoT
networks induce strain not only on the backhaul but the
fronthaul causing adverse situations for interruption
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sensitive applications [3, 4]. *ese problems can be resolved
through FC, which provides distributed computing and
communication facilities from centralized servers in the
edge direction. A central base band unit (BBU) pool is not
robust for every control, communication, or any other
processing function; therefore, FC-based radio access net-
works (F-RANs) were introduced. In F-RANs, the local
BBUs or even remote radio heads (RRHs) are dedicated to
such tasks through edge caching (EC) [5–9]. Due to an
intermediate fog layer between end-users and the cloud,
mobile edge computing (MEC) is introduced.

Although the idea of F-RANs seems to be propitious to
provide all the tasks confronted by the cloud radio access
networks (CRANs) or heterogeneous cloud radio access
networks (HCRANs). However, some setbacks might cause
performance deterioration or the quality of service (QoS)
degradation, bringing about fronthaul congestion. *e main
issue that requires to be solved is EC as well as restricted
storing capability in RRHs [10]. Limited vital interests as-
sociated with the EC trending in F-RANs are reducing
fronthaul burden, backhaul, or even backbone, optimizing
endwise latency issues, and dynamic applications of content
responsive approaches performance improvements. Fog
access points (FAPs) usually have a relatively minimal
caching capacity mostly because of the limited memory
linked to the caching processes executed in centralized
CRANs or HCRANs. Nevertheless, an increase in cache size
in the base stations (BS) has a balance in the middle of
improved throughput and network spectral efficiency [11].
Consequently, caching techniques in FAPs, together with
caching strategies and allocation of cache resources policies,
need to be managed logically and dynamically for aug-
mented F-RAN performance.

*e main contribution of this research is to predict the
high priority content through the deep learning (DL) tech-
nique. It is the leading task that must be carried out when the
contents are requested repeatedly and placed in the caches.
*e rest of the content should be discarded. When the high
priority content is predicted through the DL agent, efficient
content management and placement are achieved through the
proposed framework and the quantum memory modules
(QMM) to store the content. *is paper describes an EC-
based deep learning-associated quantum computing
(DLAQC) framework. *e framework is based on two parts:
one for caching content prioritization and the other one for
caching content stored within the edge. *e DL-based
quantum computing (QC) approach associated with quan-
tum information processing is deployed to enhance the
performance of F-RANs.*e framework is basically a merger
of a DL agent deployed at the network edge and a QMM.
Firstly, the DL agent prioritizes caching contents via Self-
Organizing Maps (SOMs) algorithm, and secondly, the pri-
oritized contents are stored in QMM using a Two-Level Spin
Quantum Phenomenon (TLSQP). SOMs algorithm is
staunchly suitable to pick up contents in colored cluster form
without reducing the dimensionality of the feature space.

*e paper’s organization is as follows. Section 2 describes
the related work for edge caching, SOMs applications, and
Stern–Gerlach experiment (SGE). In Section 3, the

framework and algorithm are described, followed by an
overview of the model. *e DL agent in edge and TLSQP is
also discussed.*e experiments and results are analyzed and
discussed in Section 4. Finally, conclusion is presented in
Section 5.

2. Literature Review

In this section, a literature study is carried out to throw light
on attempts of different researchers to enhance EC to im-
prove efficiency and quality of service (QoS) in F-RANs.
Several pieces of research related to the DL-based algorithm
and SGE highlight their applications in various fields, which
has proved to be a great source of guidance for the proposed
idea.

*e authors in [12] described the key features of MEC,
especially in the context of next-generation and IoT-based
applications. *e role of MEC and its challenges in the
context of edge intelligence is also described. By keeping in
view, the latency, context awareness, and energy-saving
criteria, it is compared with the conventional MCC by
considering the following key enabling features: virtual
reality/augmented reality, software defined network, net-
work function virtualization, smart devices, information-
centric networking, network slicing, and computation off-
loading. Additionally, a use case is also provided to help
understand the edge intelligence in the IoT-based scenarios.

*e critical challenges in the F-RANs are (i) the content
placement in caches and (ii) the joint user associations.
*ese challenges are tinted due to the complexity of different
approaches used to find optimal solutions. In [13], authors
considered optimization problems as mixed-integer non-
linear programming (MINL). A hierarchical game theory
approach is applied, and a series of deep reinforcement
learning (DRL) based algorithms are designed for user as-
sociation, content popularity prediction, and content
placement to enhance the FAPs. In [14], a cooperative EC
scheme using the DRL approach to place and deliver con-
tents in vehicular edge computing networks is presented.
*e deep deterministic policy gradient algorithm provides a
sensible solution for long-term MINL problems. A scheme
for vehicle scheduling and bandwidth allocation is designed
to make it less complex to manage adaptive resources and
make decisions.

A user preference-based learning EC policy is described
in [15] to predict the online content popularity and an offline
learning algorithm. A sigmoid function is exploited to
construct a logistic regression model to estimate user
preferences regarding online content popularity prediction.
It is considered complicated to make a preference model for
each user due to the high-dimensional feature space.
*erefore, a follow-the-regularized-leader proximal inspired
algorithm is also proposed for offline user preference
learning.

*e federated learning (FL) framework and deep rein-
forcement learning (DRL) techniques were integrated into
MEC in [16] to optimize EC, computing, and communi-
cation. *e key challenge is primarily faced by authors to
place the DRL agents due to (i) the massive and redundant
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data transmissions in the cloud and (ii) the privacy risks as
well as the lesser computing capabilities in UEs. *e pro-
posed technique has outperformed the conventional caching
policies for EC like Least Recently Used, Least Frequently
Used, and First In First Out. However, for computation
offloading, the DRL technique by FL offered close results to
the centralized DRL technique; on the other hand, again, it
outperformed the following baseline policies: mobile exe-
cution, edge node execution, and greedy execution.

*e authors in [17] have presented an on-demand and
collaborative deep neural networks (DNN) coinference
framework. *e presented framework worked in two ways.
Firstly, the DNN computation is partitioned between devices
and the edge to make use of hybrid computation resources,
and it can exit early in the DNN right-sizing at some suitable
intermediate DNN layer. *erefore, it can avoid further
computation latency and have implemented their prototype
on Raspberry Pi. Secondly, the visualization of higher-di-
mensional data is taken into account to effectively analyze
and conclude the data and results. *e following two
strategies have been used to visualize the multidimensional
and minimal data by a scatter plot established on dimen-
sionality reduction: (i) the direct visualization and (ii) the
projection methods.

Failure modes and effects analysis (FMEA) is a meth-
odology for risk analysis and problem prevention by
identifying and defining failures of the system, process, or
service. FMEA has some shortcomings related to the
worksheet and usage complexity, which have been dealt with
by the SOMs algorithm in [18]. SOMs algorithm is exploited
to achieve perceptibility for corrective actions. A risk pri-
ority interval is used to evaluate these corrective actions in
groups to make it easier for the users.

SOMs for multiple travelling salesman problem
(MTSP) with minmax objective is exploited for the robotic
multigoal path planning problem [19]. *e main issue in
deploying this framework was to detect the collision-free
paths to evaluate the distances in the winner selection
phase. *e collision-free path was needed to adapt the
neurons to the presented input signals. To address this
issue, simple approximations of the shortest path are
considered and verified through cooperative inspection.
*e presented SOMs approach is used to solve this in-
spection task by MTSP-minmax and compared with the
MTSP-GENIUS algorithm.

In [20], the SOMs have been used to classify astro-
nomical objects like stars’ stellar spectra. *e algorithm is
used to make different spectral classes of the Jacoby, Hunter,
and Christian library.*e 158 spectra were chosen to classify
by 2799 data points each. 7 clusters were formed from O to
M, and 12 out of 158 spectra were misclassified, giving a
92.4% success rate. Otto Stern andWalther Gerlach, in 1922,
performed an experiment that separated an electron beam
while passing through a nonuniform magnetic field. When a
beam passed through a magnetic field, two distinguished
beams were observed on the screen. *e experiments
conducted by Otto Stern and Walther Gerlach gained
popularity and were used in multidisciplinary studies by
researchers.

In [21], the SGE is exploited in physical chemistry to
investigate the magnetic response of the Fe@Sn12cluster. A
comparison is carried out between Mn@Sn12 and Fe@Sn12
clusters by passing their beams through magnetic fields
separately. *e molecular beam of Fe@Sn12 cluster exclu-
sively deviates more towards increasing the magnetic field.
*e beam deviates even at the shallow temperature due to
the distortions of tin-cage induced by Jahn-Teller. Hence, in
the magnetic dipole moment, the role of electronic orbital
angular momentum is significant. *e magnitude of the
magnetic dipole moment is calculated from the transfer of
the beam.

In [22], the SGE is oppressed to explore the spin ½
neutral particles’ motion and how their motion is dependent
on the initial phase difference between two internal spin
states. If the particles are moving horizontally, the initial
phase difference between spin states results in particle
splitting in the longitudinal direction and in the lateral
direction due to the quantum interference. *is interference
provides an alternate way of measuring the initial phase
difference between spin states and helps determine the
amplitude and phase of atoms in the same SGE. To study this
phenomenon, the ultracold temperature is maintained to
make the ideal condition for the atom to behave like a
quantum wave packet instead of a particle. In general, an
atom is not in a pure state, rather a mixed state and cannot be
characterized as a single wave function.

*e content priority is deduced by the adaptive neu-
rofuzzy inference system (ANFIS) in [23] in which the
following five input variables were carefully selected: vid-
eo_elapsed_time, video_size, views, likes, and downloads.
Each input variable has three membership functions having
priorities high, medium, and low, and fifteen similar
functions are made in the Sugeno inferencing mode. A rule
base function was also created. After content prioritization
through ANFIS, a theoretical explanation of the SGE is
specified as a TLSQP for storing the prioritized content in
quantum repositories.

Considering media requirements explicitly, EC seems to
alleviate certain challenges. Occasionally, multimedia con-
tents get heavier than even the encyclopedias, resulting in
higher hardware and network capacities. EC can support
such kinds of throughput requirements proportionally.
Moreover, the scalability of streaming servers, which require
special provisioning of these servers, can also be handled
during live events. However, reducing the distance between
end devices and BS will not be sufficient for increased
network throughput; high-speed backhaul connectivity is
also required between all the BS and the BBU Pool where
centralized servers reside. *e network traffic load can be
reduced by minimizing redundant traffic. *e traffic load
mainly comprises content deliveries for the most requested/
popular content at different times. If at all this redundant
traffic is managed so that popular content is predicted and
placed within the edge, the idea’s effectiveness to increase
network efficiency can be justified. Researchers and network
specialists also have incorporated different AI techniques,
including machine learning, to minimize the redundancy of
network traffic and optimize the overall network efficiency,
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from predicting popular content to optimizing specific
parameters and much more [24–27]. In this digital era, IoT-
based devices have generated an enormous amount of data
daily, which is one reason for the possible growth of DL
algorithms [28]. *e DL algorithms require a massive
amount of data to learn from.

3. Deep Learning-Associated Quantum
Computing Framework

Edge computing acts as an intermediary between cloud and
user equipment through the network edge. Researchers and
engineers are continuously trying to accelerate content
deliveries further and make mobile services better. *e
intelligence of edge systems is enhanced by introducing a DL
agent in network edge. *e DL agent is used to prioritize (i)
the caching content according to its popularity determined
by the considered parameters and (ii) the content to be
managed logically within the planned framework. Priori-
tizing the content intelligently for caching only is not ad-
equate to optimize the overall performance of the system.
*e prioritized contents need to be stored efficiently in
caches and accessed multiple times with instantaneous
delivery response. Within edge caches, the TLSQP will take
over to avoid limited storage issues.

3.1. Overview. To understand the workflow, a model is
presented wherein the fog environment is described together
with the proposed DLAQC framework and shown in
Figure 1.

A particular region is considered from where user re-
quests are generated. *e cloud servers initialize the fog
environment’s monitoring cycle from the BBU pool. In the
fog layer, at every moment, numerous user requests are
generated and served through the F-APs. In order to ac-
celerate content deliveries or response time, a DLAQC
framework is presented, and a brief overview is as follows:

(1) Synchronizer: cache synchronization and inter-F-
APs information sharing is carried out every mo-
ment to update the regional user set for particular
F-APs in the region

(2) Regional user set: it refers to the group of users from
a particular region allotted to a locally installed F-AP
for a particular period.

(3) Local and neighboring F-APs: the FAPs are capable
of caching and computation and serve user requests
by searching through the caches within the edge. A
particular user request is immediately served if the
content is available locally. *e content must be
looked up from the neighboring F-APs caches when
a local cache is missed. In case if the contents are not
available in the neighboring F-APs, the offered
framework will update the respective contents in
caches’ QMM.

(4) DL agent for content prioritization: in case of a cachemiss,
the content is intelligently updated through the DL agent
deployed at the edge. It comprises SOMs and helps to

predict the contents’ priorities. *e contents having
maximum demand are considered highly prioritized.
However, this module is used to logically manage the
contents (specifically that need to be updated).

(5) Quantum memory module: it is one of the most
critical modules in the given setup. Once the con-
tents are prioritized intelligently through the DL
agent, the contents need to be stored optimally in
caches to enable caching content management. *e
synchronizer module is used to do so. *e requested
content may also be served through (i) F-APs located
in the same region or (ii) user dynamics or load
balancing. *e QMM is incorporated especially to
place contents physically in caches as quantum
particles when it is prioritized. As a case, in this
model, Repository 1 is assigned for storing highly
prioritized contents, and Repository 2 is assigned for
the medium prioritized contents, respectively. QMM
is used to store and serve (the requested) contents
separately. Due to the lower demand, every time, the
low-priority contents are discarded from the caches.

*e proposed framework comprises two modules: DL
agent and QMM. *e DL agent is used to prioritize and
logically manage the caching contents by making use of
SOMs. *e QMM is used to store the contents in a quantum
regime by exploiting a TLSQP. *e proposed framework’s
problem (working) and solution (implementation) domains
are described as follows.

3.2. Framework (Problem)

3.2.1. Deep Learning Agent in Edge. *e DL agent is
deployed at the network edge and prioritizes the caching
contents through SOMs [29]. It gives results similar to the
clustering approaches, and the prioritized contents can be
visualized through light and dark color concentrations. *e
graphical output given by SOMs is a kind of feature map for
input space. It makes SOM suitable for prioritizing the
content using specific parameters. In this study, the media
contents are explicitly targeted. Dataset for Trending You-
Tube Videos Statistics has been downloaded from Kaggle.
*e dataset includes the statistics for trending videos in the
region of the United States. To achieve the requirements,
four input variables for each video are carefully selected from
the dataset and which are as follows: views, likes, dislikes,
and comment_count. *e identified relationship between
input parameters is helpful for visualizing the trending
contents’ priorities using SOMs. *e structure and function
of SOMs are explained by the mathematical model as fol-
lows. SOMs work by fitting the map (grid of nodes) up to the
given number of iterations of the simulated dataset. During
diverse iterations, the adjustments are required while nodes’
weights are adjusted to bring the map nodes closer to the
data points. It is called the convergence of SOMs, and the
structure for SOMs is given in Figure 2.

*e main package is included to construct, evaluate, and
visualize the map is Minisom. An input layer (4-dimen-
sional) and feature space M of the map are defined by the
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rule of thumb. *e rule of thumb states that there should be
5 · sqrt(N) neurons in the lattice to get desired results, where
N is the total number of samples in the dataset (the training
dataset). *e training dataset has 40960 samples; thus, the
lattice should contain 5(

�����
40949

√
) � 1011.8 neurons.

*erefore, the dimensions of the lattice are selected as
32× 32. Each node in the lattice has a weight vectorWij and
has the same dimensions as input vectors V.*e preliminary
step of training is to set weights of every node and is ini-
tialized as Wia : Wib : Wic : Wi d where i represents node
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Figure 1: *e proposed deep learning-associated quantum computing (DLAQC) framework.
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number and a, b, c, and d represent input vectors. When the
weights are initialized, the best matching unit BMU is
calculated by iterating through every node and by calculating
the Euclidean distance between input vector V and each
node’s weight W. Finally, the smallest W is selected. *e
process is given as follows:

D �

������������

􏽘
n

i�0
Vi − Wi( 􏼁

2

􏽶
􏽴

. (1)

When the BMU is finalized, the neighborhood nodes
whose weights need to be updated are determined. To
achieve this, the Gaussian neighborhood function is used. In
this function, the “bell-shaped curve” like weighting is
considered to update the nodes depending upon their rel-
ative distances from the BMU. Initially, the sigma σ0 is used
to denote the spread of the neighborhood function, and all
nodes (come in this spread) are updated. *e respective
spread shrinks iteratively by using the function (decay
function) described as follows.

σt �
σ0

(1 + t)/(T/2)
, (2)

where T is the iterations set having t0, t1, t2, t3, . . . , tn􏼈 􏼉 and
σt is the spread size at iteration t. Every node in the
neighborhood of BMU is updated by

W(t+1) � Wt + Θt Lt Vt − Wt( 􏼁􏼂 􏼃. (3)

A decaying function of learning is given as follows,
where Lt is the learning rate.

Lt �
L0

(1 + t)/(T/2)
. (4)

Moreover, Θt is the distance effect from the BMU on the
specific node and is given as follows:

Θt � e− D2/2σ2[ ]. (5)

Hence, blocks with similar color zones are visualized. Any
new input will stimulate nodes in the zone with similar weight
vectors. *e process described above results in projection of
all the data points onto the map that allows topology of high-
dimensional input data to be preserved into two-dimensional
output space. However, the visual inspection is not enough to
determine (i) how well the map converges to the given data
points or (ii) howwell themap represents the underlying data.
Some quality measures are developed to oblige the purpose of
evaluating when the map is trained. *erefore, the Quantized
Error (QE) is used for vector quantization to evaluate the
quality of the map. It is achieved by summing up the distances
between the nodes and the data points as per the average
distance given as follows.

QE(M) �
1
N

􏽘

n

i�n
φ xi( 􏼁 − xi

����
����, (6)

where the feature space of the map is denoted asM.N is used
to represent the total number of data points and φ(xi) is used
for mapping of data point x_i from input space to the map.

Hence, it is considered as; the smaller the value of QE, the
better it fits the data points. However, this quality measure
can be used to compare maps by considering the same
dataset and choosing the best one, not as the only quality
assessment.

One of the primary aims of SOMs to determine quality is
the topological preservation of high-dimensional input
space in the two-dimensional output space. *e topographic
error (TE) is used to evaluate how well the individual data
point is modeled to the map node by calculating the posi-
tions of 1st BMU and 2nd BMU. If these are located next to
each other, the topology is preserved, and the TE is said to be
zero for individual input. Similarly, summing up the errors
for every input and calculating the data points as average are
considered TE for the map as follows:

TE (M) �
1
N

􏽘

n

i�n
t xi( 􏼁, (7)

where t(xi) is a piecewise function; it is 0 if 1
st BMU and 2nd

BMU are neighbors or 1 otherwise. TE is evaluated to
quantify the topology preservation by evaluating local dis-
continuities in the output map. Mostly, a tradeoff is realized
between quality measures when increasing the projection
quality and seems to decrease when some information is lost
during this process.

3.2.2. Quantum Phenomenon

(1) Quantum Computing–Overview. *e QC is based upon
physics’ natural laws and claims to solve many (sub) atomic
level problems that are inflexible for old style computers.
Quantum parallelism is a distinctive feature established on
superposition and entanglement and offers exponential
acceleration of computation over conventional computers,
especially for cryptosystems, making them acutely fast [30].
A quantum computer taking “n” qubits that can be stored
and execute 2n imaginable combinations of qubits simul-
taneously by joining them in an uncommon fashion rec-
ognized as superposition and defined as follows:

|Ψ〉 � α0|0 . . . 00〉 + α1|0 . . . 01〉 + · · · + α2n − 1|1 . . . 11〉,

(8)

where αiε complex numbers known as probability ampli-
tudes of qubits and 􏽐 |αi|2 � 1.

In quantum information processing, electrons or photons
in a coherent state is encoded with some required information
(known as qubits) and pass to another qubit via a quantum
bus. *e passed information is accessible to many qubits in a
system, accelerating the speed of computation, unlike classical
computation [31, 32]. Trapped ion architecture, QC using
superconducting qubits, and QC with nitrogen-vacancy
center in diamonds are few of the hardware architectures
considered for thorough research in well-equipped labs [33].

Like classical computation, quantum computation is
carried out with the help of quantum gates. *e information
that has been obtained from quantum gates can be reversed.
*e representation of a single qubit quantum system is in the
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form of a Bloch (shown by Figure 3). Each quantum gate is
represented by a matrix containing complex coefficients and
can be applied on the qubit (state vector in Bloch sphere) to
change state as a vector. A qubit is a state vector in two-
dimensional Hilbert space. *is vector can have any di-
rection from the sphere’s center to its periphery, i.e., it can
connect to any point on the sphere’s surface. *e poles
indicate the ground and excited states, and anywhere be-
tween these points is the superposed state of the qubit.
Different qubit transitions indicate rotations about the axes
changing the state of that qubit [34, 35]. Moreover, these
rotations occur as a result of the quantum gate(s), which act
on that qubit (see Figure 3).

(2) Two-Level Spin System. As described earlier, logical
content prioritization is achieved through the DL agent to
know about the requested content’s priorities. Once the
priority is known, the particle is encoded according to the
relevant content priority. By taking into account the high
and medium priorities, the contents can be stored physically
in QMM by dividing it into two groups for which SGE is
exploited. *e information is encoded through the spin ±½
particles; +1/2 upward spin and − 1/2 downward spin. *e
highly prioritized data are coded by spin-up particles,
whereas through the spin-down particles, the likewise and
medium prioritized data are encoded.

Due to the spinning environment, the electron has a
magnetic field. *e magnetic field can be canceled by an-
other electron having an opposite spin in an atom. In an
atom, the electrons are either paired or unpaired. To decide
the spinning effect, the unpaired electrons leave the orbitals.
Electrons are accrued like a beam, divided into two illus-
trious beams of equivalent power even though passing
through a nonuniform magnetic field. *erefore, a massive
tendency is shown in Figure 4.

A quantum organization is indicated by its state vector.
But at times, the system is said to be in mixed state having
statistical ensemble of various state vectors. Such a system
has equal probabilities or chances to designate in either pure
state. *e pure state is basically a quantum state useful in the
quantum system and determines the statistical behavior of
the measurement. At the beginning of the TLSQP, all
electrons are located in a mixed state since the states are
indefinite. Due to the half-half chances of existence in any of
the pure states (ǀ0〉 and ǀ1〉), the particles have a mixed
state. Density matrices are used to represent the statistical
state of the quantum system or a particle. *e chances for
result can be calculated from the density matrix for the
system.*e density matrices for states (i.e., mixed and pure)
represented that the particles are initially in the mixed state
when accrued like a single beam.

ρ �

1
2

0

0
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

A nonuniform magnetic ground is formed by employing
two magnets in a perpendicular way along the z-axis. When

a beam passes through the magnetic field, electrons are bent
alongside the axis comparative to the z-component. After
passing through a magnetic field, some of the particles are in
the Eigen state ǀZ+〉 of the Sz operator. *e matrix for this
state vector is given as follows:

ρZ+ � |Z+〉〈Z + | �
1

0
􏼢 􏼣 0 1􏼂 􏼃 �

1 0

0 0
􏼢 􏼣. (10)

*e trace of this density matrix’s square is 1, which
clearly shows that it is a pure state. *e state of the rest of the
particles after passing through the magnetic field becomes 1
(ǀZ+〉). *e matrix for this state is given as follows.

ρZ− � |Z− 〉〈Z − | �
0

1
􏼢 􏼣 0 1􏼂 􏼃 �

0 0

0 1
􏼢 􏼣. (11)

Again, this density matrix’s trace is 1 and shows that it is
a pure state. In contrast, if considered these two separated
beams together, we again get the mixed state consisting of an
equal mixture of particles in Eigen states ǀZ+〉 and ǀZ− 〉,
as follows:

ρ �
1
2

|Z + 〉〈Z + | +
1
2

|Z − 〉〈Z − | �

1
2

0

0
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

*e trace of the square of this density matrix is 1/2 which
is less than 1, showing a mixed state. Before passing via a
magnetic field, the electrons’ spin can point in any direction
of the space, being equally probable, so there is no state
vector but for pure states.

*e mined beams can be stored in QMM distinctly. *e
ǀZ+〉 state represents Repository 1 electrons devising
pure state ǀ0〉 wherever (high) prioritized contents are
stored. *e ǀZ− 〉 state signifies Repository 2 electrons
taking pure state ǀ1〉, and the intermediate prioritized

θ

φ

| 0 >

z

| 1 >

x

y

| ψ >

Figure 3: Representation of a qubit in a 2-dimensional Bloch
sphere.

Computational Intelligence and Neuroscience 7



contents are stored. *erefore, electrons containing cer-
tain contents’ information are categorized based on the
established priorities by using TLSQP. *e stated repos-
itories help in storing the modified contents in every in-
terval of time.

*e ion-trap architecture of QMM is useful and ef-
fective for this specific scenario. *e quantum data can be
stored by qubits using atomic ions. *e qubits (atomic
ions) are trapped and designed by groupings of static and
oscillating electric fields [33, 36, 37]. In what way, these
quantum data are stored in these repositories which are
beyond the scope of this research. *e quantum infor-
mation can be managed (processed or transferred) through
the ions’ cooperative quantized motion and is also rec-
ognized as quantum parallelism. *e respective parallelism
leads to an increase in the processing time as compared to
the classical architectures. It has long been known that
classical physics principles do not allow for causally effi-
cacious understanding; yet, the intrinsic indeterminism
and characteristic duality of quantum physics is that it
contains give fertile ground for comprehension through
physical modeling.

Measuring probability for spin-up and spin-down par-
ticles is an important aspect that will help determine the
category of data encoded in a particular spin-type particle.
So, to interpret the idea, IBM’s QC simulator is exploited to
yield some meaningful results. *e resulting probability p

for a particle to emerge as a spin-up particle can be found out
by cos2(θ/2), and for a particle to emerge as spin-down can
be found out by sin2(θ/2), where θ is the angle of rotation
along Z-axis. Different angles of rotation will yield different
likelihoods for spin-up and spin-down elements. *e for-
mula to find the probabilities of spin-up and spin-down
elements is explained as the trace of density matrix and
projection operator on that pure state-directed to some angle
θ as follows:

p � Tr ρP􏽢n􏽨 􏽩, (13)

where ρ is the density matrix of pure states already de-
scribed above and P􏽢n is the projection operator on a pure
state which is directed to some 􏽢n so that
􏽢nθ � (cosθ, 0, sinθ). Hence,

P􏽢n �
1
2

1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

1
2

0 sin θ

sin θ 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

1
2

cos θ 0

0 − cos θ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�

cos2
θ
2

1
2
sin θ

1
2
sin θ sin2θ

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

So, the trace of the product of ρ and P􏽢n comes out to be
cos2(θ/2) for │Z+〉 particles and sin2(θ/2) for │Z− 〉
particles, respectively.

Quantum computers have stimulated the rotation pro-
duced by the magnetic field in the SGE by applying quantum
gates. For instance, a T gate is used to produce rotation at
θ � π/4. *is gate rotates the state of the qubit in the su-
perposed form by angle π/4 along the Z-axis. So, it is
necessary to apply the Hadamard gate (H) before applying
the T gate, as the H gate helps create superposition. Matrix
representation of a Hadamard gate is shown as follows:

1
�
2

√
1 1

1 − 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (15)

It converts the │0〉 basis state of the qubit to ((|0〉 +

|1〉 )/
�
2

√
) form (also known as │+〉), and │1〉 basis state

to ((|0〉 − |1〉 )/
�
2

√
) form (also recognized as │− 〉).

*erefore, a superposition is created as there is an equal
probability to be either 0 or 1. It produces two rotations
simultaneously: π at the z-axis and π/2 at the y-axis and is
shown by Figure 5(a).

After creating superposition, the T gate is applied to
rotate the superposed qubit at π/4 along the z-axis. *is is a
single qubit gate (from the family of phase shift gates), which
does not change the probability of the │Z+〉 and │Z− 〉
somewhat changing the phase of the qubit’s state. *is gate
acts on the │1〉 base state, whereas exiting the │0〉 base
state remains unaffected. So, │+〉 will be converted to
((|0〉 + ιπ/4|1〉 )/

�
2

√
) and │− 〉will be converted to ((|0〉 −

ιπ/4|1〉 )/
�
2

√
) because these are mixed states. Matrix rep-

resentation of T gate is described as follows:

Mixed state Mixed state

No state vector No state vector

Source

y

x

(z,)

(z,)

1/2 0
0 1/2p =

1/2 0
0 1/2p =

1 0
0 0p =

0 0
0 1p =

z

Figure 4: Electron beam splitting into two while passing through a magnetic field [23].
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1 0

0 eιπ/4
􏼢 􏼣. (16)

*e rotation produced through the T gate and is shown
in Figure 5(b).

As soon as the T gate is applied, another H gate is again
useful to maintain qubit’s superposition. Alternatively, it
would have lost its quantum state and collapsed into a
classical one that is of course 0 or 1 depending upon the
qubit chosen. *e equation which satisfies this circuit is
given as follows:

1
2

1 1

1 − 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1 0

0 eιπ/4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1 1

1 − 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

1
2

+
1
2
eιπ/4

1
2

−
1
2
eιπ/4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

When more than one gate is applied on a qubit in a
serially wired circuit, dot product (usual matrix multipli-
cation) is carried out for all the gates, resulting in a combined
gate acting on that qubit. As mentioned in equation (17), H,
T, and H gates have been combined by dot product and
applied on │0〉. *e resultant matrix shows the probability
amplitudes of spin-up and spin-down, as complex numbers,
just before the measurement. It can also be written as
follows:

1
2

+
1
2
eιπ/4􏼒 􏼓|0〉 +

1
2

−
1
2
eιπ/4􏼒 􏼓|1〉. (18)

*e probability amplitude α2 of │0〉 is |(1/2) + (1/2)

eιπ/4|2 |2, equal to 0.8535534, approximately 85%, and that of
│1〉 is the leftover probability which is of course 0.1464466
(approximately 15%). Hence, │0〉 basis state has a greater
probability, so classically, a 0 is obtained by measuring the
state if the T gate is applied. Similarly, some other appro-
priate sequence of H gates and phase shift gates can also be
applied in order to produce a distinct rotation and obtain

different probabilities of spin-up and spin-down particles. It
depends upon which type of particle is needed to encode the
data to be stored in the relevant repository.

A quantum computer can help to determine these
complex probability amplitudes in terms of real numbers. It
can then be classically interpreted and ultimately helping in
encoding data.

3.3.FlowchartandAlgorithm(Solution). *eflowchart of the
proposed framework is represented in Figure 6. An algo-
rithm is described (and also shown by Algorithm 1) as
follows.

*e algorithm comprises three functions: (1) cache_-
synchronization [] (2) cache_update [], and (3) Ser-
ve_UE_Phase []. *e cache_synchronization [] function is
used for cache synchronization and cooperation. It has
parameters t, and S: t is the time interval after which cache
information is shared, while S is a set of regional users for a
particular t. It returns the regional user set for a particular
time interval by considering the time interval, set of user
requests, the workload on the edge node, and distance d of
UE from the edge node. *e information of R, d, and wE at a
specific time, quantum t is shared in Step 1. R is used for the
set of user requests {r1, r2, . . . , rk, . . . , rn}, d is the distance
of UE from edge node receiving a request, and wE is the
workload on a particular edge node. Step 2 will return a list
of S for the particular t. In Step 3, assigned edge node EA to a
particular user set, S. Step 4 is used as a counter for t and Step
5 will repeat Step 1.

*e cache_update [] function is used to update the
caching contents. It consumes (as input) the list L of con-
tents with extracted features and produces (as output) the
prioritized caching content to be placed in F-AP. Step 1
selects the appropriate map size: horizontal x and vertical y
dimensions of the map. Step 2 defines the color intensity of
map nodes to depict classes for low, medium, and high
priority contents. Step 3 is used to run the SOMs algorithm

|0> |1>

|1>

|0>

Y

Z

X

(a)

|1>

|+>

|0>

|->
Y

Z

X

|+> |0>+iπ/4|1>)/v2

(b)

Figure 5: *e gates are represented through a Bloch sphere. (a) Hadamard (H) gate representation in a Bloch sphere, (b) *e rotation is
produced by T gate and shown in a Bloch sphere.
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after initializing weights Wij. *e mapping of nDB and nMB
on L to get CP in the Step 4. *e map nodes with dark blue
nDB and medium blue nMB color showing high priority and
medium priority content as L. CP are the prioritized contents
to be placed in cache.

Serve_UE_Phase [] function is used to serve a user re-
quest rk. It takes regional user set and assigned edge node as
input and activate to serve for an incoming request. If there
is a cache hit in Step 1, it will serve rk; otherwise, it will first
update the cache and then serve rk.

4. Content Prioritization Results through
Deep Learning

4.1. Self-Organizing Maps. Multimedia content needs to be
prioritized with considerable views, likes, dislikes, and
comments. SOMs algorithm learns from the given dataset and
displays on the map by the grid of nodes. *e degree of the
relationship between data points is shown through the color
intensity. As a proof of concept, a tool is implemented using
Python programming language and is exploited through a
Jupyter notebook in Google Colab. As mentioned earlier, the
four input vectors, i.e., views, likes, dislikes, and com-
ment_count, are selected utilizing the dataset to simulate. *e
feature scaling is achieved through the MinMax scaler. To
train the SOMs algorithm, the tuning parameters with their
values are simulated through the tool and shown in Table 1.

To select an appropriate lattice size, different lattice sizes
are tested by the hit and trial method to validate the formula.
*e experiment shows that the batch training yields many
exact results; however, it is a bit slower than the random
training. *e recorded data are shown in Table 2. A histogram
also represents the recorded data in Figure 7. On x-axis,
different lattice sizes (i.e., 10×10, 15×15, 20× 20, and 32× 32)
with different number of iterations (i.e., 250,000, 500,000,
750,000, and 1,000,000) are shown by different colors. On the
y-axis, the error values are displayed (given in Table 2).
Evaluating the data carefully proves that the error values are
recorded minimum on the lattice size 32× 32 with 750,000
iterations; therefore, this lattice size is considered appropriate.

*e map’s outputs of different iterations for lattice size
32× 32 are shown in Figure 8. *e color scale for iterations
250,000, 500,000, 750,000, and 1,000,000 are shown in
Figures 8(a)–8(d), respectively. Nodes with color (values)

range from 0.8 to 1.0 (dark blue) which represent the group
of data having high priority contents (maximum number of
views, likes, dislikes, and comments). *e medium priority
contents are represented with light bluish color nodes
ranging from 0.4 to 0.8.*emedium priority contents follow
the high priority contents. *e remaining nodes with color
values below 0.4 are considered the least priority contents
and must not be deliberated in the caches.

After the SOMs algorithm’s training through different
lattice sizes, the QE needs to be extracted to check the
validity of the data. According to the data described in
Table 2, the best map among all is 32× 32 lattice-sized map
with 750,000 iterations. *e QE value is recorded even less
than 0.000024 as shown by the graph in Figure 9(a). It is not
reduced any further after 0.000024 QE value. *e TE is
plotted by Figure 9(b) to determine how well the topology of
the map is preserved at 750,000 iterations. *e TE value at
this point is logged as 0.092. Although the TE is recorded a
little bit higher but its value, together with QE value (i.e.,
0.0000235) plotted the most appropriate map after 750,000
iterations. By taking into account the curves shown in
Figures 9(a) and 9(b), it can be analyzed that the map is
trained efficiently and delivers precise results.

After selecting themost appropriate lattice map (32× 32)
in 750,000 iterations, the data points located below the dark
blue region are mapped onto the videos’ data frame. Sim-
ilarly, the light-blue color region is also mapped to get
medium prioritized content. Table 3 is used to describe the
mapping data of high priority contents from one of the
nodes from the dark blue region (27, 2). Also, it shows twelve
highly trending videos (in rows from 0 to 11) with respect to
views, likes, dislikes, and comment_count (in columns).
*ese videos are considered as a high priority for trending
according to the input parameters provided in the dataset.

*e rest of the nodes from bluish-white to white are
located in the lighter region and can be ignored because this
region contains the least priority content.

4.2. Quantum Self-Organizing Maps. Quantum-SOM
(QuSOM) has a different learning method than SOM. *e
number of presynaptic neurons corresponds to the number
of neurons in both layers and interconnections between
them when designing the QuSOM layout, which comprises

Cache Syncronization and
Cooperation

Regional User
Set

Arrival of User
Request

Serve the UserAvailable in Cache (s)
Yes

No

EndStart Storing in Quantum
Repositories

Content Prioritization
through DL Agent

Figure 6: *e flowchart of the proposed framework.
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the number of all model parameters and the set of potential
data classifications. *ere is only one connection between a
neuron in the input layer and a neuron in the output layer.
QuSOM attracts all vectors of v, (v(i) ∈ i, i� 1, 2, ..., N), just
once. *e competitive and weight update is accomplished
through a series of procedures, which is a parallel processing
capability. As a result, in QuSOM, the traditional repetitive
learning procedure is modified to learn only once. Algo-
rithm 2 of the QuSOM is as follows:

*e QuSOM, in QC, may shift research directions in the
artificial neural network (ANN) field depending on the
computation environment and application property [38].
*e parallelism aspect of the QuSOM is its most intriguing
feature. A quantum mechanics computer can exist in a state
of superposition and perform several operations simulta-
neously. A QuSOM gate array is depicted in Figure 10 as a
schematic. *e register’s initial state is on the left, and time
moves from left to right. *e Ws gate is a weight operator at
s; Ds gate is a distance operator at s; ds(i, jmin) is a Grover
searching oracle; Ws+1 is a winner weight updating operator
at t; U is a weight transformation operator at s, u�QWt+1; ϑ
is an observable extracted information from register,
according to the above summarized QuSOM algorithm. *e
operations of these transformation and operation matrices
are used to create QuSOM.*e vectors are only entered into
themap once, and the output (weight) should converge if the
sequence is repeated.

In the traditional meaning of computation, putting all
parameters in inputs as neurons may be unfeasible, and
QuSOM operation will be time consuming due to paral-
lelism. N� 2 input vectors with M� 4 total input items and
P� 2 prototypes, for example, and the number of neurons in
both input and output layers should be 2× 4× 2�16. *is
figure is four times that of SOM. Fortunately, this is not an
issue in quantum computing. Quantum theory’s peculiar
properties can be used to express information with a neuron

Table 1: Tuning parameters and their values.

Tuning parameters with symbols Values
x-dimension of the lattice (x) 32
y-dimension of the lattice (y) 32
Learning rate (Lt) 0.1
Initial spread value (σ0) 1.0

(i) Function 1: cache synchronization and cooperation
(ii) Input: time interval, set of user requests, work load on edge node and distance of UE from the edge node.
(iii) Output: regional user set is obtained for particular time interval.

cache_synchronization (t, S)
(1) Information sharing R, d, wE at certain time quantum t
(2) Return S for t
(3) S←EA
(4) t� t+ 1
(5) repeat step 1.

end
Function 2: Update caching content in the edge
Input: list of contents with extracted features.
Output: prioritized caching content to be placed in F-AP.
cache_update (L)

(1) Selection of appropriate map size: x, y
(2) Define color intensity of map nodes to depict classes for low, medium and high priority content.
(3) Running the SOMs algorithm after initializing weights Wij.
(4) Mapping of nDB, nMB on L to get CP.

end
Function 3: serving a user request rk
Input: regional user set, assigned edge node.
Output: serving an incoming request
Serve_UE_Phase (cache_synchronization( ), EA)

(1) if (cache hit)
(2) Serve rk
(3) else
(4) cache_update( )
(5) Serve rk

End

ALGORITHM 1: Cache content management.

Table 2:*e errors’ values with respect to different lattice sizes and
the number of iterations.

Dimensions of
lattice

No. of iterations
250,000 500,000 750,000 1,000,000

10×10 0.0001555 0.0001563 0.0001584 0.0001643
15×15 0.0001218 0.0001110 0.0000970 0.0000890
20× 20 0.0000847 0.0000727 0.0000594 0.0000460
32× 32 0.0000355 0.0000353 0.0000235 0.0000241
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number of exponential capacity. *e number of neurons is
exponentially decreased to log2 for the input signals, v(i, k),
i� 1, ..., Z, k� 1, ..., Y, j� 1, ..., P, by adopting quantum
representation (MxNxP). QuSOM requires only 4 qubits in
the example above. *e input data from YouTube streaming
may be more than 4 vectors with 40960 elements in some
edge caching systems.*e SOM configuration was used with

4 neurons in the input layer and 32× 32�1024 neurons in
the output layer. *e network might be configured with 27
quantum input/output neurons, or qubits, representing
roughly 41943040 SOM neurons using QuSOM. So, it can be
determined that the gain difference in terms of computation
and time consumption between the deep learning method
based on quantum computing and conventional method as
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Figure 8: *e color scales for different iterations at lattice size 32× 32 are shown. (a) Output map at 250,000 iterations. (b) Output map at
500,000 iterations. (c) Output map at 750,000 iterations. (d) Output map at 1,000,000 iterations.
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the measures of conventional computing are almost four
times the quantum computing that clearly shows extensive
use of resources in conventional computing.

4.3. SimulationResults forQuantumPhenomenon inCaching.
For the experiments, a cloud-based QC system (from IBM
Quantum Experience) is used. *e IBMQ_QASM_Si-
mulator is basically a simulator backend, allows sampling
circuits with a 32 qubits processor. *e circuit to produce
rotation of the particles is shown in Figure 11. It is a
serially wired circuit comprising three gates (two

Hadamard and one T gate). *e respective circuit is used
to act on qubit │0〉 and is known as a standardized
measurement operator along the z-axis. *e primary
(first) wire, labeled as q[0], is a quantum wire representing
the passage of time. It is not considered a physical wire.
*e gates are applied in unit time.*e second wire, labeled
as c1, is a classical wire, and the output from the quantum
computer is determined once the measurement is applied.
*e vertical arrow from the measurement operator shows
that the information is now retrieved from the quantum
regime to the classical regime.
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Figure 9: (a) Quantization error to check the validity of the data and (b) topographic error to determine how well the topology of the map is
preserved at 750,000 iterations.

Table 3: *e data of the Mapping Dark Blue Node (27, 2).

Views Likes Dislikes Comment_count
0 167997997.0 4281819.0 276626.0 453206.0
1 173478072.0 4360121.0 283961.0 460299.0
2 179045286.0 4437175.0 291098.0 466470.0
3 184446490.0 4512326.0 298157.0 473039.0
4 190950401.0 4594931.0 305435.0 479917.0
5 196222618.0 4656929.0 311042.0 485797.0
6 200820941.0 4714942.0 316129.0 491005.0
7 205643016.0 4776680.0 321493.0 496211.0
8 210338856.0 4836448.0 326902.0 501722.0
9 217750076.0 4934188.0 335462.0 509799.0
10 220490543.0 4962403.0 338105.0 512337.0
11 225211923.0 5023450.0 343541.0 517232.0

(1) Input vector V � (v1, v2, ..., vn), i.e., QuSOMs learn all of information simultaneously.
(2) One operation of competitive and updating, for s iterations
(3) Ws �U (in first operation, W1 � W0);
(4) Ds � ||V − Ws||
(5) ds(i, jmin)�min(ds(i, 1), ds(i, 2), ..., ds(i, P)); i� 1, 2, ..., Z;
(6) ws+1(i, jmin)� ws(i, jmin) + η(s)[x(i, jmin)− ws(i, jmin)], if j� jmin,
(7) ws+1(i, j)� ws(i, j)
(8) If Ws+1–Ws > ε go to 9, otherwise go to step 10
(9) V �Q Ws+1 go to 3
(10) Store Ws+1 and stop

ALGORITHM 2: Learning through quantum self-organizing maps.
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To evaluate circuit on the simulator, a parameter number
of shots is needed to set before execution. *e number of
shots is simply a parameter having a value that determines
the number of iterations, representing the number of times a
quantum circuit executes.With the increase in the number of
shots, the probability values of spin-up and spin-down are
improved. *e resultant probabilities are demonstrated by
Figure 12 with different numbers of shots (i.e., 1024, 4096,
and 8192 shots) and actual measurements. *e horizontal
axis of the histogram represents the computational basis
states 0 and 1. *e vertical axis represents the probability of
observing that basis state. *e histogram in Figure 12 also
represents the exact probability measurement of the basis
states.

As clearly depicted from Figure 12, there is a slight
difference between the actual and simulated results. *e first
and last simulated results are realized by 1024 and 8192
shots, respectively. *e probability measurement difference
is reduced as compared with the actual result. *e proba-
bility measurements are close to the actual result by 8192
shots. *e results are concluded (by comparing actual and
simulated) in Table 4.

All the prioritized contents are grouped in the form of
color clusters.*e color intensity of the nodes in the feature
map makes it easier to prioritize the content. *e nodes
with less intense color illustrated the low prioritized
content. *e selection of highly prioritized and medium
prioritized contents is achieved conveniently through the
SOMs algorithm. *e algorithm took less time and com-
putational overhead than other DL algorithms. *e use of
TLSQP facilitates the overall management of most
requested content within the edge for providing an in-
stantaneous content delivery response. *e concept of
storing content in QMM by employing this quantum
phenomenon is entirely unconventional and challenging at
the same time. Nevertheless, its advantage overshadows
other conventional approaches of the classical regime in
terms of storage capacity and processing speed due to its
unusual properties, i.e., quantum parallelism.

5. Discussion

*e framework is basically a merger of a DL agent deployed
at the network edge and a QMM. Firstly, the DL agent
prioritizes caching contents via SOMs algorithm, and sec-
ondly, the prioritized contents are stored in QMM using
TLSQP. *e study of QuSOM follows the development
tendency of ANN. *e adaptation of ANN in the parallel
computing environment will be interesting for both ANN
and QC, especially for the simulation of human learning and
memorizing features by using more powerful computing
tools. In Kohonen’s SOM, the learning and weight updating
are organized in the same sequence. *is sequence is like the
human’s repeated learning manner. In QuSOM, due to its
once learning property, the weight updating is managed
separately with learning and updating. *is manner may
appear more similar to human’s once learning way. QuSOM
has the same convergence property as Kohonen’s SOM, but
its time and space complexities are more simplified. To verify
the valuation and efficiency of the algorithm, in this study,
we have compared the gain difference in terms of
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Figure 10: *e general QuSOM structure contains gate array.

Hq[0]

c1

⃒0〉

0

zT H

Figure 11: *e circuit to produce rotation of the particles is shown
from IBM QASM Simulator.
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Figure 12: *e simulated resultant probabilities with different
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computation and time consumption between the deep
learning method based on quantum computing and con-
ventional method which can be summarized as the measures
of conventional computing are almost four times the
quantum computing.

To verify the algorithm, we conduct extensive experi-
ments to demonstrate that the algorithm improves the
generalizability of the conventional SOM through optimi-
zation and is robust to the choice of hyperparameters, as
listed in Table 5.

A hybrid approach was used for this work: one (i.e.,
SOM) for classifying the videos dataset and a second (i.e.,
TLSQP) for the storage of prioritized content. It can be
inferred that the proposed framework DL-QC is deployed
for edge caching in sensor network traffic to improve the
prioritization and storage processes by exploiting the ca-
pabilities of DL and QC. Dataset has been selected that
incorporates multimedia content that has been infrequently
used in the past for other studies. *e dataset contains four
features and 40960 samples. Google Colab and IBM’s

Table 4: Comparison of actual and simulated probability measurements.

Basic states
Probability measurements

Actual (%) Simulated (1024 shots) Simulated (4096 shots) (%) S (%) imulated (8192 shots)
0 85.35534 86.426 85.01 85.242
1 14.64466 13.574 14.99 14.758

Table 5: Comparison with previous research.

Research Deployed algorithm Performance
measurements Results

[39]

Multiagent deep reinforcement learning (MADRL)
Caching reward 21%
Cache hit rate Highest
Traffic load 43%

Multiagent actor-critic (MAAC)
Caching reward 56%
Cache hit rate Higher
Traffic load 45%

Deep reinforcement learning (DRL)
Caching reward 43%
Cache hit rate Lower
Traffic load 36%

Least recently used (LRU)
Caching reward 34%
Cache hit rate Lowest
Traffic load 12%

[40] Personalized edge caching system (PECS) Deep packet inspection

Top-down analysis
(network level) and

bottom-up analysis (user
level)

[41] One-dimensional convolutional neural network (ODCNN) Self-
Organizing Map (SOM) Accuracy rate 99.8%

[42]

Support vector machine

Accuracy 0.984
Precision 0.984
Recall 0.983

F1 score 0.981

Logistic regression

Accuracy 0.983
Precision 0.982
Recall 0.983

F1 score 0.983

K-nearest neighbors

Accuracy 0.984
Precision 0.983
Recall 0.984

F1 score 0.984

Isolation forest

Accuracy 0.870
Precision 0.969
Recall 0.973

F1 score 0.919

Proposed
Self oranizing map (SOM)

Quantization error 0.000024
Topographic error 0.092

QE+TE 0.0000235

Two-level spin quantum phenomenon (TLSQP) Basic states 0 OV� 85.4% PV� 85.2%
1 OV� 14.6% PV� 14.8%
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Quantum Experience are utilized in this work with high
certainty because of their capabilities of creating legitimate
outcomes that mirror certain domains of intelligence and
quantum. *e gathered information has been recorded for
prioritization levels and will notify the prioritized cases to
the QMM storage through TLSQP, whereas the most minor
prioritized cases will be removed with a higher accuracy
rate. *e DL algorithm SOM is precisely applied to the
identified dataset for prioritization in a 32× 32 lattice size.
*e selected DL classifiers accomplished the particular task
with accuracy and precision, as discussed above. It will help
characterize the high priority and medium priority network
traffic to ensure the optimized caching services in the edge
computing environment, and TLSQP ensures maximum
data storage in QMM. Due to the research scope, some
common types of multimedia content parameters have been
selected, but in the future, more categories of innovative
content and features in the DL-QC environment can be
incorporated to better understand and cope with the
identified issues. Furthermore, innovative algorithms can
also be designed, or existing ones can be modified to pri-
oritize and storage than already discussed to improve ef-
ficiency and accuracy. Moreover, the QuSOM can be
replicated on conventional computers as well as quantum
computers provided that the availability of resources to
understand the results better.

6. Conclusion

*e caching content’s storage is mainly the primary source
of immediate delivery responses. *is research work has
presented an intelligent DLAQC framework for updating the
EC content in F-RANs. *e caching content is logically
prioritized through an intelligent DL agent in the network
edge using the SOMs algorithm. *e caching content is
physically stored in QMM, exploiting the TLSQP phe-
nomenon to update the caches and provide ample content
storage for immediate delivery response against the
unpredicted amount of static and dynamic user requests.
*e framework is evaluated using multimedia content and
provides effective outcomes, especially by reducing com-
putation overhead and time. *e purpose is to form clusters
to separate high, medium, and low-prioritized contents in an
unsupervised manner. SOMs algorithm is staunchly suitable
to pick up contents in colored cluster form without reducing
the dimensionality of the feature space.

While the experiments have been conducted for mul-
timedia content only, other contents can be considered,
especially in IoT-based scenarios where unpredictable
amounts of static and dynamic requests are generated day
by day. EC is capable of handling each request immediately;
it is still challenging and can be considered to explore
further. Besides, innovative algorithms can also be
designed, or existing can be modified to prioritize and
storage than already discussed to get better efficiency and
accuracy. Moreover, the QuSOM can be replicated on
conventional computers as well as quantum computers
provided the availability of resources to better understand
the results.
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[34] H. Mäkelä and A. Messina, “N-qubit states as points on the
Bloch sphere,” Physica Scripta, vol. T140, Article ID 014054,
2010.

[35] O. Giraud, D. Braun, D. Baguette, T. Bastin, and J. Martin,
“Tensor representation of spin states,” Physical Review Letters,
vol. 114, no. 8, Article ID 080401, 2015.

[36] V. Hahanov, S. Chumachenko, E. Litvinova, and
H. Khakhanova, “Architectures of quantum memory-driven
computing,” in Proceedings of the 2018 IEEE East-West Design
& Test Symposium (EWDTS), pp. 1–7, Kazan, Russia, Sep-
tember 2018.
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