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Abstract

Purpose of Review.—An increasing body of evidence indicates that persons living with HIV 

(PLWH) display dysfunctional immunometabolism. Here we provide an updated review of this 

topic and its relationship to HIV-associated immune stimuli and age-related disease.

Recent Findings.—HIV infection alters immunometabolism by increasing reliance on aerobic 

glycolysis for energy and productive infection and repurposing oxidative phosphorylation 

machinery for immune cell proliferation and survival. Recent studies in PLWH with diabetes 

mellitus and cardiovascular disease have identified an association with elevated T cell and 

monocyte glucose metabolism, respectively. Immunometabolic dysfunction has also been 

observed in PLWH in frailty and additional studies suggest a role for immunometabolism in 

non-AIDS defining cancers and neurocognitive disease. There is a plethora of HIV-associated 

immune stimuli that could drive immunometabolic dysfunction and age-related disease in PLWH 

but studies directly examining their relationship are lacking.

Summary.—Immunometabolic dysfunction is characteristic of HIV infection and is a potential 

link between HIV-associated stimuli and age-related comorbidities.
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Introduction

Immune activation and inflammation are fundamental components in the pathogenesis of 

HIV infection that persists in antiretroviral therapy (ART)-treated people living with HIV 

(PLWH), even those receiving ART treatment during acute infection [1–4]. Non-AIDS 

comorbidities that typically manifest with advancing age have become increasingly common 

in the ART era [5,6], with many of these comorbidities showing associations with immune 

activation [7,8]. The drivers of immune activation are likely multifactorial and even with the 

advent of a sterilizing or functional cure could persist, as exemplified by elite controllers that 

display elevated immune activation compared to healthy controls [9].

Unlike most other cells within the body, many types of immune cells demonstrate 

the ability to switch their metabolic program when activated to generate energy and 

synthesize the machinery needed to achieve efficient immune function [10]. Key metabolic 

pathways implicated include glycolysis, glutaminolysis, fatty acid oxidation, and oxidative 

phosphorylation; with various fuel sources utilized to produce the intermediates necessary 

for each pathway. Alteration of immune cell metabolic programming that affects these 

pathways can result in alteration of immune function. These findings have led to the 

burgeoning field of immunometabolism that has only recently emerged as a major area of 

research in the context of HIV infection. Here we review the immunometabolic dysfunction 

associated with HIV infection and how this relates to drivers of immune activation and 

major age-related comorbidities.

Immunometabolism in PLWH

Gene expression and metabolites of carbohydrate metabolism, amino acid metabolism, 

oxidative phosphorylation (OXPHOS) and the tricarboxylic acid (TCA) cycle are associated 

with immune activation and disease progression in PLWH [11,12,13••], highlighting the 

important role of immunometabolism during HIV infection. In the last decade, an increasing 

number of studies have examined the immunometabolic dysfunction characteristic of HIV 

infection. These studies are discussed below and summarized in Table 1.

In Vitro Effects of HIV on Monocyte, Macrophage, and T cell 
Immunometabolism—The susceptibility of CD4+ T cells to HIV infection is primarily 

governed by the metabolic activity of the cell and, once infected, CD4+ T cell metabolism 

becomes altered. Glucose is an integral fuel source for HIV-infected CD4+ T cells and 

is utilized primarily for glycolysis despite the presence of oxygen that can be used 

for OXPHOS (i.e., aerobic glycolysis) [14•]. Compared to uninfected CD4+ T cells, 

HIV-infected CD4+ T cells display increased glucose transporter-1 (GLUT1) expression, 

increased glucose uptake, increased lactate production, and upregulation of the glycolysis 

enzymes lactate dehydrogenase A (LDHA) and hexokinase-1 [15,16•,17]. The increased 

reliance on aerobic glycolysis is required for reverse transcription, integration, and virion 

production [16•,17], identifying the metabolic program of the CD4+ T cell as essential for 

productive HIV infection. Along these lines, the metabolically active effector memory CD4+ 

T cell subset is associated with productive infection, whereas naïve and central memory 

CD4+ T cell subsets are associated with latent infection [16•].
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In addition to increased aerobic glycolysis, HIV-infected CD4+ T cells repurpose their 

metabolic machinery using substrates of the TCA cycle [16•,18•]. The amino acid glutamine 

is used as a fuel source to repurpose the mitochondrial machinery and has been shown to be 

required for productive HIV infection [16•,18•]. Fatty acid oxidation was also identified as 

an energy source available to HIV-infected CD4+ T cells; however, glucose and glutamine 

are preferred [16•]. The concentrations of TCA cycle metabolites can also be affected 

by HIV factors. For example, treatment of Jurkat T cells with Tat alters mitochondrial 

machinery and increases production of succinate and malate in the TCA cycle [19]. A recent 

study in mice showed that increased CD4+ TH1 cell succinate promotes IFN-γ production 

and that the mitochondrial malate-aspartate shuttle is essential for gene regulation and 

proliferation of CD4+ TH1 cells [20].

Monocytes and macrophages can also be permissive to HIV infection. Similar to CD4+ 

T cells, the metabolic program of macrophages is affected by HIV infection [21•]. U937 

monocyte-derived macrophages treated with the HIV viral protein Vpr increase their 

metabolic activity with increases in the following glycolytic enzymes: the hexokinase 1 

(HK1), hexokinase 2 (HK2), glucose-6-phosphate dehydrogenase (G6PD) and pyruvate 

kinase M2 (PKM2) [22]. However, examination of primary human monocyte-derived 

macrophages latently infected with HIV did not show alterations in glycolysis, rather, 

they displayed mitochondrial dysfunction as evidenced by enlarged mitochondria and 

decreased OXPHOS [21•]. These latently infected macrophages also utilize glutamine as 

a major energy source [21•]. The use of glutaminolysis has been shown to maintain ROS 

homeostasis that may promote the survival of HIV infected macrophages [23].

Ex Vivo and In Vivo Effects of HIV on Monocyte, Macrophage, and T cell 
Immunometabolism—Both T cell and monocyte/macrophage immunometabolism has 

been assessed in PLWH. Compared to CD4+ T cells from people without HIV, CD4+ T 

cells and monocytes from treated PLWH have increased markers of activation and increase 

their reliance on aerobic glycolysis as evidenced by increased expression of GLUT1 and 

increased lactate production [24,25]. Assessment of monocyte subsets in treated PLWH 

show that the highest increase in the rate of glycolysis is seen in intermediate monocytes 

(CD14+CD16+) which have been shown to be pro-inflammatory and are expanded in PLWH 

[4,25]. These data suggest that the increased aerobic glycolysis in monocytes and T cells 

may contribute to the low-level chronic inflammation experienced by PLWH on ART. The 

increased proportion of CD4+ T cells expressing GLUT1 is negatively correlated with total 

CD4+ T cell percent in treated PLWH but not in people without HIV, providing a potential 

link between immunometabolism and decline of CD4+ T cells [26,27]. A study examining 

metabolite levels in plasma from elite controllers that spontaneously lose virological control 

identified increased lactate levels, indicative of increased aerobic glycolysis during viral 

rebound and immune dysfunction [13••].

Mitochondria have also been implicated in the dysfunctional immunometabolism in PLWH. 

GLUT1 expression on CD4+ T cells is associated with increased mitochondrial density and 

membrane potential in treated PLWH [24], but there is a decreased oxygen consumption 

rate (OCR), indicating a repurposing of the mitochondria in CD4+ T cells from solely 

oxidative phosphorylation during chronic HIV infection [26,28••]. A possible explanation 
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is the utilization of alternate fuel sources in the TCA cycle as it was observed that the 

TCA cycle intermediate alpha-ketoglutarate increases along with a decrease in the amino 

acid fuel source glutamate in the plasma of elite controllers that lose virological control 

[13••]. Dysfunctional mitochondria can result in increased reactive oxygen species (ROS) 

production and oxidative stress. HIV-specific CD8+ T cells from PLWH have increased 

mitochondrial mass and ROS production compared to CD8+ T cells from people without 

HIV [29]. In CD4+ T cells and CD8+ T cells, oxidative stress is associated with IL-7 

unresponsiveness, a lower CD4 count and increased production of cytokines [30].

Effects of HIV on Immunometabolism of Other Immune Cells—In addition to 

monocytes, macrophages and T cells; NK cells and B cells also play a pivotal role in 

controlling an HIV infection but there is a paucity of immunometabolism data for these cells 

in PLWH. When compared to T cells, peripheral NK cells and B cells from ART naïve 

PLWH are less bioenergetic, however, both are able to undergo metabolic reprogramming to 

achieve efficient function [28••,31,32]. A recent report shows that NK cells from untreated 

PLWH have decreased oxidative phosphorylation and glycolysis compared to people without 

HIV but there was no difference between treated PLWH and people without HIV [28••]. 

However, it has been shown that NK cells require prolonged stimulation in the presence of 

IL-15 to observe any metabolic differences with the method used [32]. Similar to NK cells, 

peripheral B cells showed no difference in either oxidative phosphorylation or glycolysis 

when comparing either treated or untreated PLWH with people without HIV, but B cell 

metabolic reprogramming has been shown to be influenced by the microenvironment and the 

immunogenic stimulant which can be very different in vivo [28••]. These data highlight the 

need for more studies to further classify the metabolic program of NK cells and B cells in 

PLWH.

Factors Contributing to Dysfunctional Immunometabolism in PLWH

Treatment of PLWH does not completely normalize immunometabolism to levels of healthy 

people without HIV [24,25]. This is likely due to a combination of different immune 

stimulating factors that may include microbial translocation of immunogenic products from 

the gut into circulation, chronic co-infection with cytomegalovirus (CMV), residual HIV 

production, gut microbial dysbiosis, and antiretroviral drugs. Each of these factors could 

potentially affect the metabolic state of immune cells but most have not been investigated as 

factors driving immunometabolic dysfunction in PLWH. These factors are described below 

and a model depicting their effect on the immunometabolism of CD4+ T cells is shown in 

Figure 1.

Microbial Translocation—During HIV infection the gastrointestinal mucosa undergoes 

irreversible damage [33–35]. The damaged mucosal barrier allows low levels of microbial 

components and microbes themselves to traverse the mucosa in a process referred to as 

microbial translocation (reviewed [36]). As microbes and some components of microbes are 

recognized by pattern recognition receptors (e.g., toll-like receptors) that stimulate immune 

cells, they could potentially serve as a chronic source of low-level immune stimulation. Both 

LPS and markers of immune activation are elevated in PLWH, and although reduced with 

antiretroviral therapy, both remain elevated compared to people without HIV [37]. Studies 
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in acutely SIV-infected pig-tailed macaques show that treatment with sevelamer, a drug that 

reduces systemic LPS levels, decreases immune activation [38]. In contrast to these studies, 

microbial translocation is similar between Ugandan children with and without HIV and is 

not associated with markers of immune activation, indicating that microbial translocation 

may not be a major cause of immune activation in all settings [39]. In addition, human 

studies that reduced systemic LPS levels pharmacologically with sevelamer or rifaximin 

had minimal to no effect on immune activation [7,40]. It remains to be determined whether 

microbial translocation is linked to immunometabolic perturbations in PLWH.

Microbial Metabolites—In addition to the structural damage that occurs in the gut 

mucosa, HIV infection also causes microbial dysbiosis in the gut [41–43]. The gut 

microbiome is less diverse in PLWH and is associated with increased monocyte activation 

[44]. This microbial dysbiosis is associated with decreased levels of bacteria that produce 

butyrate [45•], a short chain fatty acid (SCFA) that induces differentiation of regulatory 

T cells [46,47], and dampens monocyte, macrophage and dendritic cell inflammatory 

responses [47–49]. Many immune cells express SCFA receptors that, when stimulated, 

can impact cell function [50]. Administering prebiotics to PLWH can increase butyrate 

producing bacteria and dampen markers of immune activation [51]. Recently, incubation of 

human macrophages with butyrate was shown to decrease glycolytic metabolism [52].

Gut microbes can catabolize tryptophan into a number of metabolites that can interact 

with immune cells. Microbial dysbiosis in the gut of PLWH has been linked to increased 

microbial tryptophan metabolism and immune activation [41,53]. PLWH have evidence of 

increased tryptophan catabolism via the kynurenine pathway [54], with a resulting increase 

in the kynurenine to tryptophan ratio that is associated with atherosclerotic cardiovascular 

disease (CVD) and type 2 diabetes mellitus (DM) [53,55•]. These tryptophan metabolites 

have been shown to be active on human T cells, causing decreased differentiation of Th17 

cells and increased differentiation of Treg cells [54]. However, a recent study did not identify 

microbial tryptophan catabolizing enzymes (e.g., IDO-1) in the metatranscriptome of PLWH 

[56]. These differing results may be due to different study population characteristics. Host 

cells are also capable of metabolizing tryptophan via the kynurenine pathway, making it 

less clear if the increased kynurenine to tryptophan ratio observed in PLWH arises from 

tryptophan catabolism by microbial cells, host cells, or a combination of both.

Trimethylamine-N-oxide (TMAO) is a metabolite produced by select gut bacteria that 

metabolize choline and L-carnitine. Although most studies show no difference in TMAO 

levels in PLWH and people without HIV [57,58], TMAO levels in PLWH have been linked 

to atherosclerotic CVD and immune activation [59–61]. However, not all studies have 

demonstrated this linkage [57,62,63] and it remains unknown if and how TMAO can affect 

immune cells.

Cytomegalovirus—CMV infection is nearly universal in PLWH but does not usually 

cause any overt signs of disease in non-immunosuppressed PLWH [64,65]. A substantial 

proportion of CD4+ and CD8+ T cells are CMV-specific in PLWH, and although 

ART treatment alleviates CMV viremia, CMV-specific T cells either remain elevated or 

even increase [64,66]. In addition to the high level of CMV-specific T cells in treated 
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PLWH, markers of inflammation and immunosenescence are elevated compared to treated 

PLWH without CMV infection [67,68]. CD8+ T cell markers of immunosenescence are 

also increased in CMV-infected ART-treated PLWH compared to ART-untreated PLWH, 

however, they are at levels lower than CMV-infected, people without HIV, raising questions 

as to the role of CMV-associated immunosenescence in the context of HIV infection [69].

Detection of CMV DNA, but not EBV DNA, in ART-treated PLWH is associated with 

CD4+ T cell activation [70,71••], indicating that not all herpesviruses are associated with 

immune activation. Further supporting the role of CMV as a cause of immune activation, 

valganciclovir treatment of CMV-infected ART-treated PLWH with CD4+ T cell counts 

<350 cells/mm3 results in a reduction of CD8+ T cell markers of activation [72]. In the 

same study, valganciclovir had little impact on DNA detection of EBV, HHV-6 and HHV-8, 

providing further evidence as to the specificity of CMV, and not other herpesviruses, driving 

T cell activation [72]. How CMV influences immunometabolism in the context of HIV 

infection has not been examined.

Viral Reservoir—Adherence to contemporary antiretroviral therapy can reduce HIV viral 

loads to undetectable levels by traditional quantitative assays. However, ultra-sensitive 

assays that can detect a single viral copy per milliliter show that low levels of virus 

are detectable for most PLWH [73]. Whether this residual low-level viremia represents 

production or replication of HIV is not universally agreed upon [74,75]. Regardless, 

low level viremia detected by ultrasensitive assays is associated with soluble immune 

activation markers [76], and in poor immunologic responders, associated with cellular 

immune activation markers [77]. Interestingly, one study showed that CMV- and EBV-

specific CD4+ T cells are preferentially infected with latent HIV [78•], linking herpesvirus 

co-infection with immune activation and potentially virus production. A study that examined 

virologically suppressed treated PLWH showed a correlation between residual viremia, 

using an ultra-sensitive assay, and microbial translocation [79]. These studies demonstrate 

the interrelatedness of factors that may contribute to immune activation and dysfunctional 

immunometabolism in the context of HIV infection.

Antiretroviral Therapy—ART can have a direct effect on the mitochondrial function 

of immune cells [28••,80–82,83•]. Nucleoside reverse transcriptase inhibitors (NRTI) are 

a major cause of T cell mitochondrial dysfunction because they directly inhibit DNA 

polymerase-γ which is integral for mtDNA replication [84]. The NRTI tenofovir decreases 

mitochondrial respiration which may be caused by a decrease in expression levels of 

pyruvate dehydrogenase A (PDHA) and succinate dehydrogenase B (SDHB) [82]. Recent 

reports show that the effect of ART on mitochondria is not limited to the NRTI class, 

as integrase strand inhibitors (INSTI) and protease inhibitors (PI) reduce mitochondrial 

respiration in CD4+ T cells and increase ROS production [28••,85]. CD4+ T cells treated 

with NRTI, non-nucleoside reverse transcriptase inhibitors (NNRTI), INSTI and PI showed 

no differences in the expression of HIF1α, GLUT1 or PGK1, suggesting that ART effects 

on immunometabolism do not involve the glycolysis machinery [28••]. These studies 

highlight that ART may contribute to dysfunctional immunometabolism through altering 

mitochondrial function.
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Implications of Dysfunctional Immunometabolism to Age-related Diseases

PLWH display an aged immune cell phenotype earlier than age-matched individuals without 

HIV [86]. In addition, as PLWH live longer due to ART, aging exacerbates chronic immune 

activation and exhaustion, microbial translocation and dysbiosis, CMV reactivation and 

immune response [87–91]. Immunometabolism is likely an important mediator of this aging 

process and associated age-related disease.

Cardiovascular Disease—In the ART era, CVD is a leading cause of morbidity and 

mortality in PLWH [92]. PLWH, both men and women, are at an increased risk of coronary 

artery disease and myocardial infarction (MI) [93,94]. Although coronary artery disease 

is the most frequent form of cardiovascular disease in PLWH, there is also increased risk 

for other types of cardiovascular diseases, including stroke [94], ventricular dysfunction 

and heart failure [95], myocardial steatosis and fibrosis [96,97], atrial fibrillation [98], and 

pulmonary arterial hypertension [99].

Inflammation plays an integral role in the development of atherosclerosis and subsequent 

cardiovascular events [100]. The association of increased inflammation and the increased 

risk of CVD has been identified in both individuals without HIV and PLWH, but may 

be heightened in PLWH [101,102•]. Increased inflammation in PLWH, as measured by 

plasma levels of sTNFR-I and sTNFR-II, is associated with increased incidence of MI 

and stroke [7]. Additionally, IL-6, sIL-2R and D-dimer are associated with increased 

carotid artery intima-media thickness (CIMT) in treated women with HIV [103]. Immune 

activation is mediated by monocytes/macrophages and T cells as activation of these cell 

types is associated with the presence of carotid artery lesions and coronary plaques in 

PLWH [104,105]. Monocytes from PLWH are activated and have elevated prothrombotic 

tissue factor expression, which exacerbates the development of the atherosclerotic plaque 

[106,107••]. It is unclear as to the HIV-specific drivers of increased CVD risk, but 

both LPS and CMV have been directly implicated. LPS was shown to drive immune 

activation of monocytes and subsequent coagulopathy in an SIV model, thereby linking 

the microbial translocation product LPS to immune activation and CVD [107••]; and 

the immune response to CMV is associated with atherosclerotic CVD for PLWH [108–

110]. Additionally, TMAO concentration is associated with the number and severity of 

plaques in PLWH as well as immune activation and inflammation [59,61]. In a population 

of mostly ART-treated women with suppressed HIV infection, inflammatory monocyte 

GLUT1 expression was identified to be associated with cardiovascular disease markers and 

subclinical atherosclerotic cardiovascular disease [111••,112••], linking immune activation, 

immunometabolism and co-morbid cardiovascular disease.

Diabetes Mellitus—DM is more prevalent in PLWH compared to individuals without 

HIV, including a higher prevalence for younger non-obese PLWH [113••]. In the United 

States, DM prevalence for PLWH has increased from ≈ 0% in the pre-ART era to 6.8% 

‒11.8% in the modern ART era, highlighting the increasing importance of DM in PLWH 

[6,113••,114]. Increasing prevalence of type 2 DM in PLWH has also been shown in African 

countries, with higher prevalence of type 2 DM in PLWH compared to persons without 

HIV,and an even higher prevalence for untreated PLWH [115]. The increased prevalence of 
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DM in PLWH occurs in the absence of traditional risk factors, indicating the presence of 

HIV-specific factors in DM development [113••].

DM is now considered an inflammatory disease [116], and in PLWH DM is associated with 

activation of T cells and monocytes [53,117]. ART-treated PLWH with DM have increased 

inflammation, expression of CD4+ T cell GLUT1, and increased CD4+ T cell metabolic 

activity compared to those without DM [118]. Additionally, CD8+ T cells and monocytes 

from PLWH with DM compared to those without DM have increased expression of GLUT1 

(Butterfield TR, unpublished data). In a pathogenic SIV model, increased peripheral CD8+ 

T cells and increased inflammatory cytokine production was associated with a 2.6-fold 

decrease in GLUT4 (GLUT most responsive to insulin) expression on adipocytes [119•]. 

An analysis of insulin resistance in PLWH identified a negative correlation between 

HOMA-IR and expression of the monocyte electron transport chain (ETC) gene NDUFS7, 

inflammatory signaling pathway gene MAPK11, and adipokine signaling pathway gene 

CMKLR1 [120]. These findings provide evidence for immunometabolic perturbations in 

PLWH with DM and a potential linkage of systemic insulin resistance and the metabolic and 

activation state of monocytes.

Adipose tissue is an environment of adipocytes closely associated with macrophages and 

T cells, which communicate via cytokines to either maintain metabolic homeostasis or 

contribute to metabolic disorders [121,122]. Adipose tissue has been identified to play a 

key role in the development of insulin resistance, DM and other inflammatory conditions, 

as well as serving an additional role in PLWH as a possible reservoir for memory CD4+ 

T cells that harbor HIV [123]. The proportion of activated CD4+ T cells from adipose 

tissue of PLWH increases with increasing glucose intolerance [124•]. Most of these CD4+ 

T cells are of the effector memory phenotype which are more responsive to stimulation, 

suggesting that adipose tissue may provide a setting for chronic stimulation of CD4+ T cells 

in PLWH [124•]. These memory CD4+ T cells rely heavily on fatty acid oxidation (FAO) for 

proliferation and survival [10] and the byproducts of FAO, the acylcarnitines, are associated 

with DM and IR in PLWH [125,126]. Taken together, these findings suggest a role for the 

interaction between adipocytes and memory CD4+ T cells in the increased risk of DM in 

PLWH.

The availability and metabolism of amino acids in immune cells has also been shown to 

be associated with DM in PLWH. The plasma level of tryptophan is decreased, while the 

Kyr/Trp ratio is increased in PLWH with DM, indicating increased catabolism of tryptophan, 

though the cell type(s) responsible for the catabolism of tryptophan is unknown [53,127]. 

Tryptophan catabolism in PLWH with DM is associated with increased inflammation 

[53,125,127]. CMV-specific antibodies in PLWH have also been linked to inflammation 

and are associated with insulin resistance, supporting increased inflammation and immune 

activation with the development of DM in PLWH [128].

Cancer—Mortality from non-AIDS defining cancers (NADC) is increased in PLWH 

compared to people without HIV, with more severe forms at diagnosis [129,130]. During 

2006–2009 in the United States, 10% of mortality in PLWH was attributable to NADC, 

which increased each year over the study period of 1995–2009 [131]. The incidence of 
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NADC increased from 31.4% in the pre-ART era of 1991 – 1995 to 58% in the early-ART 

era of 1996 – 2002 [132]. The risk factors for cancers in PLWH include traditional risk 

factors such as smoking for lung cancer and age for all cancers [131,133,134]. However, 

when calculated risk is adjusted based on traditional risk factors, PLWH continue to have a 

higher risk for cancer compared to people without HIV [133,134]. These studies highlight 

the burden of cancers in PLWH on ART and that there are HIV-specific risk factors for 

cancer.

Immunometabolic dysfunction and inflammation experienced in PLWH may create an 

environment that promotes tumor growth. Increased IL-6 plasma concentration is associated 

with increased risk of developing cancer in PLWH, implicating inflammation in oncogenesis 

in PLWH [135]. It is believed that pulmonary inflammation and repeated infections result 

in the increased risk for lung cancer and that the immune dysfunction experienced even on 

ART plays a role in increased NADC risk [136,137]. In people without HIV an increased 

Kyr/Trp ratio is also implicated in the immunosuppressive environment that promotes tumor 

growth but has not been investigated in the context of HIV infection [138]. Furthermore, 

studies in people without HIV have shown that increasing lactate concentrations suppress 

the anti-tumor response [139,140], a process that could be exacerbated in PLWH considering 

the increased aerobic glycolysis [24,25] and plasma concentrations of lactate [13••].

Other Diseases—The age-related diseases discussed above are some of the most common 

and researched for PLWH, but others such as frailty and HIV-associated neurocognitive 

disorders (HAND) have also been investigated in the context of immunometabolism. Frailty, 

a condition characterized by physical slowness, fatigue, low activity, weakness and physical 

shrinking in the elderly, occurs at a younger age in PLWH [4,141] and is associated with 

increased measures of inflammation in PLWH [142,143]. Monocyte glycolytic metabolism 

and activation may be important for the development of frailty in PLWH, as increased 

expression of GLUT1 on monocytes is associated with frailty in treated PLWH [143,144•]. 

HIV-associated neurocognitive disorder (HAND) is also a major co-morbid condition in 

PLWH as more than half of PLWH are affected HAND [145]. Inflammation and viral 

replication in viral reservoirs appear to be the most integral factors leading to the burden of 

HAND in PLWH [146,147]. Markers of inflammation, T cell activation, monocyte activation 

and viral replication are associated with the presence of HIV-associated dementia (HAD) in 

PLWH [146,147] and CMV antibody response is associated with decreased neurocognitive 

performance in PLWH [148]. These age-related conditions are important risk factors for 

each other as it has been shown that neurocognitive decline in PLWH is a risk factor for 

frailty [149] and CVD and DM are independent risk factors for HAND [150]. This is further 

underscored by the fact that a number of PLWH present with more than one co-morbid 

condition [151,152].

Conclusion

HIV immunometabolism studies have increased dramatically in recent times, yet many 

important questions remain. The relationship between HIV-specific immune stimuli 

and immunometabolism is unknown and only a very small number of studies have 

investigated immunometabolism in the context of age-related diseases. Drug targeting of 
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immunometabolism has become a major area of investigation that could have therapeutic 

potential in the context of age-related disease in PLWH but remains unexplored. Future 

investigation of these topics will be important to more completely understand the role of 

immunometabolism in PLWH.
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Figure 1. Model of CD4+ T cell immunometabolism during HIV infection.
(a) Representation of a resting CD4+ T cell from a person without HIV. In the absence 

of stimulating factors, glucose is metabolized into pyruvate and is then further metabolized 

by entering the TCA cycle. Aerobic glycolysis, lactate production, amino acid utilization 

and production of inflammatory cytokines are absent. (b) Representation of a CD4+ T 

cell from a PLWH. Aerobic glycolysis may be initiated after stimulation of CD4+ T 

cells with lipopolysaccharide, cytomegalovirus, HIV components (e.g. Tat and Vpr) and/or 

replication of HIV. Initiation of aerobic glycolysis is accompanied by increases in glucose 

consumption, glucose transporter-1 surface expression, hexokinase-1 expression, and lactate 

dehydrogenase-A expression. HIV infection also augments mitochondrial respiration as 

CD4+ T cells utilize alternative fuel sources such as glutamine for oxidative phosphorylation 

and antiretroviral therapy impairs the electron transport chain and increases reactive oxygen 

species production. These changes in glycolysis and oxidative phosphorylation in CD4+ T 

cells from PLWH are associated with increased expression of inflammatory cytokines and 

increased reactive oxygen species. (Abbreviations: AA transporter – amino acid transporter, 

ART – antiretroviral therapy, CMV – cytomegalovirus, GLUT1 – glucose transporter-1, 

HK1 – hexokinase-1, LDH-A – lactate dehydrogenase-A, LPS – lipopolysaccharide, 

MCT1 – monocarboxylate transporter 1/2, ROS – reactive oxygen species, TCA cycle – 

tricarboxylic acid cycle)
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Table 1.

Summary of dysfunctional immunometabolism in HIV infection

Metabolic Modulation Cell Type Implications for PLWH References

Increased glucose uptake and 
expression of GLUT1 and HK1

CD4+ T cells,
CD14+CD16+

Monocytes,
Macrophages

Productive infection and 
susceptibility to infection

Palmer,
2013;
Palmer,
2014;
Hegedus,
2014; Loisel
Meyer, 2012;
Barrero,
2013;
Masson,
2017

Activation

Secretion of inflammatory 
cytokines

Decline in CD4 count

Increased lactate secretion and 
expression of LDHA

CD4+ T cells,
CD14+CD16+ Monocytes

Activation Liao, 2012; Palmer, 2013

Secretion of inflammatory 
cytokines

Increased intracellular glutamine CD4+ T cells, Macrophages Productive infection Hegedus,
2017; Datta,
2016Survival of chronically infected 

cells

Increased intracellular glutamic acid 
and α-ketoglutarate

Macrophages Survival of chronically infected 
cells

Datta, 2016

Increased ROS production CD4+ and CD8+ T cells, 
Macrophages

Survival of chronically infected 
cells

Castellano,
2019; Datta,
2016;
Kalinowska,
2013;
Masson,
2017

Unresponsiveness to IL-7

Increased fatty acid metabolism Macrophages Survival of chronically infected 
cells

Castellano,
2019; Datta,
2016

Increased mitochondrial density and 
hyperpolarized mitochondria

CD4+ and CD8+ T cells Increased sensitivity to apoptosis Kalinowska,
2013;
Masson,
2017

Unresponsiveness to IL-7

Abbreviations: GLUT1 – Glucose transporter-1; HK1 – hexokinase-1; LDHA – Lactate dehydrogenase A; ROS – reactive oxygen species.
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