Skip to main content
. 2022 Jan 7;2022:4715998. doi: 10.1155/2022/4715998

Table 4.

Performance comparison from various algorithms.

Precision Recall F1-score Support
Decision tree
0 0.38 0.50 0.43 6
1 0.88 0.81 0.85 27
Accuracy 0.76 0.33
Macro avg 0.63 0.66 0.64 33
Weighted avg 0.79 0.76 0.77 33
[[0.09 0.09]
[0.15 0.67]]

Random forest
0 0.00 0.00 0.00 6.
1 0.82 1.00 0.90 27
Accuracy 0.82 33
Macro avg 0.41 0.50 0.45 33
Weighted avg 0.67 0.82 0.74 33
[[0. 0.18]
[0. 0.82]]

Gaussian naive bayes
0 1.00 0.17 0.29 6
1 0.84 1.00 0.92 27
Accuracy 0.85 33
Macro avg 0.92 0.58 0.6 33
Weighted avg 0.87 0.85 0.80 33
[[0.03 0.15]
[0. 0.82]]

Gradient descent (logistic)
0 0.62 0.83 0.71 3
1 0.96 0.89 0.92 27
Accuracy 0.88 33
Macro avg 0.79 0.86 0.82 33
Weighted avg 0.90 0.88 0.89 33
[[0.15 0.03]
[0.09 0.73]]

Gradient descent (hinge)
0 0.00 0.00 0.00 6
1 0.82 1.00 0.90 27
Accuracy 0.82 33
Macro avg 0.41 0.50 0.45 33
Weighted avg 0.67 0.82 0.74 23
[[0. 0.18]
[0. 0.82]]

Support vector machines
0 0.80 0.67 0.73 6
1 0.93 0.96 0.95 27
Accuracy 0.91 33
Macro avg 0.86 0.81 0.84 33
Weighted avg 0.91 0.91 0.91 33
[[0.12 0.06]
[0.03 0.79]]

MLP (Adam)
0 0.18 1.00 0.31 6
1 0.00 0.00 0.00 27
Accuracy 0.18 33
Macro avg 0.09 0.50 0.15 33
Weighted avg 0.03 0.18 0.06 333
[[0.18 0. ]
[0.82 0. ]]

MLP (LBFGS)
0 0.00 0.00 0.00 6
1 0.82 1.00 0.90 27
Accuracy 0.82 33
Macro avg 0.41 0.50 0.45 33
Weighted avg 0.67 0.82 0.74 33
[[0. 0.18]
[0. 0.82]]