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A B S T R A C T

Cost-effectiveness analysis is a mode of determining both the cost and economic health outcomes of one or
more control interventions. In this work, we have formulated a non-autonomous nonlinear deterministic model
to study the control of COVID-19 to unravel the cost and economic health outcomes for the autonomous
nonlinear model proposed for the Kingdom of Saudi Arabia. We calculated the strength number and noticed
the strength number is less than zero, meaning the proposed model does not capture multiple waves, hence
to capture multiple wave new compartmental model may require for the Kingdom of Saudi Arabia. We
proposed an optimal control problem based on a previously studied model and proved the existence of the
proposed optimal control model. The optimality system associated with the non-autonomous epidemic model
is derived using Pontryagin’s maximum principle. The optimal control model captures four time-dependent
control functions, thus, 𝑢1-practising physical or social distancing protocols; 𝑢2-practising personal hygiene by
cleaning contaminated surfaces with alcohol-based detergents; 𝑢3-practising proper and safety measures by
exposed, asymptomatic and symptomatic infected individuals; 𝑢4-fumigating schools in all levels of education,
sports facilities, commercial areas and religious worship centres. We have performed numerical simulations to
investigate extensive cost-effectiveness analysis for fourteen optimal control strategies. Comparing the control
strategies, we noticed that; Strategy 1 (practising physical or social distancing protocols) is the most cost-
saving and most effective control intervention in Saudi Arabia in the absence of vaccination. But, in terms of
the infection averted, we saw that strategy 6, strategy 11, strategy 12, and strategy 14 are just as good in
controlling COVID-19.
Introduction

The recent worldwide outbreaks of COVID-19 infectious disease has
attracted a lot of attention in the mathematical modelling and analysis
of the COVID-19. In [1], the basic SEIR epidemic model is used to study
and explain some analytical results for the asymptotic and peak values
and their characteristic times of the susceptible human populations
affected by the highly contagious COVID-19 disease. A SLIAR-type
epidemic model is used to study COVID-19 infections in China [2].
Estimated basic reproduction numbers for the COVID-19 infectious
disease transmission dynamics in Italy and China have been carried out
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in [3], using a modified classical SIR mathematical model characterized
by time-dependent transmission rates. A prediction and data-driven
based SEIRQ COVID-19 nonlinear infection model is formulated and
studied in [4]. The authors in [5] have developed and analysed a non-
linear epidemic model to explain the spreading dynamics of the 2019
coronavirus among the susceptible human population, the environment
as well as wild animals. Two novel data-driven compartmental models
are proposed in [6,7] to investigate the COVID-19 pandemic in South
Africa.
vailable online 15 January 2022
211-3797/© 2022 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.rinp.2022.105177
Received 18 February 2021; Received in revised form 23 December 2021; Accepted
is an open access article under the CC BY-NC-ND license

3 January 2022

http://www.elsevier.com/locate/rinp
http://www.elsevier.com/locate/rinp
mailto:topeljoshua@gmail.com
mailto:eric.okyere@uenr.edu.gh
mailto:aabidemi@futa.edu.ng
mailto:stephen.moore@ucc.edu.gh
mailto:sunguiquan@sxu.edu.cn
mailto:jinzhn@263.net
mailto:eoacheampong@ug.edu.gh
mailto:jfgordon@aamusted.edu.gh
https://doi.org/10.1016/j.rinp.2022.105177
https://doi.org/10.1016/j.rinp.2022.105177
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2022.105177&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results in Physics 33 (2022) 105177J.K.K. Asamoah et al.

f
c
a
t
h
s
r
o
l
r
b
c
o
f

i
𝐴
i
t
T
i
a
a
s
s

T
n
d
i
c
𝛽
T
i
i
n
e
e

Mathematical modelling tools are essential in studying infectious
diseases epidemiology because they can at least give some insight into
the spreading dynamics of disease outbreaks and help in suggesting
possible control strategies. Atangana, proposed a mathematical model
that demonstrates fractional calculus’s survival. Six classes were taken
into account, and all basic analyses were presented. In addition, a
novel analysis was proposed that includes a strength number that
accounts for the accelerative information of nonlinear and linear parts
of a specific epidemiological model [8]. The authors in [9] have con-
structed and analysed a non-autonomous differential equation model
by introducing medical mask, isolation, treatment, and detergent spray
as time-dependent controls. Global parameter sensitivity analysis for
a new COVID-19 differential equation model is carried out in the
work of Ali and co-authors [10]. They also proposed and analysed
a non-autonomous epidemic model for the COVID-19 disease in the
same work using quarantine and isolation as time-dependent control
functions. Atangana and Araz [11] presented a mathematical studies
on forecasting the spread of COVID-19 in Africa and Europe using
stochastic and deterministic approaches. They asserted that their model
can forecast two to three waves of the spread in the near future. The
work in [12] studied mathematical analysis of the effects of controls
on transmission dynamics of SARS-CoV-2. The spread of COVID-19
with new fractal–fractional operators with the impose of lockdown
saving mankind before vaccination is presented in [13]. Furthermore,
a COVID-19 mathematical is studied in recent work by the authors
in [14], where they considered three time-dependent control functions
consisting of preventive control measures (quarantine, isolation, social
distancing), disinfection of contaminated surfaces to reduce intensive
medical care and infected individuals in the population. A non-optimal
and optimal control deterministic COVID-19 models are studied in [15].
The authors explored control and preventive interventions such as rapid
testing, medical masks, improvement of medical treatment in hospitals,
and community awareness. An optimal control nonlinear epidemic
model for COVID-19 infection that captures optimal preventive and
control strategies such as personal protection measures, treatment of
hospitalized individuals, and public health education is formulated
and analysed to study the dynamics of the epidemic in Ethiopia [16].
Optimal Control analysis for the 2019 coronavirus epidemic has been
studied using non-pharmaceutical control and preventive interventions
to examine the dynamics of the disease in the USA [17]. The work
in [18] studied a fractional-order mathematical model for COVID-19
dynamics with quarantine, isolation, and environmental viral load.
Asamoah et al. [19] presented a COVID-19 model to study the impact
of the environment on the spread of the disease in Ghana. They further
investigated the economic outcomes using cost-effectiveness analysis.
Alqarni [20] formulated and analysed a novel deterministic COVID-
19 epidemic model characterized by nonlinear differential equations
with six state variables to describe the COVID-19 dynamics in the
Kingdom of Saudi Arabia. They gave a detailed qualitative stability
analysis and also determined the influential model parameters on the
basic reproduction number, 0, using global sensitivity analysis. They
urther performed numerical simulations to support their theoreti-
al results, following their novel mathematical modelling formulation,
nalysis, and the generated global sensitivity analysis results. In recent
imes, cost-effectiveness analysis of epidemic optimal control models
as become very important in suggesting realistic optimal control
trategies to help reduce the spread of infectious diseases in limited-
esource settings. Also, assessing the amount it cost to acquire a unit
f a health outcome like infection averted, susceptibility prevented,
ife-year gained, or death prevented, and the expenses and well-being
esults of at least one or more interventions. In the work [21] it has
een shown that border closure (or, at the very least, screening) is
ritical in the battle against the spread of SARS-CoV-2. The model’s
ptimal control simulation reveals that the best cost-effective technique
or combating SARS-CoV-2 is to restrict contact via the use of nasal
2

t

masks and physical separation. Asamoah and colleagues [22] investi-
gated optimal control and cost-effectiveness analysis. Their key result
is that having two controls (transmission reduction and case isolation)
is better than having one, although it is more costly. Transmission
reduction is preferable to case isolation when just one control is avail-
able. Omame et al. [23] developed and analysed a mathematical model
for the dynamics of COVID-19 with re-infection in order to evaluate
the influence of past comorbidity (particularly, diabetes mellitus) on
COVID-19 complications. Furthermore, the model’s optimal control and
cost-effectiveness analyses show that the approach that avoids COVID-
19 infection by comorbid susceptibles is the most cost-effective of all
COVID-19 control options considered by the authors. Therefore, moti-
vated by the above researches, this work presents a cost-effectiveness
analysis for the study in [20]. The rest of the paper is organized as
follows: ‘‘The autonomous model’’ presents the general description of
the model states, and transition terms from Alqarni [20], ‘‘Optimal
control problem formulation and analysis of COVID-19 model’’ gives
the bases for the formulation of the optimal control model, the proof
of existence and the characterization of the optimal control prob-
lem. ‘‘Numerical simulation and cost-effectiveness analysis’’ contains
the numerical simulations for the various control strategies and cost-
effectiveness analysis. ‘‘Concluding remarks’’ contain the concluding
remarks.

The autonomous model

The formulated model is divided into five distinct human compart-
ments, identified as, the susceptible, 𝑆(𝑡), exposed, 𝐸(𝑡), asymptomatic
nfected (not showing symptoms but can infect other healthy people)
(𝑡), symptomatic infected (that have symptoms of disease and can

nfect other people) 𝐼(𝑡), and the recovered individuals, 𝑅(𝑡), where
he total population is given as 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).
he assumed concentration of the SARS-CoV-2 in the environment

s denoted by 𝐵(𝑡). Individuals in the infected classes 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡)
re assumed of transmitting the disease to the susceptible individuals
t the rate 𝛽1, 𝛽2, 𝛽3, respectively, and 𝛽4 is the propensity rate of
usceptible individuals getting the virus through the environment. The
et of differential equations for the autonomous system is given as
𝑑𝑆
𝑑𝑡

= 𝛬 −
(

𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴
) 𝑆
𝑁

− 𝛽4𝐵
𝑆
𝑁

− 𝑑𝑆,

𝑑𝐸
𝑑𝑡

=
(

𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴
) 𝑆
𝑁

+ 𝛽4𝐵
𝑆
𝑁

− (𝛿 + 𝑑)𝐸,

𝑑𝐼
𝑑𝑡

= (1 − 𝜏)𝛿𝐸 − (𝑑 + 𝑑1 + 𝛾1)𝐼, (1)
𝑑𝐴
𝑑𝑡

= 𝜏𝛿𝐸 − (𝑑 + 𝛾2)𝐴,

𝑑𝑅
𝑑𝑡

= 𝛾1𝐼 + 𝛾2𝐴 − 𝑑𝑅,

𝑑𝐵
𝑑𝑡

= 𝜓1𝐸 + 𝜓2𝐼 + 𝜓3𝐴 − 𝜙𝐵,

with the initial conditions
𝑆(0) = 𝑆0 > 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0,
𝐴(0) = 𝐴0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0, 𝐵(0) = 𝐵0 ≥ 0.

he model’s recruitment rate is given as 𝛬 with 𝑑 representing the
atural death rate. The Greek symbols 𝛽1, 𝛽2, 𝛽3, are the respective
irect transmission rates among exposed and susceptible individuals,
nfected (showing symptoms) and susceptible individuals, symptomati-
ally infected (not showing symptoms) and susceptible individuals, and
4 is the indirect transmission of the virus to the susceptible individuals.
he rate at which the exposed individuals develops symptoms become

nfected is denoted as (1 − 𝜏)𝛿, where the rate of new asymptomatic
nfection is represented as 𝜏𝛿. The disease-induced death rate is de-
oted as 𝑑1. Here, the symptomatic, asymptomatic recovery rate is
pidemiological assumed as 𝛾1 and 𝛾2, respectively. Furthermore, the
pidemiological rates for shedding the virus into the environment by
he exposed, infected and asymptomatically infected people is denoted
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as 𝜓1, 𝜓2 and 𝜓3 respectively. The rate of natural removal of the virus
from the environment is denoted as 𝜙. Alqarni et al. [20] gave the basic
reproduction expression, detailed qualitative stability analysis and also
determined the influential model parameters on the basic reproduction
number, 0, using global sensitivity analysis. They further performed
numerical simulations to support their theoretical results. The basic
reproduction number from Alqarni et al. [20] is given as

0 =
𝑘2(𝛿𝜏(𝛽4𝜓3 + 𝛽3𝜙) + 𝑘3(𝛽4𝜓1 + 𝛽1𝜙)) + 𝛿𝑘3(1 − 𝜏)(𝛽4𝜓2 + 𝛽2𝜙)

𝑘1𝑘2𝑘3𝜙
, (2)

where 𝑘1 = 𝑑+𝛿, 𝑘2 = 𝛾1+𝑑+𝑑1 and 𝑘3 = 𝛾2+𝑑. Following their global
sensitivity result of the basic reproduction number, ‘‘Optimal control
problem formulation and analysis of COVID-19 model’’ is conceived.
Before then, one can calculate the strength number of the above
autonomous model (1). From [8] the strength number may accounts
for the accelerative information of a specific epidemiological model’s
nonlinear and linear elements.

Strength number

In recent decades, the idea of reproduction number has been exten-
sively used in epidemiological modelling since it has been recognized as
a helpful mathematical formula for evaluating new infections. Accord-
ing to the theory, one will identify two components from the proposed
model’s infectious compartments, where  is the matrix that contain
the new infections and  is the matrix that contain the transition
elements. Then,
(

−1 − 𝜆∗𝐼
)

= 0 (3)

gives the reproduction number [24], here 𝜆∗ is the eigenvalue and 𝐼 is
an identity matrix. Now following directly from [8], the component 
is derived from the nonlinear component of the infected compartments:

𝜕
𝜕𝐸

(

𝐸
𝑁

)

= 𝑁 − 𝐸
𝑁2

, 𝜕
𝜕𝐼

(

𝐼
𝑁

)

= 𝑁 − 𝐼
𝑁2

,

𝜕
𝜕𝐴

(

𝐴
𝑁

)

= 𝑁 − 𝐴
𝑁2

, 𝜕
𝜕𝐵

(

𝐵
𝑁

)

= 1
𝑁
.

As defined before, 𝑆 is the susceptible individuals, 𝐸 is exposed indi-
viduals assumed infectious, 𝐴 is asymptomatic infected individuals (not
showing symptoms but can infect other healthy people), while 𝐼 is the
symptomatic infected individuals (that have symptoms of disease and
can infect other people). The assumed concentration of the SARS-CoV-2
in the environment is denoted by 𝐵. Furthermore, we have

𝜕2

𝜕𝐸2

(

𝑁 − 𝐸
𝑁2

)

=
−2(𝑁 − 𝐸)

𝑁3
,

=
−2(𝑆 + 𝐼 + 𝐴 + 𝑅)

(𝑆 + 𝐸 + 𝐼 + 𝐴 + 𝑅)3
,

𝜕2

𝜕𝐼2

(

𝑁 − 𝐼
𝑁2

)

=
−2(𝑁 − 𝐼)

𝑁3
,

=
−2(𝑆 + 𝐸 + 𝐴 + 𝑅)
(𝑆 + 𝐸 + 𝐼 + 𝐴 + 𝑅)3

,

𝜕2

𝜕𝐴2

(

𝑁 − 𝐴
𝑁2

)

=
−2(𝑁 − 𝐴)

𝑁3
,

=
−2(𝑆 + 𝐸 + 𝐼 + 𝑅)

(𝑆 + 𝐸 + 𝐼 + 𝐴 + 𝑅)3
,

𝜕2

𝜕𝐵2

(

1
𝑁

)

= 0.

rom [20] the model has a unique disease free equilibrium, given by

𝑆0, 𝐸0, 𝐼0, 𝐴0, 𝑅0, 𝐵0

)

=
(

𝛬
𝑑
, 0, 0, 0, 0, 0

)

.

ence, at the disease-free equilibrium, we have
3

−2(𝑆0 + 𝐼0 + 𝐴0 + 𝑅0)
(𝑆0 + 𝐸0 + 𝐼0 + 𝐴0 + 𝑅0)3

= − 2
𝑆0

2
,

−2(𝑆0 + 𝐸0 + 𝐴0 + 𝑅0)
(𝑆0 + 𝐸0 + 𝐼0 + 𝐴0 + 𝑅0)3

= − 2
𝑆0

2
,

−2(𝑆0 + 𝐸0 + 𝐼0 + 𝑅0)
(𝑆0 + 𝐸0 + 𝐼0 + 𝐴0 + 𝑅0)3

= − 2
𝑆0

2
.

In this scenario, we have the following for  and  :

 =

⎛

⎜

⎜

⎜

⎜

⎝

− 2𝛽1𝑑
𝛬 − 2𝛽2𝑑

𝛬 − 2𝛽3𝑑
𝛬 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

 =

⎛

⎜

⎜

⎜

⎜

⎝

(𝛿 + 𝑑) 0 0 0
−(1 − 𝜏)𝛿 (𝑑 + 𝑑1 + 𝛾1) 0 0

−𝜏𝛿 0 (𝑑 + 𝛾2) 0
−𝜓1 −𝜓2 −𝜓3 𝜙

⎞

⎟

⎟

⎟

⎟

⎠

. (4)

Then from (3), we get
(

𝐴−1 − 𝜆∗𝐼
)

= 0, (5)

which leads to

𝐴0 = −
2 𝛽1 𝑑

𝛬 (𝑑 + 𝛿)
−

2 𝛽2 𝑑 (𝛿 − 𝛿 𝜏)
𝛬 (𝑑 + 𝛿)

(

𝑑 + 𝑑1 + 𝛾1
) −

2 𝛽3 𝑑2 𝜏
𝛬 (𝑑 + 𝛿)

(

𝑑 + 𝛾2
) < 0.

From the parameters values in Table 1 we have 𝐴0 = −3.8670 × 10−8.
𝐴0 = 0 indicates that the spread will not have a renewal process and
will consequently have a single magnitude and die out. 𝐴0 > 0 indicates
that there is sufficient strength to initiate the renewal phase, implying
that the spread will have more than one wave. Therefore, we noticed
that the model proposed in [20] does not capture the multiple waves
of COVID-19.

Optimal control problem formulation and analysis of COVID-19
model

In section 4.1 of the work in Alqarni et al. [20]. They found out
that the most sensitive parameters in their basic reproduction number
are: Contact rate among exposed and susceptible, 𝛽1, contact rate
among environment and susceptible, 𝛽4, virus contribution due to state

to compartment 𝐵, 𝜓1, and virus removal from the environment,
. Therefore, to contribute the research knowledge on COVID-19 in
audi Arabia, we incorporated the following control terms to study the
ost effective economic and health outcomes in combating this disease
hich has caused economic hardship in many countries.

ormulation of the non-autonomous COVID-19 model

• 𝑢1: practising physical or social distancing protocols.
• 𝑢2: practising personal hygiene by cleaning contaminated surfaces

with alcohol based detergents.
• 𝑢3: practising proper and safety measures by exposed, asymp-

tomatic infected and symptomatic infected individuals.
• 𝑢4: fumigating schools in all levels of education, sports facilities,

commercial areas and religious worship centres.

ence, based on [20], our optimal control model of is given as
𝑑𝑆
𝑑𝑡

= 𝛬 − (1 − 𝑢1(𝑡))
(

𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴
) 𝑆
𝑁

− (1 − 𝑢1(𝑡) − 𝑢2(𝑡))𝛽4𝐵
𝑆
𝑁

− 𝑑𝑆,

𝑑𝐸
𝑑𝑡

= (1 − 𝑢1(𝑡))
(

𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴
) 𝑆
𝑁

+ (1 − 𝑢1(𝑡)

− 𝑢2(𝑡))𝛽4𝐵
𝑆
𝑁

− (𝛿 + 𝑑)𝐸,

𝑑𝐼 = (1 − 𝜏)𝛿𝐸 − (𝑑 + 𝑑 + 𝛾 )𝐼, (6)

𝑑𝑡 1 1
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

𝑑𝐴
𝑑𝑡

= 𝜏𝛿𝐸 − (𝑑 + 𝛾2)𝐴,

𝑑𝑅
𝑑𝑡

= 𝛾1𝐼 + 𝛾2𝐴 − 𝑑𝑅,

𝑑𝐵
𝑑𝑡

= (1 − 𝑢3(𝑡))𝜓1𝐸 + (1 − 𝑢3(𝑡))𝜓2𝐼 + (1 − 𝑢3(𝑡))𝜓3𝐴 − (𝑢4(𝑡) + 𝜙)𝐵,

Formulation of the objective functional

In line with the standard in literature [25–34], the control cost is
measures by implementing a quadratic performance index or objective
functional in this work. Thus, our goal is to minimize the objective
functional,  , given as

 (𝑢1, 𝑢2, 𝑢3, 𝑢4) ∶= min∫

𝑇

0

[

𝐴1𝐸+𝐴2𝐼+𝐴3𝐴+𝐴4𝐵+ 1
2

4
∑

𝑖=1
𝐷𝑖𝑢

2
𝑖 (𝑡)

]

𝑑𝑡 (7)

ubject to the non-autonomous system (6), where 𝐴𝑖 > 0 (𝑖 = 1, 2, 3, 4)
re the balancing weight constants on the exposed, asymptomatic and
ymptomatic infected individuals, and the concentration of corona
irus in the environment respectively, whereas 𝐷𝑖 > 0 are the balancing
ost factors on the respective controls 𝑢𝑖 (for 𝑖 = 1,… , 4), 𝑇 is the final
ime for controls implementation.

Suppose  is a non-empty control set defined by

=
{

(𝑢1, 𝑢2, 𝑢3, 𝑢4) ∶ 𝑢𝑖 Lebesgue measurable, 0 ≤ 𝑢𝑖 ≤ 1,

for 𝑖 = 1,… , 4, 𝑡 ∈ [0, 𝑇 ]} . (8)

Then, it is of particular interest to seek an optimal control quadruple
𝑢∗ = (𝑢∗1 , 𝑢

∗
2 , 𝑢

∗
3 , 𝑢

∗
4) such that

 (𝑢∗) = min
{

 (𝑢1, 𝑢2, 𝑢3, 𝑢4) ∶ 𝑢1, 𝑢2, 𝑢3, 𝑢4 ∈ 
}

. (9)

Existence of an optimal control

Theorem 1. Given the objective functional  defined on the control set
 in (8), then there exists an optimal control quadruple 𝑢∗ = (𝑢∗1 , 𝑢

∗
2 , 𝑢

∗
3 , 𝑢

∗
4)

such that (9) holds when the following conditions are satisfied [35–37]:

(i) The admissible control set  is convex and closed.
(ii) The state system is bounded by a linear function in the state and

control variables.
(iii) The integrand of the objective functional  in (7) is convex in respect

of the controls.
(iv) The Lagrangian is bounded below by

𝑎0

( 4
∑

𝑖=1
|𝑢𝑖|

2

)

𝑎2
2

− 𝑎1,

where 𝑎0, 𝑎1 > 0 and 𝑎2 > 1.

Proof. Let the control set  = [0, 𝑢max]4, 𝑢max ≤ 1, 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈
 , 𝑥 = (𝑆,𝐸, 𝐼, 𝐴,𝑅, 𝐵) and 𝑓0(𝑡, 𝑥, 𝑢) be the right-hand side of the
non-autonomous system (6) given by

𝑓0(𝑡, 𝑥, 𝑢) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛬 − (1 − 𝑢1)
(𝛽1𝐸+𝛽2𝐼+𝛽3𝐴)𝑆

𝑁 − (1 − 𝑢1 − 𝑢2)
𝛽4𝐵𝑆
𝑁 − 𝑑𝑆

(1 − 𝑢1)
(𝛽1𝐸+𝛽2𝐼+𝛽3𝐴)𝑆

𝑁 + (1 − 𝑢1 − 𝑢2)
𝛽4𝐵𝑆
𝑁 − (𝛿 + 𝑑)𝐸

(1 − 𝜏)𝛿𝐸 − (𝑑 + 𝑑1 + 𝛾1)𝐼
𝜏𝛿𝐸 − (𝑑 + 𝛾2)𝐴
𝛾1𝐼 + 𝛾2𝐴 − 𝑑𝑅

(1 − 𝑢3)𝜓1𝐸 + (1 − 𝑢3)𝜓2𝐼 + (1 − 𝑢3)𝜓3𝐴 − (𝑢4 + 𝜙)𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(10)

Then, we proceed by verifying the four properties presented by Theo-
rem 1.

(i) Given the control set  = [0, 𝑢𝑚𝑎𝑥]4. Then, by definition, 
is closed. Further, let 𝑣,𝑤 ∈  , where 𝑣 = (𝑣 , 𝑣 , 𝑣 , 𝑣 ) and
4

1 2 3 4
𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4), be any two arbitrary points. It then follows
from the definition of a convex set [38], that

𝜆𝑣 + (1 − 𝜆)𝑤 ∈ [0, 𝑢𝑚𝑎𝑥]4, for all 𝜆 ∈ [0, 𝑢𝑚𝑎𝑥].

Consequently, 𝜆𝑣 + (1 − 𝜆)𝑤 ∈  , implying the convexity of  .
(ii) This property is verified by adopting the ideas of the previous

authors [37,39]. Obviously, 𝑓0(𝑡, 𝑥, 𝑢) in (10) can be written as

𝑓0(𝑡, 𝑥, 𝑢) = 𝑓1(𝑡, 𝑥) + 𝑓2(𝑡, 𝑥)𝑢,

where

𝑓1(𝑡, 𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛬 − (𝛽1𝐸+𝛽2𝐼+𝛽3𝐴)𝑆
𝑁 − 𝛽4𝐵𝑆

𝑁 − 𝑑𝑆
(𝛽1𝐸+𝛽2𝐼+𝛽3𝐴)𝑆

𝑁 + 𝛽4𝐵𝑆
𝑁 − (𝛿 + 𝑑)𝐸

(1 − 𝜏)𝛿𝐸 − (𝑑 + 𝑑1 + 𝛾1)𝐼
𝜏𝛿𝐸 − (𝑑 + 𝛾2)𝐴
𝛾1𝐼 + 𝛾2𝐴 − 𝑑𝑅

𝜓1𝐸 + 𝜓2𝐼 + 𝜓3𝐴 − 𝜙𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

𝑓2(𝑡, 𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝛽1𝐸+𝛽2𝐼+𝛽3𝐴)𝑆
𝑁

+ 𝛽4𝐵𝑆
𝑁

𝛽4𝐵𝑆
𝑁

0 0
− (𝛽1𝐸+𝛽2𝐼+𝛽3𝐴)𝑆

𝑁
− 𝛽4𝐵𝑆

𝑁
− 𝛽4𝐵𝑆

𝑁
0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 −(𝜓1𝐸 + 𝜓2𝐼 + 𝜓3𝐴) −𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence,

‖𝑓0(𝑡, 𝑥, 𝑢)‖ ≤ ‖𝑓1(𝑡, 𝑥)‖ + ‖𝑓2(𝑡, 𝑥)‖‖𝑢‖

≤ 𝑏1 + 𝑏2‖𝑢‖,

where 𝑏1 and 𝑏2 are positive constants given as

𝑏1 =
√

max
{

𝑐1, 𝑐2
} (

𝛬2 + 𝛬2(𝜓1 + 𝜓2 + 𝜓3)2
)

,

and

𝑏2 =
√

max
{

𝑑1, 𝑑2
} (

𝛬2 + 𝛬2(𝜓1 + 𝜓2 + 𝜓3)2
)

,

with

𝑐0 = 𝑑2 + 𝛽3(2𝛽1 + 2𝛽2 + 𝛽3) +
(

𝛽1 + 𝛽2
)2 + (1 − 2𝜏 + 2𝜏2)𝛿2

+
(

𝛾1 + 𝛾2
)2 + 𝜓3(2𝜓1 + 2𝜓2 + 𝜓3) + (𝜓1 + 𝜓2)2,

𝑐1 =
𝑐0
𝑑2
,

𝑐2 =
2𝛽4(𝛽1𝜙 + 𝛽2𝜙 + 𝛽3𝜙) + 𝛽24 (𝜓1 + 𝜓2 + 𝜓3)

𝑑2𝜙2(𝜓1 + 𝜓2 + 𝜓3)
,

𝑑1 =
2𝛽3(2𝛽1 + 2𝛽2 + 𝛽3) + 2(𝛽1 + 𝛽2)2 + (𝜓1 + 𝜓3)2 + 𝜓2(2𝜓1 + 𝜓2 + 2𝜓3)

𝑑2
,

𝑑2 =
4𝛽4𝜙(𝛽1 + 𝛽2 + 𝛽3) + (1 + 4𝛽24 )(𝜓1 + 𝜓2 + 𝜓3)

𝑑2𝜙2(𝜓1 + 𝜓2 + 𝜓3)
.

(iii) First note that the objective functional  in (9) has an integrand
of the Lagrangian form defined as

(𝑡, 𝑥, 𝑢) = 𝐴1𝐸 + 𝐴2𝐼 + 𝐴3𝐴 + 𝐴4𝐵 + 1
2

4
∑

𝑖=1
𝐷𝑖𝑢

2
𝑖 . (11)

Let 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈  , 𝑤 = (𝑤1.𝑤2, 𝑤3, 𝑤4) ∈  and
𝜆 ∈ [0, 𝑢𝑚𝑎𝑥], then it suffices to prove that

(𝑡, 𝑥, (1 − 𝜆)𝑣 + 𝜆𝑤) ≤ (1 − 𝜆)(𝑡, 𝑥, 𝑣) + 𝜆(𝑡, 𝑥,𝑤). (12)

From (11),

(𝑡, 𝑥, (1−𝜆)𝑣+𝜆𝑤) = 𝐴1𝐸+𝐴2𝐼+𝐴3𝐴+𝐴4𝐵+
1
2

4
∑

𝑖=1

[

𝐷𝑖((1 − 𝜆)𝑣𝑖 + 𝜆𝑤𝑖)2
]

,

(13)
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t
f
(
i

o

𝑢

w

𝜃

𝜃

and

(1 − 𝜆)(𝑡, 𝑥, 𝑣) + 𝜆(𝑡, 𝑥,𝑤)

= 𝐴1𝐸 + 𝐴2𝐼 + 𝐴3𝐴 + 𝐴4𝐵 + 1
2
(1 − 𝜆)

4
∑

𝑖=1
𝐷𝑖𝑣

2
𝑖 +

1
2
𝜆

4
∑

𝑖=1
𝐷𝑖𝑤

2
𝑖 .

(14)

Applying the inequality (12) to the results in (13) and (14) leads
to
(𝑡, 𝑥, (1 − 𝜆)𝑣 + 𝜆𝑤) − ((1 − 𝜆)(𝑡, 𝑥, 𝑣) + 𝜆(𝑡, 𝑥,𝑤))

= 1
2 (𝜆

2 − 𝜆)
∑4
𝑖=1𝐷𝑖(𝑣𝑖 −𝑤𝑖)2 ≤ 0, since 𝜆 ∈ [0, 𝑢𝑚𝑎𝑥],

implying that the integrand (𝑡, 𝑥, 𝑢) of the objective functional
 is convex.

(iv) Lastly, the fourth property is verified as follows:

(𝑡, 𝑥, 𝑢) = 𝐴1𝐸 + 𝐴2𝐼 + 𝐴3𝐴 + 𝐴4𝐵 + 1
2

4
∑

𝑖=1
𝐷𝑖𝑢

2
𝑖 ,

≥ 1
2

4
∑

𝑖=1
𝐷𝑖𝑢

2
𝑖 ,

≥ 𝑎0
(

|𝑢1|
2 + |𝑢2|

2 + |𝑢3|
2 + |𝑢4|

2)
𝑎2
2 − 𝑎1,

where 𝑎0 =
1
2 max

{

𝐷1, 𝐷2, 𝐷3, 𝐷4
}

, 𝑎1 > 0 and 𝑎2 = 2. □

Characterization of the optimal controls

Pontryagin’s maximum principle (PMP) provides the necessary con-
ditions that an optimal control quadruple must satisfy. This principle
converts the optimal control problem consisting of the non-autonomous
system (6) and the objective functional  in (7) into an issue of
minimizing pointwise a Hamiltonian, denoted as , with respect to
controls 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4). First, the Hamiltonian  associated with the
optimal control problem is formulated as

 = 𝐴1𝐸 + 𝐴2𝐼 + 𝐴3𝐴 + 𝐴4𝐵 + 1
2

(

𝐷1𝑢
2
1 +𝐷2𝑢

2
2 +𝐷3𝑢

2
3 +𝐷4𝑢

2
4

)

+ 𝜆1

[

𝛬 − (1 − 𝑢1)
(

𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴
) 𝑆
𝑁

− (1 − 𝑢1 − 𝑢2)𝛽4𝐵
𝑆
𝑁

− 𝑑𝑆
]

+ 𝜆2

[

(1 − 𝑢1)
(

𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴
) 𝑆
𝑁

+ (1 − 𝑢1 − 𝑢2)𝛽4𝐵
𝑆
𝑁

− (𝛿 + 𝑑)𝐸
]

+ 𝜆3
[

(1 − 𝜏)𝛿𝐸 − (𝑑 + 𝑑1 + 𝛾1)𝐼
]

(15)
+ 𝜆4

[

𝜏𝛿𝐸 − (𝑑 + 𝛾2)𝐴
]

+ 𝜆5
[

𝛾1𝐼 + 𝛾2𝐴 − 𝑑𝑅
]

+ 𝜆6
[

(1 − 𝑢3)𝜓1𝐸 + (1 − 𝑢3)𝜓2𝐼 + (1 − 𝑢3)𝜓3𝐴 − (𝑢4 + 𝜙)𝐵
]

,

where 𝜆𝑖 (with 𝑖 = 1, 2,… , 6) are the adjoint variables corresponding to
the state variables 𝑆, 𝐸, 𝐼 , 𝐴, 𝑅 and 𝐵 respectively.

Theorem 2. If 𝑢∗ = (𝑢∗𝑖 ), 𝑖 = 1,… , 4 is an optimal control quadruple and
𝑆∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑅∗, 𝐵∗ are the solutions of the corresponding state system
(6) that minimizes  (𝑢∗) over the control set  defined by (8), then there
exist adjoint variables 𝜆𝑖 (𝑖 = 1, 2,… , 6) satisfying
𝑑𝜆1
𝑑𝑡

= (𝜆1 − 𝜆2)
[

(1 − 𝑢1)
(

𝛽1𝐸
∗ + 𝛽2𝐼∗ + 𝛽3𝐴∗)

]

(𝐸∗ + 𝐼∗ + 𝐴∗ + 𝑅∗)
𝑁2

+ (𝜆1 − 𝜆2)(1 − 𝑢1 − 𝑢2)𝛽4𝐵∗ (𝐸∗ + 𝐼∗ + 𝐴∗ + 𝑅∗)
𝑁2

+ 𝜆1𝑑,

𝑑𝜆2
𝑑𝑡

= −𝐴1 + (𝜆1 − 𝜆2)(1 − 𝑢1)𝑆∗
[

(𝑆∗ + 𝐼∗ + 𝐴∗ + 𝑅∗)𝛽1 − (𝛽2𝐼∗ + 𝛽3𝐴∗)
𝑁2

]

+ (𝜆2 − 𝜆1)(1 − 𝑢1 − 𝑢2)𝛽4𝐵∗ 𝑆∗

𝑁2
+ (𝛿 + 𝑑)𝜆2 − 𝜆2(1 − 𝜏)𝛿𝜆3 − 𝜏𝛿𝜆4

− (1 − 𝑢3)𝜓1𝜆6, (16)
𝑑𝜆3
𝑑𝑡

= −𝐴2 + (𝜆1 − 𝜆2)(1 − 𝑢1)𝑆∗
[

(𝑆∗ + 𝐸∗ + 𝐴∗ + 𝑅∗)𝛽2 − (𝛽1𝐸∗ + 𝛽3𝐴∗)
𝑁2

]

+ (𝜆 − 𝜆 )(1 − 𝑢 − 𝑢 )𝛽 𝐵∗ 𝑆∗
+ (𝛿 + 𝑑 + 𝛾 )𝜆 − 𝛾 𝜆 − (1 − 𝑢 )𝜓 𝜆 ,
5

2 1 1 2 4 𝑁2 1 1 3 1 5 3 2 6
𝑑𝜆4
𝑑𝑡

= −𝐴3 + (𝜆1 − 𝜆2)(1 − 𝑢1)𝑆∗
[

(𝑆∗ + 𝐸∗ + 𝐼∗ + 𝑅∗)𝛽3 − (𝛽1𝐸∗ + 𝛽2𝐼∗)
𝑁2

]

+ (𝜆2 − 𝜆1)(1 − 𝑢1 − 𝑢2)𝛽4𝐵∗ 𝑆∗

𝑁2
+ (𝑑1 + 𝛾2)𝜆4 − 𝛾2𝜆5 − (1 − 𝑢3)𝜓3𝜆6,

𝑑𝜆5
𝑑𝑡

= (𝜆2 − 𝜆1)(1 − 𝑢1)
(

𝛽1𝐸
∗ + 𝛽2𝐼∗ + 𝛽3𝐴∗

)

𝑆∗

𝑁2

+ (𝜆2 − 𝜆1)(1 − 𝑢1 − 𝑢2)𝛽4
𝑆∗

𝑁2
+ 𝜆5𝑑,

𝑑𝜆6
𝑑𝑡

= −𝐴4 + (𝜆1 − 𝜆2)(1 − 𝑢1 − 𝑢2)𝛽4
𝑆∗

𝑁
+ (𝑢4 + 𝜙)𝜆6𝑑.

with transversality conditions

𝜆𝑖(𝑇 ) = 0, for 𝑖 = 1, 2,… , 6 (17)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑢∗1(𝑡) = min

{

max

{

0,
(𝜆2 − 𝜆1)(𝛽1𝐸∗ + 𝛽2𝐼∗ + 𝛽3𝐴∗ + 𝛽4𝐵∗)𝑆

𝐷1𝑁

}

, 𝑢1𝑚𝑎𝑥

}

,

𝑢∗2(𝑡) = min

{

max

{

0,
(𝜆2 − 𝜆1)𝛽4𝐵∗𝑆∗

𝐷2𝑁

}

, 𝑢2𝑚𝑎𝑥

}

,

𝑢∗3(𝑡) = min

{

max

{

0,
𝜆6(𝜓1𝐸∗ + 𝜓2𝐼∗ + 𝜓3𝐴∗)

𝐷3

}

, 𝑢3𝑚𝑎𝑥

}

,

𝑢∗4(𝑡) = min

{

max

{

0,
𝜙𝐵∗𝜆6
𝐷4

}

, 𝑢4max

}

.

(18)

Proof. The form of the adjoint system and the transversality conditions
associated with this optimal control problem follows the widely used
standard results obtained from work done by Pontryagin et al. [40].
For this purpose, we partially differentiate the formulated Hamiltonian
function (15) with respect to 𝑆,𝐸, 𝐼, 𝐴,𝑅 and 𝐵 as follows;

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝜆1
𝑑𝑡 = − 𝜕

𝜕𝑆 , 𝜆1(𝑇 ) = 0,
𝑑𝜆2
𝑑𝑡 = − 𝜕

𝜕𝐸 , 𝜆2(𝑇 ) = 0,
𝑑𝜆3
𝑑𝑡 = − 𝜕

𝜕𝐼 , 𝜆3(𝑇 ) = 0,
𝑑𝜆4
𝑑𝑡 = − 𝜕

𝜕𝐴 , 𝜆4(𝑇 ) = 0,
𝑑𝜆3
𝑑𝑡 = − 𝜕

𝜕𝑅 , 𝜆5(𝑇 ) = 0,
𝑑𝜆4
𝑑𝑡 = − 𝜕

𝜕𝐵 , 𝜆6(𝑇 ) = 0.

(19)

Finally, to obtain the desired results for the characterizations of
he optimal control, we need to partially differentiate the Hamiltonian
unction (15) with respect to the four time-dependent control functions
𝑢1, 𝑢2, 𝑢3, 𝑢4), thus, further, the optimal control characterization in (18)
s obtained by solving

𝜕
𝜕𝑢𝑖

= 0, for 𝑢∗𝑖 (where 𝑖 = 1, 2, 3, 4).

Lastly, it follows from standard control arguments involving bounds
n the control that

∗
𝑖 =

⎧

⎪

⎨

⎪

⎩

0 if 𝜃∗𝑖 ≤ 0,
𝜃∗𝑖 if 0 ≤ 𝜃∗𝑖 ≤ 𝑢𝑖max,
𝑢𝑖max if 𝜃∗𝑖 ≥ 𝑢𝑖max,

here 𝑖 = 1, 2, 3, 4 and with

1 =
(𝜆2 − 𝜆1)(𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴 + 𝛽4𝐵)𝑆

𝐷1𝑁
,

2 =
(𝜆2 − 𝜆1)𝛽4𝐵𝑆

𝐷2𝑁
,

𝜃3 =
𝜆6(𝜓1𝐸 + 𝜓2𝐼 + 𝜓3𝐴)

𝐷3
,

𝜃4 =
𝜙𝐵𝜆6
𝐷4

. □
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Numerical simulation and cost-effectiveness analysis

Numerical simulation

Numerical simulations are vital in dynamical modelling; they give
the proposed model’s pictorial view to the theoretical analysis. Hence,
we provide the numerical outcomes of our study by simulating 14
possible strategic combinations of the control measures. This is done
by simulating the constraint system (6) froward in time and the ad-
joint system (15) backward in time until convergence is reached. The
model parameters can be found in [20], but restated here for easy
reference see Table 1. This simulation procedure is popularly known as
fourth-order Runge–Kutta forward–backward sweep simulations. The
14 possible strategic combination strategies are divided into four sce-
narios, thus, the implementation of single control (Scenario A), the use
of dual controls (Scenario B), the performance of triple controls (Sce-
nario C) and lastly, the implementation of quadruplet control measures
(Scenario D). Iterated below as

♠ Scenario A (implementation of single control)

✠ Strategy 1: practising physical or social distancing protocols
only
(𝑢1 ≠ 0, 𝑢2 = 𝑢3 = 𝑢4 = 0).

✠ Strategy 2: practising personal hygiene by cleaning contam-
inated surfaces with alcohol based detergents only (𝑢1 =
0, 𝑢2 ≠ 0, 𝑢3 = 𝑢4 = 0).

✠ Strategy 3: practising proper and safety measures by ex-
posed, asymptomatic infected and symptomatic infected in-
dividuals only
(𝑢1 = 0, 𝑢2 = 0, 𝑢3 ≠ 0, 𝑢4 = 0).

✠ Strategy 4: Fumigating schools in all levels of education,
sports facilities, commercial areas and religious worship
centres only (𝑢1 = 0, 𝑢2 = 0, 𝑢3 = 0, 𝑢4 ≠ 0).

♠ Scenario B (the use of double controls)

✠ Strategy 5: practising physical or social distancing protocols
+ practising personal hygiene by cleaning contaminated
surfaces with alcohol based detergents
(𝑢1, 𝑢2 ≠ 0, 𝑢3 = 𝑢4 = 0).

✠ Strategy 6: practising physical or social distancing proto-
cols + practising proper and safety measures by exposed,
asymptomatic infected and symptomatic infected individu-
als (𝑢1, 𝑢3 ≠ 0, 𝑢2 = 𝑢4 = 0).

✠ Strategy 7: practising physical or social distancing proto-
cols + fumigating schools in all levels of education, sports
facilities, commercial areas and religious worship centres
(𝑢1, 𝑢4 ≠ 0, 𝑢2 = 0, 𝑢3 = 0).

✠ Strategy 8: practising personal hygiene by cleaning contam-
inated surfaces with alcohol based detergents + practising
proper and safety measures by exposed, asymptomatic in-
fected and symptomatic infected individuals (𝑢2, 𝑢3 ≠ 0, 𝑢1 =
0, 𝑢4 = 0).

✠ Strategy 9: practising personal hygiene by cleaning contam-
inated surfaces with alcohol based detergents + fumigating
schools in all levels of education, sports facilities, commer-
cial areas and religious worship centres (𝑢2, 𝑢4 ≠ 0, 𝑢1 =
0, 𝑢3 = 0).

✠ Strategy 10: practising proper and safety measures by ex-
posed, asymptomatic infected and symptomatic infected in-
dividuals + fumigating schools in all levels of education,
sports facilities, commercial areas and religious worship
centres (𝑢3, 𝑢4 ≠ 0, 𝑢1 = 0, 𝑢2 = 0).

♠ Scenario C (the use of triple controls)
6

✠ Strategy 11: practising physical or social distancing proto-
cols + practising personal hygiene by cleaning contaminated
surfaces with alcohol based detergents + practising proper
and safety measures by exposed, asymptomatic infected and
symptomatic infected individuals (𝑢1, 𝑢2, 𝑢3 ≠ 0, 𝑢4 = 0).

✠ Strategy 12: practising physical or social distancing proto-
cols + practising personal hygiene by cleaning contaminated
surfaces with alcohol based detergents + fumigating schools
in all levels of education, sports facilities, commercial areas
and religious worship centres (𝑢1, 𝑢2, 𝑢4 ≠ 0, 𝑢3 = 0).

✠ Strategy 13: practising personal hygiene by cleaning con-
taminated surfaces with alcohol based detergents + practis-
ing proper and safety measures by exposed, asymptomatic
infected and symptomatic infected individuals + fumigating
schools in all levels of education, sports facilities, commer-
cial areas and religious worship centres (𝑢2, 𝑢3, 𝑢4 ≠ 0, 𝑢1 =
0).

♠ Scenario D (implementation of quadruplet)

✠ Strategy 14: practising physical or social distancing proto-
cols + practising personal hygiene by cleaning contaminated
surfaces with alcohol based detergents + practising proper
and safety measures by exposed, asymptomatic infected and
symptomatic infected individuals + fumigating schools in all
levels of education, sports facilities, commercial areas and
religious worship centres (𝑢1, 𝑢2, 𝑢3, 𝑢4 ≠ 0).

Scenario A: use of single control
In Fig. 1(a), we noticed that strategy 1 has the highest number of

exposed and asymptomatic averted individuals, followed by strategy
4, strategy 3, and then strategy 1. Likewise, in Fig. 1(b) we noticed
that the dynamical importance of the strategy is of equal usefulness
on the number of symptomatic individuals. In Fig. 1(c), we saw that
the strategy with the highest number of virus removal from the envi-
ronment is strategy 4, with strategy 2 having the lowest viral removal
effect. In Fig. 1(d), the control profiles suggest that the optimal strategy
for scenario A should be implemented on the same control level. In
other words, it indicates that if the controls are kept on the same
level, it can help reduce the infection when one considers the optimal
strategies for scenario A. Fig. 1(e) shows the infection averted ratio
of the various control strategies. It shows that strategy 2 (practising
personal hygiene by cleaning contaminated surfaces with alcohol-based
detergents only), is the most effective strategy if health officials stick
to scenario A only in controlling COVID-19 in the Kingdom of Saudi
Arabia. Fig. 1(f) shows the average cost-effectiveness ratio, which also
supports that strategy 1 is the most effective and cost-saving strategy in
scenario A. The mathematical extraction of the infection averted ratio
and the average cost-effectiveness ratio can be found in Section h where
we validate the claim on Figs. 1(e) and 1(f) respectively.

Scenario B: use of double controls
In Figs. 2(a)–2(d), we carried out numerical simulations with the

notion that an individual may apply two of the suggested controls
simultaneously. We noticed in Fig. 2(a) that strategy 5 has the highest
number of exposed and asymptomatic averted individuals, in the long
run, followed by strategy 6, strategy 7, strategy 9, strategy 10 and
then strategy 8. Likewise, in Fig. 2(b) we noticed that the dynamical
importance of the strategy is of equal usefulness on the number of
symptomatic individuals. In Fig. 2(c), we saw that the strategy with
the highest number of virus removal from the environment is strategy
7 and 9, with strategy 8 having the most minimal viral removal effect.
In Fig. 2(d), the control profiles suggest that the optimal strategy for
scenario B should be implemented on a control level of 0.75 for each
control term in strategy 5 and 8 for the entire simulation period. For

the control strategy 9 in Fig. 2(d), we noticed that the control terms
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Table 1
Model’s parameter descriptions and values.

Parameter Definition Value Source

𝛬 Recruitment rate 𝑑 ×𝑁(0) [20]
𝑑 Natural mortality rate 1

74.87×365
[20]

𝛽1 Contact rate among exposed and susceptible 0.1233 [20]
𝛽2 Contact rate among infected (symptomatic) and susceptible 0.0542 [20]
𝛽3 Contact rate among infected (asymptomatic) and susceptible 0.0020 [20]
𝛽4 Contact rate among environment and susceptible 0.1101 [20]
𝛿 Incubation period 0.1980 [20]
𝜏 fraction that transient to 𝐴 0.3085 [20]
𝑑1 Natural death rate due to Infection at I 0.0104 [20]
𝛾1 Recovery from I 0.3680 [20]
𝛾2 Recovery from A 0.2945 [20]
𝜓1 Virus contribution due to E to B 0.2574 [20]
𝜓2 Virus contribution due to I to B 0.2798 [20]
𝜓3 Virus contribution due to A to B 0.1584 [20]
𝜙 Virus removal from environment 0.3820 [20]
Fig. 1. Single control strategy.
in strategy 9, should be kept at 0.75 for 95 days and then reduced to
0.5 for each of the control terms for the rest of the simulation time.
The control profile for strategy 10 shows that each control term should
be kept for 0.75 for 92 days and then reduced to 0.5 for the rest of
the simulation period. The control profile for strategy 6 shows that,
with the combined effort of the two controls, the strategy control level
should be kept at 1.5 for 65 days and then gradually reduced to 0.98 for
the entire simulation time. We also noticed in Fig. 2(d) that the control
7

profile of strategy 7 shows that the control level for the two controls in
strategy 7 should be kept at 1.5, thus 0.75 each for 41 days and then
gradually reduced to 1 for the entire simulation time. Fig. 2(e) shows
the infection averted ratio of the various control strategies. It shows
that strategy 5 is the most effective when one uses the infection averted
ratio (IAR). Fig. 2(f) shows the average cost-effectiveness ratio, which
indicates that strategy 6 is the most effective and cost-saving strategy in
scenario B. The mathematical extraction of the infection averted ratio
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Fig. 2. Double control strategies.
and the average cost-effectiveness ratio can be found in Section h where
we validate the claim on Figs. 2(e) and 2(f) respectively.

Scenario C: use of triple controls
In Figs. 3(a)–3(d), we carried out numerical simulations with the

notion that an individual may apply three of the suggested controls
simultaneously. We noticed in Fig. 3(a) that strategy 11 has the highest
number of exposed and asymptomatic averted individuals, in the long
run, followed by strategy 12 and then strategy 13. Likewise, in Fig. 3(b)
we noticed that the dynamical importance of the strategy is of equal
usefulness on the number of symptomatic individuals. In Fig. 3(c), we
noticed that the strategy with the highest number of virus removal from
the environment is strategy 13 and 12, with strategy 11 having the most
minimum virus removal effect. In Fig. 3(d), the control profiles suggest
that the optimal strategies for scenario C should be implemented on
a control level of 0.75 for each control term in strategy 11, for 30
days and then reduced to 0.60 for the entire simulation period. For
the control strategy 12 in Fig. 3(d), we noticed that the control terms
in strategy 12 should be kept at 0.7 for 18 days and then reduced to
0.5 for each of the control terms for the rest of the simulation time.
The control profile for strategy 13 shows that each control term should
be kept for 0.75 for 70 days and then reduced to 0.47 for the rest
of the simulation period. Fig. 3(e) shows the infection averted ratio
(IAR) of the various control strategies. The IAR shows that strategy
11 is the most effective. Fig. 3(f) shows the average cost-effectiveness
8

ratio (ACER), which indicates that strategy 12 is the most effective and
cost-saving strategy in scenario C. The mathematical extraction of the
infection averted ratio and the average cost-effectiveness ratio can be
found in Section h, where we validate the claim on Figs. 3(e) and 3(f)
respectively.

Scenario D: use of quadruplet controls
In Figs. 4(a)–5(a), we carried out numerical simulations with the

notion that an individual may apply all of the suggested controls
simultaneously. We noticed in Fig. 4(a) that the number of exposed and
asymptomatic individuals drastically reduces when the four controls
are applied simultaneously. Fig. 4(b) shows that the disease in the
symptomatic individuals can be eliminated within 21 days when one
chooses to implement all the controls simultaneously. Fig. 4(c) shows
that the virus in the environment can be eliminated within 10 days
when one chooses to implement all the controls simultaneously. In
Fig. 5(a) we showed the dynamical changes of each control considered
in this work. We noticed that, in the pool of the four controls, control
𝑢1 (practising physical or social distancing protocols) and control 𝑢2
(practising personal hygiene by cleaning contaminated surfaces with
alcohol-based detergents) should be applied at a constant level through-
out, with much effort placed on control 𝑢1 for 98 days. For the control
𝑢3 in Fig. 5(a), we noticed that the control should be kept at 0.75 for 25
days and then gradually reduced to 0.29 for the rest of the simulation
time. The control profile for control 𝑢 shows that the control term
4
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Fig. 3. Implementation of quadruplet controls.
should be kept for 0.75 for 18 days and then gradually reduced to
0.29 for the rest of the simulation period. Finally, Fig. 5(b) shows the
efficacies plot for the number of exposed, asymptomatic, symptomatic
individuals and the number of viruses removed from the environment,
respectively, when one uses all the proposed control simultaneously.
We noticed from the efficacies plot that the controls are more efficient
on the number of viral removed from the environment, followed by
the number of symptomatic individuals, asymptomatic individuals, and
exposed individuals. The efficacy plots are obtained from using the
following functions:

𝐸𝐸 = 𝐸(0)−𝐸∗(𝑡)
𝐸(0) , 𝐸𝐼 = 𝐼(0)−𝐼∗(𝑡)

𝐼(0) , 𝐸𝐴 = 𝐴(0)−𝐴∗(𝑡)
𝐴(0) ,

𝐸𝐵 = 𝐵(0)−𝐵∗(𝑡)
𝐵(0)

where 𝐸(0), 𝐼(0), 𝐴(0), 𝐵(0) are the initial data and 𝐸∗(𝑡), 𝐼∗(𝑡), 𝐴∗(𝑡),
𝐵∗(𝑡) are the function relating to the ‘‘optimal states associated" with
the controls [41]. Fig. 5(b) shows that the controls attain 100% efficacy
on the disease induced compartment after 39 days.

Cost-effectiveness analysis

Given the four different scenarios considered for the implementation
of optimal control problem in Section h, cost-effectiveness analysis
is employed to decide on the most cost-effective control intervention
strategy from other strategies for each of scenarios A–D, under inves-
tigation. To implement the cost-effectiveness analysis, we use three
9

approaches. These are: infection averted ratio (IAR) [26], average
cost-effectiveness ratio (ACER) and incremental cost-effectiveness ratio
(ICER) [26,41,42]. Definitions of the three approaches are given as
follows:

Infection averted ratio (IAR)
Infection averted ratio (IAR) can be expressed as

IAR = Number of infections averted
Number of individuals recovered from the infection ,

where the number of infections averted represents the difference be-
tween the total number of infected individuals without any control
implementation and the total number of infected individuals with
control throughout the simulation, a control strategy with the highest
IAR value is considered as the most cost-effective [26,35,42].

Average cost-effectiveness ratio (ACER)
Average cost-effectiveness ratio (ACER) is stated as

ACER =
Total cost incurred on the implementation of a particular intervention strategy

Total number of infections averted by the intervention strategy .

The total cost incurred on implementing a particular intervention strat-
egy is estimated from

(𝑢) = 1
∫

𝑇 4
∑

𝐷𝑖𝑢
2
𝑖 𝑑𝑡. (20)
2 0 𝑖=1
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Incremental cost-effectiveness ratio (ICER)
Usually, the incremental cost-effectiveness ratio (ICER) measures

the changes between the costs and health benefits of any two differ-
ent intervention strategies competing for the same limited resources.
Considering strategies p and q as two competing control intervention
strategies, then ICER is stated as

ICER =
Change in total costs in strategies p and q

Change in control benefits in strategies p and q .

CER numerator includes the differences in disease averted costs, costs
f prevented cases, intervention costs, among others. While the de-
ominator of ICER accounts for the differences in health outcome,
ncluding the total number of infections averted or the total number
f susceptibility cases prevented.

cenario A: use of single control
Owing to the simulated results of the optimality system under

cenario A (when only one control is implemented with considerations
f strategies 1–4) as shown in Fig. 1, we calculate IAR, ACER and ICER
or each of the four control strategies.
10

s

For IAR, the fourth column of Table 2 summarizes the calculated
alues for the implemented strategies. Accordingly, strategy 2 (practis-
ng personal hygiene by cleaning contaminated surfaces with alcohol-
ased detergents only) has the highest IAR value, followed by strategy
(practising physical or social distancing protocol only), strategy 4

fumigating schools in all levels of education, sports facilities and
ommercial areas such as markets and public toilet facilities only),
nd lastly strategy 3 (practising proper and safety measures by the
xposed, asymptomatic infected and symptomatic infected individuals
nly). Consequently, the most cost-effective strategy according to this
ost-effectiveness analysis approach is strategy 2. The next most cost-
ffective strategy is strategy 1, followed by strategy 4, then strategy
.

According to the ACER cost-effectiveness analysis method, strategy
has the highest ACER value, followed by strategy 3, strategy 2 and

trategy 1 as shown in the fifth column of Table 2. Therefore, the cost-
ffectiveness of the four strategies implemented, ranging from the most
ost-effective to the least cost-effective strategy, is given as strategy 1,
trategy 2, strategy 3, and strategy 4.

Next, ICER values are computed for the four control intervention
trategies under scenario A to further affirm the most economical
trategy among them. Based on the results obtained for the numerical
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Table 2
Incremental cost-effectiveness ratio for scenario A.

Strategy Infection averted Cost IAR ACER ICER

Strategy 3: 𝑢3(𝑡) 1.4423 × 106 1.4063 × 103 1.2325 9.7498 × 10−4 9.7498 × 10−4

Strategy 2: 𝑢2(𝑡) 1.6603 × 106 1.4077 × 103 1.5835 8.4784 × 10−4 6.4220 × 10−6

Strategy 4: 𝑢4(𝑡) 1.8000 × 106 2.8098 × 103 1.2914 0.0016 0.0100
Strategy 1: 𝑢1(𝑡), 2.0679 × 106 281.1135 1.5793 1.3594 × 10−4 −0.0004
Table 3
Incremental cost-effectiveness ratio for scenario A.

Strategy Infection averted Cost IAR ACER ICER

Strategy 3: 𝑢3(𝑡) 1.4423 × 106 1.4063 × 103 1.2325 9.7498 × 10−4 9.7504 × 10−4

Strategy 2: 𝑢2(𝑡) 1.6603 × 106 1.4077 × 103 1.5835 8.4784 × 10−4 6.4220 × 10−6

Strategy 1: 𝑢1(𝑡), 2.0679 × 106 281.1135 1.5793 1.3594 × 10−4 −0.0028
simulations of optimal control problem in scenario A (see Fig. 1), strate-
gies 1–4 are ranked according to their increasing order in respect of the
total number of COVID-19 infections averted in the community. We
have that Strategy 3 averts the least number of the disease infections,
followed by Strategy 2, Strategy 4 and Strategy 1 as shown in Table 2.

Thus, ICER is computed for the competing control Strategy 1,
Strategy 2, Strategy 3 and Strategy 4 as follows:

ICER(3) = 1.4063 × 103 − 0
1.4423 × 106 − 0

= 9.7504 × 10−4,

CER(2) = 1.4077 × 103 − 1.4063 × 103

1.6603 × 106 − 1.4423 × 106
= 6.4220 × 10−6,

ICER(4) = 2.8098 × 103 − 1.4077 × 103

1.8000 × 106 − 1.6603 × 106
= 0.0100,

ICER(1) = 281.1135 − 2.8098 × 103

2.0679 × 106 − 1.8000 × 106
= −0.0004.

The computed results (as presented in Table 2) indicate that the
CER value of Strategy 4, ICER(4), is higher than that of Strategy 3. This
eans that the singular application of control 𝑢4 (fumigating schools

in all levels of education, sports facilities and commercial areas such
as markets and public toilet facilities) is more costly and less effective
than when only control 𝑢3 (practising proper and safety measures by the
xposed, asymptomatic infected and symptomatic infected individuals)
s applied. Thus, Strategy 4 is eliminated from the list of alternative
ontrol strategies.

Then, ICER is further calculated for the competing Strategy 3 with
trategies 1 and 2. The computation is as follows:

CER(3) = 1.4063 × 103 − 0
1.4423 × 106 − 0

= 9.7504 × 10−4,

CER(2) = 1.4077 × 103 − 1.4063 × 103

1.6603 × 106 − 1.4423 × 106
= 6.4220 × 10−6,

ICER(1) = 281.1135 − 1.4077 × 103

2.0679 × 106 − 1.6603 × 106
= −0.0028.

The summary of ICER calculations is summarized in Table 3. Looking
at Table 3, it is seen that there is a cost-saving of 6.4220 × 10−6 for
Strategy 2 over Strategy 3 following the comparison of ICER(2) and
ICER(3). The obtained lower ICER for Strategy 2 indicates that Strategy
2 strongly dominates Strategy 3, implying that Strategy 2 has greater
effectiveness at cheaper cost when implemented than Strategy 3. Thus,
it is better to eliminate Strategy 3 from the control intervention strate-
gies and focus on the alternative control interventions to implement for
limited resources preservation. Consequently, Strategy 3 is excluded,
and Strategy 2 is further compared with Strategy 1.

We now face the re-calculation of the ICER for Strategies 1 and 2.
The calculations are made as follows:

ICER(2) = 1.4077 × 103 − 0
1.6603 × 106 − 0

= 8.4784 × 10−4,

CER(1) = 281.1135 − 1.4077 × 103

2.0679 × 106 − 1.6603 × 106
= −0.0028.

The results obtained from ICER computations are presented in Table 4.
From Table 4, it is shown that ICER(2) is greater than ICER(1). The
11
implication of the lower ICER value obtained for Strategy 1 is that
Strategy 2 is strongly dominated, implying that Strategy 2 is more
costly and less effective to implement than Strategy 1. Therefore,
Strategy 1 (practising physical or social distancing protocol only) is
considered the most cost-effective among the four strategies in Scenario
A analysed in this work, which confirms the results in Fig. 1(f).

Scenario B: use of double controls
According to the results obtained from the numerical implementa-

tion of the optimality system under Scenario B (when only two different
controls are implemented with considerations of Strategies 5–10) as
illustrated in Fig. 2, we discuss the IAR, ACER and ICER cost analysis
techniques for Strategies 5–10 here.

To compare Strategies 5–10 using the IAR cost analysis approach,
the computed values for the six control strategies are as presented in the
fourth column of Table 5. A look at Table 5 shows that Strategy 5 has
the highest IAR. This is followed by Strategy 6, then Strategies 8, 7, 9
and 10. Therefore, it follows that Strategy 5 (which combines practising
physical or social distancing protocols with practising personal hygiene
by cleaning contaminated surfaces with alcohol-based detergents) is
considered most cost-effective among the six strategies in Scenario B
as analysed according to the IAR cost analysis technique.

Also, we use the ACER technique to determine the most cost-
effective strategy among the various intervention strategies considered
in Scenario B. From the results obtained (as shown contained in the
fifth column of Table 5), it is clear that Strategy 6 has the least ACER
value, followed by Strategies 5, 7, 8, 9 and 10. Hence, Strategy 6 (which
combines practising physical or social distancing protocols with practis-
ing proper and safety measures by exposed, asymptomatic infected and
asymptomatic infected individuals) is the most cost-effective among the
set of control strategies considered in Scenario B based on the ACER
cost-effective analysis method.

To further affirm the most cost-effective strategy among Strategies
5–10, we implement ICER cost analysis approach on the six inter-
vention strategies. Using the simulated results (as demonstrated in
Fig. 2), the six control strategies are ranked from least to most effective
according to the number of COVID-19 infections averted as shown in
Table 5. So, Strategy 8 averts the least number of infections, followed
by Strategy 10, Strategy 9, Strategy 6, Strategy 7 and Strategy 5,
averting the most number of infections in the population.

The ICER value for each strategy is computed as follows:

ICER(8) = 2.8104 × 103 − 0
1.9253 × 106 − 0

= 0.0015,

ICER(10) = 4.1019 × 103 − 2.8104 × 103

1.9809 × 106 − 1.9253 × 106
= 0.0232,

ICER(9) = 4.1495 × 103 − 4.1019 × 103

2.0684 × 106 − 1.9809 × 106
= 5.4400 × 10−4,

ICER(6) = 1.3487 × 103 − 4.1495 × 103

2.1128 × 106 − 2.0684 × 106
= −00631,

ICER(7) = 1.7708 × 103 − 1.3487 × 103 = 0.0068,

2.1751 × 106 − 2.1128 × 106
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Table 4
Incremental cost-effectiveness ratio for scenario A.

Strategy Infection averted Cost IAR ACER ICER

Strategy 2: 𝑢2(𝑡) 1.6603 × 106 1.4077 × 103 1.5835 8.4784 × 10−4 8.4784 × 10−4

Strategy 1: 𝑢1(𝑡), 2.0679 × 106 281.1135 1.5793 1.3594 × 10−4 −0.0028
Table 5
Incremental cost-effectiveness ratio for scenario B.

Strategy Infection averted Cost IAR ACER ICER

Strategy 8: 𝑢2(𝑡), 𝑢3(𝑡) 1.9253 × 106 2.8104 × 103 1.4524 0.0015 0.0015
Strategy 10: 𝑢3(𝑡), 𝑢4(𝑡) 1.9809 × 106 4.1019 × 103 1.3350 0.0021 0.0232
Strategy 9: 𝑢2(𝑡), 𝑢4(𝑡) 2.0684 × 106 4.1495 × 103 1.4077 0.0020 5.4400 × 10−4

Strategy 6: 𝑢1(𝑡), 𝑢3(𝑡) 2.1128 × 106 1.3487 × 103 1.5239 6.3834 × 10−4 −0.0631
Strategy 7: 𝑢1(𝑡), 𝑢4(𝑡) 2.1751 × 106 1.7708 × 103 1.4506 8.1410 × 10−4 0.0068
Strategy 5: 𝑢1(𝑡), 𝑢2(𝑡) 2.2265 × 106 1.6871 × 103 1.5759 7.5775 × 10−4 −0.0016
Table 6
Incremental cost-effectiveness ratio for scenario B.

Strategy Infection averted Cost IAR ACER ICER

Strategy 8: 𝑢2(𝑡), 𝑢3(𝑡) 1.9253 × 106 2.8104 × 103 1.4524 0.0015 0.0015
Strategy 9: 𝑢2(𝑡), 𝑢4(𝑡) 2.0684 × 106 4.1495 × 103 1.4077 0.0020 0.0094
Strategy 6: 𝑢1(𝑡), 𝑢3(𝑡) 2.1128 × 106 1.3487 × 103 1.5239 6.3834 × 10−4 −0.0631
Strategy 7: 𝑢1(𝑡), 𝑢4(𝑡) 2.1751 × 106 1.7708 × 103 1.4506 8.1410 × 10−4 0.0068
Strategy 5: 𝑢1(𝑡), 𝑢2(𝑡) 2.2265 × 106 1.6871 × 103 1.5759 7.5775 × 10−4 −0.0016
ICER(5) = 1.6871 × 103 − 1.7708 × 103

2.2265 × 106 − 2.1751 × 106
= −0.0016.

From Table 5, it is observed that there is a cost-saving of $0.0068 for
Strategy 7 over Strategy 10. This follows the comparison of ICER(7) and
ICER(10). The indication of the lower ICER value obtained for Strategy
7 is that Strategy 7 strongly dominates Strategy 10. By implication,
Strategy 10 is more costly and less effective to implement when com-
pared with Strategy 7. Therefore, it is better to exclude Strategy 10 from
the set of alternative intervention strategies. At this point, Strategy 7 is
compared with Strategies 5, 6, 8 and 9.

The ICER is computed as

ICER(8) = 2.8104 × 103 − 0
1.9253 × 106 − 0

= 0.0015,

ICER(9) = 4.1495 × 103 − 2.8104 × 103

2.0684 × 106 − 1.9253 × 106
= 0.0094,

ICER(6) = 1.3487 × 103 − 4.1495 × 103

2.1128 × 106 − 2.0684 × 106
= −00631,

ICER(7) = 1.7708 × 103 − 1.3487 × 103

2.1751 × 106 − 2.1128 × 106
= 0.0068,

ICER(5) = 1.6871 × 103 − 1.7708 × 103

2.2265 × 106 − 2.1751 × 106
= −0.0016.

The results obtained are summarized in Table 6. Table 6 shows a cost-
saving of $0.0068 for Strategy 7 over Strategy 9 by comparing ICER(7)
and ICER(9). The higher ICER value obtained for Strategy 9 implies
that Strategy 9 is strongly dominated, more costly and less effective
to implement when compared with Strategy 7. Therefore, Strategy 9 is
left out of the list of alternative control interventions to implement for
the purpose of preserving the limited resources. We further compare
Strategy 7 with Strategies 5, 6 and 8.

The computation of ICER for Strategies 5, 6, 7 and 8 is as follows:

ICER(8) = 2.8104 × 103 − 0
1.9253 × 106 − 0

= 0.0015,

ICER(6) = 1.3487 × 103 − 2.8104 × 103

2.1128 × 106 − 1.9253 × 106
= −0.0078,

ICER(7) = 1.7708 × 103 − 1.3487 × 103

2.1751 × 106 − 2.1128 × 106
= 0.0068,

ICER(5) = 1.6871 × 103 − 1.3487 × 103

2.2265 × 106 − 2.1128 × 106
= 0.0030.

The summary of the results obtained is presented in Table 7.
Looking at Table 7, a comparison of ICER(7) and ICER(8) shows a

cost-saving of $0.0015 for Strategy 8 over Strategy 7. The lower ICER
12
obtained for Strategy 8 is that Strategy 7 is strongly dominated, more
costly and less effective to implement than Strategy 8. Thus, it is better
to discard Strategy 7 from the list of alternative intervention strategies.
At this juncture, Strategy 8 is further compared with Strategies 5 and
6.

The calculation of ICER is given as

ICER(8) = 2.8104 × 103 − 0
1.9253 × 106 − 0

= 0.0015,

ICER(6) = 1.3487 × 103 − 2.8104 × 103

2.1128 × 106 − 1.9253 × 106
= −0.0078,

ICER(5) = 1.6871 × 103 − 1.3487 × 103

2.2265 × 106 − 2.1128 × 106
= 0.0030.

Table 8 summarizes the results obtained from the ICER computations.
In Table 8, it is shown that there is a cost-saving of $0.0015 for Strategy
8 over Strategy 5 following the comparison of ICER(5) with ICER(8).
The higher ICER value for Strategy 5 suggests that Strategy 5 is strongly
dominated, more costly and less effective to implement than Strategy 8.
Hence, Strategy 5 is discarded from the set of alternative intervention
strategies. Finally, Strategy 8 is compared with Strategy 6. The ICER is
computed as follows:

ICER(8) = 2.8104 × 103 − 0
1.9253 × 106 − 0

= 0.0015,

ICER(6) = 1.3487 × 103 − 2.8104 × 103

2.1128 × 106 − 1.9253 × 106
= −0.0078.

We give the summary of the results in Table 9.
Table 9 reveals that ICER(8) is greater than ICER(6), implying

that Strategy 8 is strongly dominated by Strategy 6. This indicates
that Strategy 8 is more costly and less effective to implement when
compared with Strategy 6. Therefore, Strategy 8 is excluded from
the list of alternative intervention strategies. Consequently, Strategy
6 (which combines practising physical or social distancing protocols
with practising proper and safety measures by exposed, asymptomatic
infected and asymptomatic infected individuals) is considered most
cost-effective among the six different control strategies in Scenario B
under investigation in this study, which confirms the results in Fig. 2(f).

Scenario C: use of triple controls
This part explores the implementation of IAR, ACER and ICER

cost analysis techniques on Strategies 11, 12 and 13 using the results
obtained from the numerical simulations of the optimality system under
Scenario C as presented in Fig. 3.
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Table 7
Incremental cost-effectiveness ratio for scenario B.

Strategy Infection averted Cost IAR ACER ICER

Strategy 8: 𝑢2(𝑡), 𝑢3(𝑡) 1.9253 × 106 2.8104 × 103 1.4524 0.0015 0.0015
Strategy 6: 𝑢1(𝑡), 𝑢3(𝑡) 2.1128 × 106 1.3487 × 103 1.5239 6.3834 × 10−4 −0.0078
Strategy 7: 𝑢1(𝑡), 𝑢4(𝑡) 2.1751 × 106 1.7708 × 103 1.4506 8.1410 × 10−4 0.0068
Strategy 5: 𝑢1(𝑡), 𝑢2(𝑡) 2.2265 × 106 1.6871 × 103 1.5759 7.5775 × 10−4 −0.0016
Table 8
Incremental cost-effectiveness ratio for scenario B.

Strategy Infection averted Cost IAR ACER ICER

Strategy 8: 𝑢2(𝑡), 𝑢3(𝑡) 1.9253 × 106 2.8104 × 103 1.4524 0.0015 0.0015
Strategy 6: 𝑢1(𝑡), 𝑢3(𝑡) 2.1128 × 106 1.3487 × 103 1.5239 6.3834 × 10−4 −0.0078
Strategy 5: 𝑢1(𝑡), 𝑢2(𝑡) 2.2265 × 106 1.6871 × 103 1.5759 7.5775 × 10−4 0.0030
Table 9
Incremental cost-effectiveness ratio for scenario B.

Strategy Infection averted Cost IAR ACER ICER

Strategy 8: 𝑢2(𝑡), 𝑢3(𝑡) 1.9253 × 106 2.8104 × 103 1.4524 0.0015 0.0015
Strategy 6: 𝑢1(𝑡), 𝑢3(𝑡) 2.1128 × 106 1.3487 × 103 1.5239 6.3834 × 10−4 −0.0078
Table 10
Incremental cost-effectiveness ratio for scenario C.

Strategy Infection averted Cost IAR ACER ICER

Strategy 13: 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) 2.1053 × 106 5.0186 × 103 1.4022 0.0024 0.0024
Strategy 11: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) 2.2265 × 106 2.2464 × 103 1.5641 0.0010 −0.0229
Strategy 12: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢4(𝑡) 2.2265 × 106 1.8726 × 103 1.4706 8.4107 × 10−4 –
To determine the most cost-effective strategy among strategies 11,
2 and 13 using the IAR method, the obtained IAR values for the
hree strategies are given in the fourth column of Table 10. It is shown
hat Strategy 11 has the highest IAR value, followed by Strategy 12,
hen Strategy 13, which has the lowest IAR value. Therefore, based
n this cost analysis approach, Strategy 11 (which combines practising
hysical or social distancing protocols with the efforts of practising
ersonal hygiene by cleaning contaminated surfaces with alcohol-based
etergents and practising proper and safety measures by exposed,
symptomatic infected and asymptomatic infected individual) is the
ost cost-effective control strategy to implement in Scenario C.

Also, the ACER cost analysis approach is employed to determine
he most cost-effective strategy among Strategies 11, 12 and 13. To
o this, the ACER values obtained for these strategies are as given in
he fifth column of Table 10. It is observed that Strategy 12 has the
owest ACER value. The successive strategy with the lowest ACER value
s Strategy 11, followed by Strategy 13, which has the highest ACER
alue. Therefore, according to ACER cost analysis, Strategy 12 is the
ost cost-effective Strategy to implement in Scenario C.

The cost-effective strategy among Strategies 11, 12 and 13 is consid-
red in Scenario C using ICER and cost-minimizing analysis technique
ue to the equal number of infection averted by Strategies 11, 12. To
mplement this technique, the three intervention strategies are ranked
n increasing order based on the total number of COVID-19 infections
verted.

The calculation of ICER in Table 10 is demonstrated as follows:

CER(13) = 5.0186 × 103

2.1053 × 106
= 0.0024,

ICER(11) = 2.2464 × 103 − 5.0186 × 103

2.2265 × 106 − 2.1053 × 106
= −0.0229.

Note that, due to the equal number of infection averted by Strategies
11, 12, the ICER is not compared between these strategies. It is shown
in Table 10 that ICER(13) is greater than ICER(11). Thus, Strategy 11
strongly dominates Strategy 13, implying that Strategy 11 has greater
effectiveness at cheaper cost when implemented than Strategy 13.
Therefore, Strategy 13 is eliminated from the list of alternative control
strategies. At this point, there is no need to re-compute ICER further
13
for the competing Strategies 11 and 12 because the two strategies
avert the same total number of infections. However, the minimiza-
tion cost technique is used to decide which of the strategies is more
cost-effective. It is seen that Strategy 12 requires a lower cost to be
implemented compared to Strategy 11. Therefore, Strategy 12 (which
combines practising physical or social distancing protocols with the ef-
forts of practising personal hygiene by cleaning contaminated surfaces
with alcohol-based detergents and Fumigating schools in all levels of
education, sports facilities and commercial areas such as markets and
public toilet facilities) is considered the most cost-effective strategy in
Scenario C.

Scenario D: implementation of quadruplet
Using the simulated results for the optimality system when Strategy

14 in Scenario D is implemented (see Fig. 4), the cost-effective analysis
of this Strategy based on IAR, ACER shown.

Table 11 gives the summary of the results obtained from implement-
ing the IAR and ACER cost analysis techniques.

Determination of the overall most cost-effective strategy
So far, we have been able to obtain the most cost-effective strategy

corresponding to each of the four scenarios considered in this study and
also noticed from Fig. 4 that using all the controls reduces the disease
faster. Hence, it is also essential to determine the most cost-effective
strategy from the four most cost-effective strategy corresponding to a
particular scenario. Thus, IAR, ACER and ICER cost analysis techniques
are implemented for Strategy 1 (from Scenario A), Strategy 6 (from
Scenario B), Strategy 12 (from Scenario C) and Strategy 14 (from
Scenario D).

To compare Strategies 1, 6, 12 and 14 using IAR cost analysis
technique, it is observed in Fig. 6(a) and Table 12 that Strategy 1 has
the highest IAR value, followed by Strategy 11, Strategy 6 and Strategy
14. It follows that Strategy 1 (practising physical or social distancing
protocols only) is the overall most cost-effective strategy among all the
strategies of Scenarios A to D combined as analysed in this work.

Based on the ACER cost analysis technique, and using the results
illustrated in Fig. 6(b) and Table 12, it is noted that Strategy 1 has
the least ACER value. Strategy 6 is the next strategy with the least
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Table 11
Application of optimal controls: scenario D.

Strategy Infection averted Cost IAR ACER

Strategy 14: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) 2.2265 × 106 2.0437 × 103 1.4662 9.1789 × 10−4
Fig. 6. IAR and ACER for the most-effective strategies in Scenarios A–D.
Table 12
Incremental cost-effectiveness ratio for the most-effective strategies.

Strategy IA ×106 Cost IAR ACER ICER

Strategy 1: 𝑢1(𝑡), 2.0679 281.1135 1.5793 1.3594 × 10−4 1.3594 × 10−4

Strategy 6: 𝑢1(𝑡), 𝑢3(𝑡) 2.1128 1.3487 × 103 1.5239 6.3834 × 10−4 0.0238
Strategy 14: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) 2.2265 2.0437 × 103 1.4662 9.1789 × 10−4 0.0061
Strategy 12: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢4(𝑡) 2.2265 1.8726 × 103 1.4706 8.4107 × 10−4 –
Table 13
Incremental cost-effectiveness ratio for the most-effective strategies.

Strategy IA ×106 Cost IAR ACER ICER

Strategy 1: 𝑢1(𝑡), 2.0679 281.1135 1.5793 1.3594 × 10−4 1.3594 × 10−4

Strategy 14: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) 2.2265 2.0437 × 103 1.4662 9.1789 × 10−4 0.0111
Strategy 12: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢4(𝑡) 2.2265 1.8726 × 103 1.4706 8.4107 × 10−4 –
ACER value, followed by Strategy 14, then Strategy 11, which has the
highest ACER value. Therefore, Strategy 1 is also the most cost-effective
strategy among all the 14 control strategies considered in this paper.

It remains to compare Strategies 1, 6, 12 and 14 using the ICER
cost analysis technique. To do this, the control strategies are ranked in
increasing order of their effectiveness according to the total number of
infections averted (IA) as given in Table 12.

The calculation of ICER is as follows:

ICER(1) = 281.1135
2.0679 × 106

= 1.3594 × 10−4,

ICER(6) = 1.3487 × 103 − 281.1135
2.1128 × 106 − 2.0679 × 106

= 0.0238,

ICER(14) = 2.0437 × 103 − 1.3487 × 103

2.2265 × 106 − 2.1128 × 106
= 0.0061.

Note also that, due the equal number of infection averted by Strate-
gies 14 and 11, the ICER is not compared between these strategies.
The summary of the results is given in Table 12. Table 12 reveals a
cost-saving of $0.0061 for Strategy 14 over Strategy 6 based on the
comparison of ICER(14) and ICER(6). The lower ICER value obtained
for Strategy 14 indicates that Strategy 6 is strongly dominated, more
costly and less effective to implement than Strategy 14. Thus, Strategy 6
is discarded from the set of alternative control interventions. The ICER
is then calculated for Strategy 1 and Strategy 14 as iterated below and
shown in Table 13.

ICER(1) = 281.1135
2.0679 × 106

= 1.3594 × 10−4,

ICER(14) = 2.0437 × 103 − 281.1135
2.2265 × 106 − 2.0679 × 106

= 0.0111.

Table 13 reveals a cost-saving of $1.3594 × 10−4 for Strategy 1 over
14
Strategy 14 based on the comparison of ICER(1) and ICER(14). The
lower ICER value obtained for Strategy 1 indicates that Strategy 14 is
strongly dominated, more costly and less effective to implement than
Strategy 1. Thus, Strategy 14 is discarded from the set of alternative
control interventions. The ICER is then recalculated for Strategy 1 and
Strategy 12 as iterated below and shown in Table 14.

ICER(1) = 281.1135
2.0679 × 106

= 1.3594 × 10−4,

ICER(12) = 1.8726 × 103 − 281.1135
2.2265 × 106 − 2.0679 × 106

= 0.0100.

Table 14 reveals a cost-saving of $1.3594 × 10−4 for Strategy 1 over
Strategy 12 following the comparison of ICER(1) and ICER(12). The
lower ICER value obtained for Strategy 1 indicates that Strategy 12 is
strongly dominated, more costly and less effective to implement than
Strategy 1. Therefore, comparing the strategies in scenarios A-D, we
conclude that, Strategy 1 will be the most cost-saving and most effective
control intervention in the Kingdom of Saudi Arabia. However, in terms
of the infection averted, strategy 6, strategy 11, and strategy 12 and
strategy 14 are just as good as strategy 1.

Hence, from these analyses, we see that when one considers the
following controls: 𝑢1-practising physical or social distancing protocols;
𝑢2-practising personal hygiene by cleaning contaminated surfaces with
alcohol-based detergents; 𝑢3-practising proper and safety measures by
exposed, asymptomatic infected and asymptomatic infected individu-
als; 𝑢4-fumigating schools in all levels of education, sports facilities
and commercial areas such as markets and public toilet facilities in
Kingdom of Saudi Arabia. 𝑢1 (practising physical or social distancing
protocols) has the lowest incremental cost-effectiveness and, therefore,
gives the optimal cost on a large scale than all the other strategies.
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Table 14
Incremental cost-effectiveness ratio for the most-effective strategies.

Strategy IA ×106 Cost IAR ACER ICER

Strategy 1: 𝑢1(𝑡), 2.0679 281.1135 1.5793 1.3594 × 10−4 1.3594 × 10−4

Strategy 12: 𝑢1(𝑡), 𝑢2(𝑡), 𝑢4(𝑡) 2.2265 1.8726 × 103 1.4706 8.4107 × 10−4 0.0100
Concluding remarks

We formulated an optimal control model for the model proposed
in [20]. We used four COVID-19 controls in the absence of vaccina-
tion thus, practising physical or social distancing protocols; practising
personal hygiene by cleaning contaminated surfaces with alcohol-based
detergents; practising proper and safety measures by exposed, asymp-
tomatic infected and asymptomatic infected individuals; and fumigat-
ing schools in all levels of education, sports facilities and commercial
areas such as markets and public toilet facilities in Kingdom of Saudi
Arabia. The implementation of all the control shows that the disease
can be reduced when individuals strictly stick to the proposed controls
in this work. The efficacy plots in Fig. 5(b) shows that the controls
become much more effective after 39 days. We noticed that, in the
pool of the four controls, control 𝑢1 (practising physical or social
distancing protocols) and control 𝑢2 (practising personal hygiene by
cleaning contaminated surfaces with alcohol-based detergents) should
be applied at a constant level throughout, with much effort placed on
control 𝑢1 for 98 days. For the control 𝑢3, we noticed that the control
should be kept at 0.75 for 25 days and then gradually reduced to 0.29
for the rest of the simulation time. The control profile for control 𝑢4
shows that the control term should be kept for 0.75 for 18 days and then
gradually reduced to 0.29 for the rest of the simulation period. We also
calculated the infection averted ratio (IAR), average cost-effectiveness
ratio (ACER) and the incremental cost-effectiveness ratio (ICER). We
also utilized the cost-minimization analysis when it becomes evident
that strategies 11, 12, and 14 had the same number of infection averted.
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