Table 4.
Performance comparison from various algorithms.
Precision | Recall | F1-score | Support | |
---|---|---|---|---|
Decision tree | ||||
0 | 0.38 | 0.50 | 0.43 | 6 |
1 | 0.88 | 0.81 | 0.85 | 27 |
Accuracy | 0.76 | 0.33 | ||
Macro avg | 0.63 | 0.66 | 0.64 | 33 |
Weighted avg | 0.79 | 0.76 | 0.77 | 33 |
[[0.09 0.09] | ||||
[0.15 0.67]] | ||||
| ||||
Random forest | ||||
0 | 0.00 | 0.00 | 0.00 | 6. |
1 | 0.82 | 1.00 | 0.90 | 27 |
Accuracy | 0.82 | 33 | ||
Macro avg | 0.41 | 0.50 | 0.45 | 33 |
Weighted avg | 0.67 | 0.82 | 0.74 | 33 |
[[0. 0.18] | ||||
[0. 0.82]] | ||||
| ||||
Gaussian naive bayes | ||||
0 | 1.00 | 0.17 | 0.29 | 6 |
1 | 0.84 | 1.00 | 0.92 | 27 |
Accuracy | 0.85 | 33 | ||
Macro avg | 0.92 | 0.58 | 0.6 | 33 |
Weighted avg | 0.87 | 0.85 | 0.80 | 33 |
[[0.03 0.15] | ||||
[0. 0.82]] | ||||
| ||||
Gradient descent (logistic) | ||||
0 | 0.62 | 0.83 | 0.71 | 3 |
1 | 0.96 | 0.89 | 0.92 | 27 |
Accuracy | 0.88 | 33 | ||
Macro avg | 0.79 | 0.86 | 0.82 | 33 |
Weighted avg | 0.90 | 0.88 | 0.89 | 33 |
[[0.15 0.03] | ||||
[0.09 0.73]] | ||||
| ||||
Gradient descent (hinge) | ||||
0 | 0.00 | 0.00 | 0.00 | 6 |
1 | 0.82 | 1.00 | 0.90 | 27 |
Accuracy | 0.82 | 33 | ||
Macro avg | 0.41 | 0.50 | 0.45 | 33 |
Weighted avg | 0.67 | 0.82 | 0.74 | 23 |
[[0. 0.18] | ||||
[0. 0.82]] | ||||
| ||||
Support vector machines | ||||
0 | 0.80 | 0.67 | 0.73 | 6 |
1 | 0.93 | 0.96 | 0.95 | 27 |
Accuracy | 0.91 | 33 | ||
Macro avg | 0.86 | 0.81 | 0.84 | 33 |
Weighted avg | 0.91 | 0.91 | 0.91 | 33 |
[[0.12 0.06] | ||||
[0.03 0.79]] | ||||
| ||||
MLP (Adam) | ||||
0 | 0.18 | 1.00 | 0.31 | 6 |
1 | 0.00 | 0.00 | 0.00 | 27 |
Accuracy | 0.18 | 33 | ||
Macro avg | 0.09 | 0.50 | 0.15 | 33 |
Weighted avg | 0.03 | 0.18 | 0.06 | 333 |
[[0.18 0. ] | ||||
[0.82 0. ]] | ||||
| ||||
MLP (LBFGS) | ||||
0 | 0.00 | 0.00 | 0.00 | 6 |
1 | 0.82 | 1.00 | 0.90 | 27 |
Accuracy | 0.82 | 33 | ||
Macro avg | 0.41 | 0.50 | 0.45 | 33 |
Weighted avg | 0.67 | 0.82 | 0.74 | 33 |
[[0. 0.18] | ||||
[0. 0.82]] |