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Abstract

The genetic locus containing the WWOX and MAF genes was implicated as a clinical 

Alzheimer’s disease (AD) risk locus in two recent large meta-analytic genome wide association 

studies (GWAS). In a prior GWAS, we identified a variant in WWOX as a suggestive risk 
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allele for hippocampal sclerosis (HS). We hypothesized that the WWOX/MAF locus may 

be preferentially associated with non-plaque- and non-tau-related neuropathological changes 

(NC). Data from research participants with GWAS and autopsy measures from the National 

Alzheimer’s Coordinating Center (NACC) and the Religious Orders Study and the Rush Memory 

and Aging Project (ROSMAP) were meta-analyzed. Notably, no variants in the locus were 

significantly associated with ADNC. However, several WWOX/MAF variants had significant 

adjusted associations with limbic-predominant age-related TDP-43 encephalopathy NC (LATE-

NC), HS, and brain arteriolosclerosis. These associations remained largely unchanged after 

adjustment for ADNC (operationalized with standard semiquantitative staging), suggesting that 

these associations are independent of ADNC. Thus, WWOX genetic variants associated with 

clinical AD-type dementia phenotype were associated pathologically with LATE-NC related brain 

changes, not ADNC.
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Introduction

The human WW domain-containing oxidoreductase (WWOX) and MAF bZIP transcription 

factor (MAF) genes are situated close to each other on chromosome 16q23. The normal 

functions of these genes are incompletely characterized. WWOX protein plays roles in 

transcription regulation, glucose metabolism, and central nervous system development 

(Kośla et al. 2019), while the protein encoded by the MAF gene is a transcription factor 

that regulates cellular processes including T-cell susceptibility to apoptosis.

This locus has been implicated in human disease. WWOX has been hypothesized to play 

a role in neurodegenerative disease, particularly Alzheimer’s disease (AD) (Chang et al. 

2014; Dourlen et al. 2019; Sze et al. 2004). A large genome-wide association study (GWAS) 

of clinical AD suggested that WWOX confers AD risk in non-Hispanic White individuals 

(Kunkle et al. 2019) and a follow-up GWAS in African American individuals nominally 

replicated this association (Kunkle et al. 2020). More recently, the largest AD GWAS to 

date also found an association between AD and MAF, the gene just downstream of WWOX 
(Bellenguez et al. 2020). In addition to AD, WWOX has also shown suggestive linkage with 

autism and schizophrenia (Bacchelli et al. 2020; McClay et al. 2011) and MAF has been 

associated with thyroid-related diseases, such as Graves’ disease and Hashimoto’s disease 

(Campbell et al. 2016). Nonetheless, the neurochemistry of WWOX and MAF in the human 

brain, and in human disease, is still poorly understood.

It has become increasingly clear that AD and AD-related dementias (AD-ADRD) are highly 

complex at both the individual level (multiple pathologies per person) and in a population 

(many different combinations of mixed pathologies). Thus, multiple neuropathological 

changes are associated with the AD clinical syndrome and these neurodegenerative diseases 

often co-occur, especially in older age (Rahimi and Kovacs 2014; Nelson et al. 2019). A 

recent community-based cohort study looking at the prevalence of multiple proteinopathies 
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in older adults found that all individuals had the presence of at least one of tau, amyloid-β 
(Aβ), α-synuclein, or TAR-DNA binding protein 43 (TDP-43) pathologies at autopsy and 

only 6.4% of individuals presented with only a single proteinopathy (Karanth et al. 2020).

A previous GWAS found WWOX to be a gene suggestive for association with hippocampal 

sclerosis (HS) pathology (Nelson et al. 2014). The brain conditions which were previously 

referred to as “HS-Aging” and “HS dementia” are now subsumed under a broader disease 

category, and are characterized by the presence of comorbid TDP-43 proteinopathy, which 

is a more sensitive and specific feature. The condition was recently classified with the term 

limbic-predominant age-related TDP-43 encephalopathy (LATE) (Nelson et al. 2019). The 

presence of the neuropathological changes underlying LATE (LATE-NC) is associated with 

a dementia syndrome similar to AD (Nelson et al. 2019).

Given that we had found a suggestive link between WWOX variants and HS, and 

others found an association between the WWOX/MAF locus and clinical AD, we 

hypothesized that a more definitive conclusion could be reached via a pathology-based 

study of separate cohorts with both genetic and pathologic information (including TDP-43 

proteinopathy) available. We investigated whether the WWOX/MAF AD association could 

be due to neuropathological changes other than AD-type pathological hallmarks, amyloid 

plaques and neurofibrillary tangles. GWAS data and autopsy-confirmed neuropathological 

endophenotypes were gathered from the National Alzheimer’s Coordinating Center (NACC) 

and from the Religious Orders Study and the Rush Memory and Aging Project (ROSMAP), 

to resolve novel associations between pathological findings and WWOX/MAF genetic 

variation.

Material and Methods

Study Participants

Phenotypic data from NACC (March 2021 data freeze) were linked with genotype data 

from the Alzheimer’s Disease Genetics Consortium (ADGC). Individuals who died at age 

65 years or older were included in this study. Similar to other studies using NACC data 

(Katsumata et al. 2020; Dugan et al. 2021), individuals were excluded from the NACC 

cohort if at least one of 19 rare brain diseases were diagnosed (Supplemental Table 1) or if 

they were missing any adjustment variables or all of the endophenotypes under study.

The ROSMAP study has been described in detail elsewhere (Mahoney et al. 2019). Briefly, 

data were acquired from two well-characterized cohort studies of aging and dementia. The 

Religious Orders Study (ROS), begun in 1994, and the Rush Memory and Aging Project 

(MAP), begun in 1997, involve older adults who enrolled without dementia, agreed to 

annual clinical evaluations and organ donation at death, and signed an Anatomical Gift Act 

for brain donation. Written informed consent was obtained from participants, and research 

was carried out in accordance with Institutional Review Board (IRB)-approved protocols. 

ROSMAP data are available online at the Rush Alzheimer’s Disease Center Resource 

Sharing Hub (https://www.radc.rush.edu/), as well as on the Accelerating Medicines 

Partnership-Alzheimer’s Disease (AMP-AD) Knowledge Portal (syn3219045).
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Neuropathological Endophenotype Definitions

In the NACC Neuropathology (NP) dataset, LATE-NC was defined as either present or 

absent using the “distribution of TDP-43 immunoreactive inclusions” variables indicating 

if TDP-43 proteinopathy was observed in either the hippocampus (NPTDPC NACC 

field), entorhinal/inferior temporal cortex (NPTDPD), or neocortex (NPTDPE) in a case 

lacking overall diagnosis of frontotemporal lobar degeneration (FTLD)-TDP. HS was 

defined as either present or absent based on the “hippocampal sclerosis of CA1 and/or 

subiculum” (NPHIPSCL) variable using the “unilateral,” “bilateral,” and “present but 

laterality not assessed” response categories. Arteriolosclerosis was defined similarly using 

the “arteriolosclerosis” (NACCARTE) variable and collapsing the “moderate” and “severe” 

response categories. Presence of neurofibrillary tangles was also defined dichotomously 

using the “Braak stage for neurofibrillary degeneration (B score)” (NACCBRAA) variable 

and collapsing the “stage V (B3)” and “stage VI (B3)” response categories. Presence of 

neuritic plaques was defined dichotomously using the “frequent neuritic plaques (C3)” 

response category of the “density of neocortical neuritic plaques (CERAD score) (C score)” 

(NACCNEUR) variable.

In ROSMAP, LATE-NC was defined dichotomously using the “TDP-43 stage” (tdp_st4) 

variable and collapsing the 2nd and 3rd stages in cases lacking FTLD-TDP. HS was 

defined dichotomously by the “hippocampal sclerosis was rated as definitely present with 

CA1 region affected” response category of the “definite presence of typical hippocampal 

sclerosis” (hspath_typ) variable. Arteriolosclerosis was defined dichotomously using the 

“arteriolosclerosis” (arteriol_scler) variable and collapsing the “moderate” and “severe” 

response categories. Presence of neurofibrillary tangles was defined dichotomously using the 

“semiquantitative measure of neurofibrillary tangles” (braaksc) variable and collapsing the 

“V” and “VI” response categories. Presence of neuritic plaques was defined dichotomously 

by the “definite” response category of the “semiquantitative measure of neuritic plaques” 

(ceradsc) variable.

Quality Control of Genotype Data

For NACC participants, genomic data from the ADGC imputed using the Haplotype 

Reference Consortium (ADGC-HRC) were used (McCarthy et al. 2016). The genetic data 

for ROSMAP was also imputed using the HRC and the methods have been described in 

detail elsewhere (Dumitrescu et al. 2020). Standard GWAS quality control (QC) procedures 

were performed separately on the ADGC and ROSMAP genotype data using PLINK1.9 

(Marees et al. 2018; Purcell et al. 2007). Variants were excluded if they were missing in 

more than 5% of samples, if they had a minor allele frequency less than 1%, or if they had 

Hardy-Weinberg Equilibrium (HWE) p-values < 1×10−6 among AD controls. Individuals 

were excluded if they were missing more than 5% of genotypes. Two individuals were 

considered related if they had an identity by descent measure of at least 0.25, which 

indicates that they are second-degree relatives. For related pairs, the individual with the 

lowest call rate was excluded.

NACC and ROSMAP genotype data were separately merged with 1000 Genomes data 

Phase 3. Principal components (PCs) were calculated for the merged data sets using the 
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“pca” procedure in PLINK1.9, and the first two PCs were plotted. The ADGC-HRC and 

ROSMAP individuals with first and second PCs that overlapped with those of the 1000 

Genomes individuals of known European ancestry were identified and all other individuals 

were excluded from the analysis.

Variant-Level Associations

All statistical analyses were conducted in R programming language, version 4.1.1 (R 

Core Team 2021). The gene boundaries of WWOX and MAF were defined based on the 

canonical transcripts (WWOX: 78,133,309 – 79,246,564; MAF: 79,627,744 – 79,634,622) 

using the GRCh37/hg19 gene range list from PLINK (https://www.cog-genomics.org/

plink/1.9/resources). Since both of the genome-wide significant WWOX/MAF AD variants 

(rs62039712 from Kunkle et al. and rs450674 from Bellenguez et al.) were in the intergenic 

region between the WWOX and MAF genes, we defined the WWOX/MAF locus to be from 

78,133,309 to 79,634,622 +/− 250kb of flanking.

Associations between each endophenotype and each variant were tested separately in the 

NACC and ROSMAP datasets using binary logistic regression models assuming each 

of the three most commonly used modes of inheritance (MOI): additive, dominant, and 

recessive. Variants were excluded from the analyses if they were multiallelic, if there were 

fewer than 15 minor alleles present across all participants, or if the logistic regression 

analysis resulted in complete or quasi-complete separation. All regression models adjusted 

for age at death, sex, ADGC data selection round (for NACC data) or ROS/MAP study 

(for ROSMAP data), and the first three genetic PCs. Odds ratios (OR) were calculated 

for each variant by exponentiating the variant’s beta estimate. Since some endophenotypes 

were only available in a subset of participants, PCs were calculated separately for each 

endophenotype using the “pca” procedure in PLINK1.9. NACC and ROSMAP variant-

level results were meta-analyzed using a fixed-effect, inverse-variance meta-analysis via 

the metagen function from the meta R package, version 4.18–0 (Balduzzi, Rücker, and 

Schwarzer 2019). Random-effect meta-analysis is appropriate, in general, for combining 

studies with varying studying designs but can result in problems concerning power and 

heterogeneity estimates, especially when few studies are combined (Jackson and Turner 

2017; von Hippel 2015; Gavaghan, Moore, and McQuay 2000). We, thus, chose to employ 

fixed-effect meta-analysis. Plots of study-specific and meta-analyzed variant-level p-values 

were created using LocusZoom Standalone, version 1.4 (https://genome.sph.umich.edu/

wiki/LocusZoom_Standalone) (Pruim et al. 2010). Linkage disequilibrium estimates were 

computed using LDlink assuming a CEU population (https://ldlink.nci.nih.gov/) (Machiela 

and Chanock 2015).

Variant Prioritization and Downstream Analyses

Statistically significant variants were identified using a Bonferroni-corrected threshold for 

significance that accounts for the effective number of independent tests in the WWOX/MAF 
+/− 250kb region. The effective number of independent tests in the region was calculated 

for each endophenotype subset using the method of Gao et al. (Gao, Starmer, and Martin 

2008). Briefly, Pearson’s correlation coefficient was calculated for all pairs of variants and 

these coefficients were placed in a square matrix. The eigenvalues of the matrix were then 
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computed and ordered from largest to smallest and the effective number of independent tests 

was defined to be the smallest number of ordered eigenvalues that account for 99.5% of 

the sum of all eigenvalues. The Bonferroni-corrected threshold for identifying prioritized 

variants for an endophenotype was defined as a variant-level p-value less than 0.05 divided 

by the effective number of independent tests in the region for the endophenotype.

Prioritized variants were investigated for expression quantitative trait loci (eQTL) and 

splicing quantitative trait loci (sQTL) associations using the Genotype-Tissue Expression 

(GTEx) Project’s V8 public data (Consortium 2013) and the BRAINEAC Brain eQTL 

Almanac (http://braineac.org/) (Ramasamy et al. 2014). Prioritized variants were also 

investigated for associations with other molecular mechanisms using the INFERring the 

molecular mechanisms of NOncoding genetic variants (INFERNO) software assuming a 

threshold on r2 of 0.5 and a threshold on linkage disequilibrium (LD) block size of 500 

kb (http://inferno.lisanwanglab.org/index.php) (Amlie-Wolf et al. 2018). Prioritized variants 

were also investigated for association with clinical AD using two large data sources: the 

Phase 3 summary statistics from the clinical AD GWAS of Jansen et al. (Jansen et al. 2019) 

and the ADGC-HRC data.

Sensitivity Analyses

The dependency of the study’s results on several analytic choices were investigated. 

In addition to including 250kb of flanking on both sides of the WWOX/MAF locus, 

all analyses were conducted assuming no flanking and 25kb of flanking. Since some 

neurodegenerative diseases are more pronounced at later ages and some variant effects 

may be age-dependent or only affect the age of onset, all analyses were also conducted on 

the subset of individuals with ages of death of 75 years or older. Finally, to determine 

if significant variant-level results were independent of ADNC, all analyses were also 

conducted while adjusting for the presence of neurofibrillary tangles and, separately, for 

the presence of neuritic plaques.

Results

In the NACC data set, n=3,749 individuals had available data for at least one of the 

endophenotypes along with GWAS data. In ROSMAP, a total of n=1,390 individuals had 

available data for at least one of the endophenotypes along with GWAS data. Table 1 shows 

a summary of individual characteristics and endophenotypes for both NACC and ROSMAP 

participants. NACC participants with neurofibrillary tangles (p<0.001), neuritic plaques 

(p<0.001), and brain arteriolosclerosis (p<0.001) tended to be younger at death. Conversely, 

ROSMAP participants with an endophenotype present tended to be older at death and were 

less likely to be male (all p<0.05).

Variant-Level Associations

A total of 9,492 genetic variants in the WWOX/MAF locus passed QC in NACC and 

8,953 variants passed QC in ROSMAP. A total of 8,256 variants were shared between 

NACC and ROSMAP and were included in the meta-analysis. Notably, rs62039712, the top 

WWOX/MAF variant from the Kunkle et al. clinical AD GWAS (Kunkle et al. 2019), did 
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not pass QC in either data set because it was missing in greater than 5% of individuals. No 

variants were in high enough linkage disequilibrium with rs62039712 in a CEU populations 

in LDlink to serve as proxies (no variants with R2 >0.4 within 500kb of rs62039712).

The WWOX variant previously found to be genome-wide suggestive for HS with a recessive 

MOI, rs55751884 (Nelson et al. 2014), had nominally significant adjusted associations 

with HS (OR=5.53, 95% CI: (1.51, 19.51), p=0.01133) in NACC and neuritic plaques 

in both NACC and ROSMAP (NACC: OR=2.38, 95% CI: (1.32, 4.57), p=0.00330; 

ROSMAP: OR=0.32, 95% CI: (0.07, 0.93), p=0.03506) assuming a recessive MOI (Table 

2). However, while the NACC and ROSMAP odds ratios for rs55751884 on neuritic 

plaques were of similar magnitude, they did not point in the same direction despite 

having the same minor allele (NACC: OR=2.38; ROSMAP: OR=0.32) and the adjusted 

meta-analytic p-value did not reach nominal significance (OR=1.58, 95% CI: (0.91, 2.74), 

p=0.10566). Notably, the adjusted meta-analytic association between rs55751884 and HS 

remained nominally significant when restricted to participants not included in the 2014 

HS GWAS (meta-analysis: OR=2.97, 95% CI: (1.13, 7.83), p=0.02748) representing a 

nominal replication of that HS association (Supplemental Table 2). When additive and 

dominant MOIs were assumed, additional adjusted associations reached nominal statistical 

significance including brain arteriolosclerosis in NACC (dominant MOI: OR=0.82, 95% CI: 

(0.69, 0.98), p=0.03008) (Supplemental Table 2).

The recently identified genome-wide significant clinical AD risk variant near the MAF gene, 

rs450674 which is between WWOX and MAF approximately 53kb away from MAF’s 3’ 

end (Bellenguez et al. 2020), had a nominally significant adjusted association with neuritic 

plaques in NACC (OR=0.86, 95% CI: (0.78, 0.96), p=0.00637) and in the meta-analysis of 

NACC and ROSMAP (OR=0.90, 95% CI: (0.82, 0.99), p=0.03227) assuming an additive 

MOI (Table 2). No additional adjusted associations were found to be nominally significant 

when assuming a recessive or dominant MOI (Supplemental Table 2).

Variant Prioritization and Downstream Analyses

The largest estimate of the effective number of independent tests for the WWOX/MAF locus 

± 250kb was 1,364 in NACC and 804 in ROSMAP. The larger of these two estimates was 

used to compute the Bonferroni-corrected threshold for the WWOX/MAF locus +/− 250kb 

of 3.67×10−5 (0.05/1,364). Variants with p-values less than this threshold were prioritized 

for further investigation. Associations with ADNC endophenotypes were notably absent for 

the recently identified clinical AD loci of rs62039712 and rs450674 (Figure 1). Several 

loci in the WWOX/MAF region contained variants that approached the Bonferroni-corrected 

threshold for significance in NACC but none surpassed it (Supplemental Figure 1).

Eight thousand two hundred and fifty-six variants were shared between NACC and 

ROSMAP in the WWOX/MAF locus ± 250kb and were meta-analyzed across NACC 

and ROSMAP. Five variants had meta-analytic p-values that met the Bonferroni-corrected 

significance threshold for the WWOX/MAF region ± 250kb for at least one endophenotype 

and one MOI. Two of these variants, rs6564590 and rs7404901, were associated with LATE-

NC assuming an additive MOI (OR=1.43, 95% CI: (1.22, 1.68), p=1.07×10−5 and OR=1.44, 

95% CI: (1.22, 1.69), p=1.56×10−5, respectively) and are in high LD with one another 
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(R2=0.735 in LDlink). Two additional variants, rs9925100 and rs9930659, were associated 

with HS while assuming a recessive MOI (OR=2.44, 95% CI: (1.63, 3.61), p=1.34×10−5and 

OR=2.29, 95% CI: (1.57, 3.34), p=1.82×10−5, respectively). These two variants are also in 

high LD with one another (R2 = 0.726 in LDlink) and are located approximately 947kb 

downstream from the previously identified WWOX HS locus, rs55751884. The remaining 

variant, rs4435266, was associated with brain arteriolosclerosis while assuming a dominant 

MOI (OR=0.74, 95% CI: (0.64, 0.85), p=2.02×10−5) (Table 3 and Figure 2). While the other 

endophenotypes were associated with variants in either the NACC-only or the ROSMAP-

only analyses, they did not have any associations with meta-analytic p-values that met the 

Bonferroni-corrected significance threshold (Supplemental Figure 2).

None of the prioritized meta-analytic variants were found to be associated with eQTLs or 

sQTLs for WWOX, MAF, or any other proximal genes in GTEx. However, all five variants 

were found to have notable associations in BRAINEAC. The two HS variants, rs9925100 

and rs9930659, had nominally significant eQTL associations for WWOX (both brain tissue-

wide p-values < 3.9×10−3) with the hippocampus and putamen regions having the strongest 

single-tissue associations. Both of the LATE-NC variants, rs6564590 and rs7404901, had 

nominally significant eQTL associations with MAF (brain tissue-wide p=0.040 and p=0.012, 

respectively), with the thalmus region having the strongest single-tissue association for 

rs6564590 (p=0.0096) and the frontal cortex region having the strongest single-tissue 

association for rs7404901 (p=0.0036). The brain arteriolosclerosis variant, rs4435266, also 

had a nominally significant eQTL association with MAF (brain tissue-wide p=0.019) 

with the cerebellum region having the strongest single-tissue association (p=0.0088). 

Additionally, in INFERNO the LATE-NC variants were found to be eQTLs for Roadmap 

enhancers in the blood and immune organ tissues, the brain arteriolosclerosis variant was 

found to be an eQTL for Roadmap enhancers in blood and skeletal muscle tissues, and the 

HS variants were found to be eQTLs for both Roadmap and FANTOM5 enhancers in the 

blood and Roadmap enhancers in immune organ and skeletal muscle tissues. Of the five 

prioritized variants, only rs7404901 was nominally significant in the Jansen et al. GWAS of 

clinical AD (Jansen et al. 2019), though the effect was weak (n=426,823, OR=1.005, 95% 

CI: (1.000, 1.009), p=0.03818). Three of the prioritized variants – rs6564590, rs9925100, 

and rs9930659 – had nominally significant marginal associations with clinical AD status in 

ADGC-HRC and the corresponding effect estimates were also small (n=21,439, OR=1.05, 

95% CI: (1.01, 1.09), p=0.01115; n=21,507, OR=0.96, 95% CI: (0.92, 1.00), p=0.04813; and 

n=20,865, OR=0.94, 95% CI: (0.91, 0.98), p=0.00521, respectively).

Sensitivity Analyses

Varying WWOX/MAF Flanking.—The Bonferroni-corrected threshold for the 

WWOX/MAF locus was estimated to be 3.12×10−5 (0.05/1,214) with 25kb of flanking and 

4.19×10−5 (0.05/1,194) with 0kb of flanking. Not surprisingly, all five of the prioritized 

meta-analytic variants along with the majority of the NACC-only and ROSMAP-only 

variants identified in the primary analysis with 250kb of flanking were also identified 

when the flanking was reduced. The exception to this were several variants associated 

with neuritic plaques in the NACC-only analysis which were located just upstream of 

WWOX near the CLEC3A gene. Of the 12 neuritic plaque variants that surpassed the 
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Bonferroni-corrected threshold in the NACC-only analysis when the WWOX/MAF locus 

was flanked by 250kb, only one variant (rs79416778) remained with no flanking. This result 

highlights the specificity of the neuritic plaques association, not only with NACC, but with 

the CLEC3A gene specifically. See Supplemental Table 4 for the complete results.

Age of Death 75+: The odds ratio estimates for all five of the prioritized meta-analytic 

variants remained largely unchanged when the analyses were restricted to only those 

individuals with an age of death of 75 years of age or older. Additionally, the meta-analytic 

p-values for the associations between rs6564590 and LATE-NC (OR=1.42, 95% CI: (1.20, 

1.66), p=2.85×10−5) and rs4435266 and brain arteriolosclerosis (OR=0.73, 95% CI: (0.63, 

0.85), p=3.07×10−5) and remained below the Bonferroni-corrected threshold. The remaining 

associations were all nominally significant, but did not quite meet the Bonferroni-corrected 

threshold (all remaining p-values ≤ 6.12×10−5). These findings suggest that age of death 

does not meaningfully impact the associations between the prioritized variants and the 

endophenotypes. See Supplemental Table 5 for the complete results.

Adjusting for ADNC.—The odds ratio estimates for all five of the prioritized meta-

analytic variants remained largely unchanged when the analyses were adjusted for 

neurofibrillary tangles and, separately, neuritic plaques. Additionally, all of the meta-analytic 

p-values remained nominally significant after adjustment for neurofibrillary tangles and, 

separately, neuritic plaques. These findings suggest that the associations of the prioritized 

variants are independent of ADNC. See Supplemental Table 6 for the complete results.

Discussion

Using autopsy-confirmed neuropathologic endophenotypes, we evaluated the genetic 

associations between the WWOX/MAF locus and several neurodegenerative diseases using 

neuropathological changes to operationalize the presence and severity of the diseases. 

We found significant adjusted meta-analytic associations between WWOX variants and 

LATE-NC, HS, and brain arteriolosclerosis. While previous GWASs linked variants in the 

WWOX/MAF locus with HS and clinical AD, the associations with LATE-NC and brain 

arteriolosclerosis have never been reported. Furthermore, since these associations remained 

nominally significant after adjustment for AD-related neuropathological changes and none 

of the variants were robustly associated with clinical AD, it suggests that the LATE, HS, 

and brain arteriolosclerosis neuropathological changes associated with WWOX/MAF are 

independent of ADNC.

The novel neuritic plaque signal found in the NACC-only analyses near the CLEC3A gene is 

intriguing since other CLEC family genes have been linked to AD and inflammation (Wang, 

Liu, et al. 2020; Porcellini et al. 2010; Meng et al. 2020). Additionally, a recent genome-

wide interaction analysis found evidence of variant-by-variant interactions for neurofibrillary 

tangles involving variants near CLEC3A and WWOX (Wang, Yang, et al. 2020). Further 

investigations into the influence of CLEC3A on neurodegenerative disease are warranted.

The previously identified AD-associated WWOX/MAF variant, rs62039712, did not pass 

QC in either dataset and did not have any proxy variants, and was only available in two of 
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the 12 Stage 1 GWAS cohorts from Kunkle et al. These factors indicate that rs62039712 

was difficult to impute. The recently identified AD-associated MAF variant, rs450674 

(Bellenguez et al. 2020), which is located approximately 362kb downstream of WWOX and 

is not in linkage disequilibrium with rs62039712, was found to have a nominally significant 

adjusted association with neuritic plaques in NACC (OR=0.86, 95% CI: (0.78, 0.96), 

p=0.00637) and in the meta-analysis of NACC and ROSMAP (OR=0.90, 95% CI: (0.82, 

0.99), p=0.03227). However, since Kunkle et al., Bellenguez et al., and the present study 

have all utilized data from the ADGC – albeit using different, more specific phenotypes in 

the case of the current study – this region of the genome should be investigated further in 

other datasets to better understand its influence on AD risk.

We examined the associations of the genome-wide suggestive HS WWOX variant, 

rs55751884, with neuropathological endophenotypes. The rs55751884 variant was 

nominally significant in adjusted association tests for neuritic plaques in both NACC and 

ROSMAP (NACC: OR=2.38, 95% CI: (1.32, 4.57), p=0.00330; ROSMAP: OR=0.32, 95% 

CI: (0.07, 0.93), p=0.03506), HS in NACC (OR=5.53, 95% CI: (1.51, 19.51), p=0.01133), 

and borderline significant for neurofibrillary tangles in NACC (OR=1.66, 95% CI: (0.94, 

3.07), p=0.08202). Even though the meta-analytic association between HS and rs55751884 

did not reach the Bonferroni-corrected threshold for significance in our current study, that 

same region of WWOX had the strongest association with arteriolosclerosis in ROSMAP, 

which also merits additional investigation.

Given the abundant evidence that mixed pathologies are highly prevalent in elderly 

populations, the hypothesis that WWOX is associated with several neuropathological 

endophenotypes fits in with recent studies looking at genetic pleiotropy in neurological 

conditions (Chornenkyy, Fardo, and Nelson 2019). Pleiotropic effects have been found 

between AD and Parkinson’s disease (Ibanez et al. 2018), AD and amyotrophic lateral 

sclerosis (Montibeller and de Belleroche 2018), early-onset AD and frontotemporal 

dementia (Cochran et al. 2020), AD-related psychosis and schizophrenia (Creese et al. 

2019), LATE-NC and FTLD-TDP (Nelson et al. 2019), and, more recently, LATE-NC 

and HS (Dugan et al. 2021). A specific example is the MAPT gene which is a risk 

allele for many tauopathies, and also for Parkinson’s disease (not a condition linked to 

tau pathology) (Lin and Farrer 2014). Pleiotropic effects have also been found between 

AD-related neuropathological changes like neuritic plaques, neurofibrillary tangles, and 

cerebral amyloid angiopathy (Chung et al. 2018). Further, it has been shown that brain 

arteriolosclerosis is linked to HS and LATE-NC (Blevins et al. 2020; Neltner et al. 2014). 

Our data indicate that the associations between the WWOX/MAF locus and LATE-NC, 

HS, and brain arteriolosclerosis were independent of ADNC. Thus, WWOX is apparently 

associated with more than one clinico-pathologic entity. Since WWOX is also known to play 

a role in molecular functions (Teng et al. 2013), autism spectrum disorder (Bacchelli et al. 

2020), multiple sclerosis (Beecham et al. 2013), schizophrenia (McClay et al. 2011), and 

brain volume (Xia et al. 2017), it is a good target for additional follow-up studies.

There are limitations to our study. While the NACC and ROSMAP cohorts are quite 

different due to varying recruitment models, our primary results showed agreement between 

the two cohorts. For the five newly identified variants, the allele frequencies and effect 
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estimates were broadly consistent across NACC and ROSMAP, suggesting that these 

variants are similarly prevalent and associative in both cohorts (Table 3). The two studies 

did show some disagreement. When the WWOX/MAF variants previously reported were 

investigated in the present study, rs55751884 showed diverging results between NACC and 

ROSMAP for neurofibrillary tangles and neuritic plaques and differing effect sizes for 

HS and LATE-NC (Table 2). Additionally, the association between CLEC3A variants and 

neuritic plaques was seen only in the NACC cohort.

Because data come from studies employing variable study designs and are highly 

homogeneous, the degree to which findings are generalizable is unknown, especially 

concerning individuals of non-Caucasian ancestries. Additionally, while a random effects 

meta-analysis can be optimal for combining heterogeneous studies, we employed a fixed 

effects meta-analysis as we were only combining two studies and a random effects 

approach can be underpowered in such situations (Jackson and Turner 2017). These 

suggestive findings extend prior research in the field that linked the WWOX/MAF locus 

with neurodegenerative phenotypes. Yet these findings need corroborative evaluations in 

additional data sets to evaluate the relationships between genetics and neuropathologic data.

Conclusions

In conclusion, we showed using large genetic datasets and autopsy-derived endophenotypes 

that neuropathological endophenotypes related to LATE, HS, and brain arteriolsclerosis 

were associated with WWOX/MAF gene variants. While clinical diagnoses of AD may be 

helpful for discovering dementia-related genetic variation, our study adds to the growing 

body of literature highlighting the complexity of dementia phenotypes, and the benefit of 

leveraging autopsy-derived data for studies of aging-related brain disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AD Alzheimer’s disease

ADGC Alzheimer’s disease genetics consortium

ADNC Alzheimer’s disease neuropathological changes

ADRD Alzheimer’s disease-related dementias

AD-ADRD Alzheimer’s disease and Alzheimer’s disease-related dementias

eQTL expression quantitative trait loci

FTLD frontotemporal lobar degeneration

GTEx Genotype-Tissue Expression

GWAS genome wide association study

HS hippocampal sclerosis

HWE Hardy-Weinberg equilibrium

LATE limbic-predominant age-related TDP-43 encephalopathy

LATE-NC limbic-predominant age-related TDP-43 encephalopathy 

neuropathological changes

LD linkage disequilibrium

MOI mode of inheritance

NACC National Alzheimer’s Coordinating Center

NP neuropathology

OR odds ratio

PC principal component

QC quality control

ROSMAP Religious Orders Study and the Rush Memory and Aging Project

sQTL splicing quantitative trait loci

TDP-43 TAR-DNA binding protein 43

WWOX WW domain-containing oxidoreductase
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Article Highlights:

• The WWOX/MAF locus has been identified as a potentially harboring AD 

risk variants

• The present study failed to find associations with AD-related endophenotypes

• However, several other non-AD endophenotypes were associated with 

WWOX/MAF variants

• The novel associations were unchanged by adjustment for AD-related 

endophenotypes
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Figure 1: 
LocusZoom plots of the WWOX/MAF region ± 250kb for A neuritic plaques and B 
neurofibrillary tangles, both assuming an additive MOI. Meta-analytic variant-level p-values 

were adjusted for age at death, sex, Alzheimer’s Disease Genetics Consortium (ADGC) 

cohort or Religious Orders Study and Memory and Aging Project (ROSMAP) study, 

and first three genetic principal components and meta-analyzed across the NACC and 

ROSMAP cohorts. The horizontal line at 4.44 represents the Bonferroni-corrected threshold 

for significance for the WWOX/MAF locus ± 250kb. The blue region on the gene window 

highlights the location of rs55751884, the variant previously found to be genome-wide 

suggestive for HS; the green region on the gene window highlights the location of 

rs62039712, the variant previously found to be genome-wide significant for clinical AD; 

and the red region on the gene window highlights the location of rs450674, an MAF variant 

recently found to be associated with clinical AD.
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Figure 2: 
LocusZoom plots of the WWOX/MAF region +/− 250kb for A hippocampal sclerosis (HS) 

assuming a recessive mode of inheritance (MOI), B limbic-predominant age-related TDP-43 

encephalopathy neuropathological changes (LATE-NC) assuming an additive MOI, and C 
brain arteriolosclerosis assuming a dominant MOI. Variant-level p-values were adjusted for 

age at death, sex, Alzheimer’s Disease Genetics Consortium (ADGC) cohort or Religious 

Orders Study and Memory and Aging Project (ROSMAP) study, and first three genetic 

principal components. The horizontal line at 4.44 represents the Bonferroni-corrected 

threshold for significance for the WWOX/MAF locus ± 250kb. The blue region on the gene 

window highlights the location of rs55751884, the variant previously found to be genome-

wide suggestive for HS; the green region on the gene window highlights the location of 

rs62039712, the variant previously found to be genome-wide significant for clinical AD; 

and the red region on the gene window highlights the location of rs450674, an MAF variant 

recently found to be associated with clinical AD.
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Table 1:

Individual characteristics stratified by endophenotype status for National Alzheimer's Coordinating Center 

(NACC) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP) participants.

Endophenotype Status

NACC ROSMAP

Number of 
Participants (%)

Age at Death, 
Mean (SD)

Female, N 
(%)

Number of 
Participants (%)

Age at Death, 
Mean (SD)

Female, N 
(%)

Hippocampal Sclerosis N=631 85.9 (8.3) 319 (50.6) N=1200 89.6 (6.5) 812 (67.7)

 Absent 542 (85.9) 85.9 (8.4) 270 (49.8) 1091 (90.9) 89.3 (6.5) 729 (66.8)

 Present 89 (14.1) 86.0 (7.5) 49 (55.1) 109 (9.1) 92.4 (6.0) 83 (76.1)

LATE-NC N=412 85.1 (7.9) 207 (50.2) N=1130 89.8 (6.4) 775 (68.6)

 Absent 291 (70.6) 84.9 (8.1) 138 (47.4) 733 (64.9) 88.8 (6.6) 471 (64.3)

 Present 121 (29.4) 85.4 (7.3) 69 (57.0) 397 (35.1) 91.8 (5.6) 304 (76.6)

Neurofibrillary Tangles N=3760 82.5 (8.2) 1939 (51.6) N=1390 89.4 (6.5) 944 (67.9)

 Braak Stage 0 to IV 1236 (32.9) 85.0 (8.4) 639 (51.7) 1046 (75.3) 88.9 (6.7) 679 (64.9)

 Braak Stage V or VI 2524 (67.1) 81.2 (7.9) 1300 (51.5) 344 (24.7) 91.0 (5.6) 265 (77.0)

Neuritic Plaques N=3764 82.5 (8.2) 1940 (51.5) N=1222 89.5 (6.5) 825 (67.5)

 None/Sparse/Moderate 1269 (33.7) 85.9 (8.3) 612 (48.2) 810 (66.3) 89.2 (6.8) 510 (63.0)

 Frequent 2495 (66.3) 80.7 (7.6) 1328 (53.2) 412 (33.7) 90.2 (5.8) 315 (76.5)

Brain Arteriolosclerosis N=2999 82.9 (8.3) 1514 (50.5) N=1390 89.4 (6.5) 944 (67.9)

 None/Mild 1720 (57.4) 81.9 (8.4) 832 (48.4) 1013 (72.9) 89.0 (6.4) 666 (65.7)

 Moderate/Severe 1279 (42.6) 84.3 (8.0) 682 (53.3) 377 (27.1) 84.3 (8.0) 278 (73.7)

NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; SD = standard 
deviation; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological changes.
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Table 2:

Adjusted results for previously published HS and clinical AD variants in the WWOX/MAF locus. All analyses 

adjusted for age at death, sex, Alzheimer’s Disease Genetics Consortium (ADGC) cohort or Religious Orders 

Study and Memory and Aging Project (ROSMAP) study, and the first three genetic principal components. The 

rs55751884 results are reported assuming a recessive mode of inheritance (MOI) as that was the MOI with the 

strongest association in Nelson et al., 2014. The rs450674 results are reported assuming an additive MOI as 

that was the MOI reported in Bellenguez et al., 2020.

Variant Effect 
Allele MOI Endophenotype

NACC ROSMAP Meta-Analysis

OR 95% 
CI

P-value OR 95% 
CI

P-value OR 95% 
CI

P-value

rs55751884 C Rec.

Hippocampal 
Sclerosis

5.53 1.51–
19.51

0.01133 1.88 0.53–
5.21

0.29671 3.04 1.32–
6.97

0.00878

LATE-NC 3.69 0.75–
20.26

0.10571 1.21 0.48–
2.92

0.67826 1.58 0.73–
3.44

0.24823

Neurofibrillary 
Tangles

1.66 0.94–
3.07

0.08202 0.57 0.21–
1.38

0.22405 1.23 0.75–
2.02

0.41942

Neuritic Plaques 2.38 1.32–
4.57

0.00330 0.32 0.07–
0.93

0.03506 1.58 0.91–
2.74

0.10566

Brain 
Arteriolosclerosis 1.24 0.73–

2.08 0.42069 1.48 0.63–
3.32 0.35418 1.30 0.84–

2.02 0.23621

rs450674 C Add.

Hippocampal 
Sclerosis

0.77 0.48–
1.23

0.26429 1.29 0.85–
2.00

0.23481 1.02 0.74–
1.39

0.91268

LATE-NC 1.05 0.76–
1.46

0.75143 0.97 0.81–
1.17

0.75133 0.99 0.84–
1.16

0.90518

Neurofibrillary 
Tangles

0.93 0.83–
1.04

0.20840 0.95 0.79–
1.13

0.56609 0.94 0.85–
1.03

0.16999

Neuritic Plaques 0.86 0.78–
0.96

0.00637 1.05 0.87–
1.27

0.62292 0.90 0.82–
0.99

0.03227

Brain 
Arteriolosclerosis 0.93 0.84–

1.04 0.22636 1.04 0.87–
1.25 0.66185 0.96 0.87–

1.06 0.41977

NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; LATE-NC = 
limbic-predominant age-related TDP-43 encephalopathy neuropathological changes; MOI = mode of inheritance; Rec. = recessive MOI; Add. = 
additive MOI; OR = odds ratio; and CI = confidence interval.
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Table 3:

Variant-level results for variants with uncorrected meta-analytic p-values that met the Bonferroni-corrected 

threshold for significance for the WWOX/MAF locus ± 250kb. All analyses adjusted for age at death, sex, 

Alzheimer’s Disease Genetics Consortium (ADGC) cohort or Religious Orders Study and Memory and Aging 

Project (ROSMAP) study, and the first three genetic principal components.

Endophenotype Variant Effect 
Allele

MOI

NACC ROSMAP Meta-Analysis

Allele 
Freq. OR 95% 

CI P-value Allele 
Freq. OR 95% 

CI P-value OR 95% 
CI P-value

LATE-NC

rs6564590 G Add. 0.428 2.09 1.50–
2.94

8.65×10−6 0.421 1.28 1.07–
1.54

0.00783 1.43 1.22–
1.68

1.07×10−5

rs7404901 C Add. 0.349 1.94 1.38–
2.74

0.00011 0.354 1.31 1.09–
1.58

0.00435 1.44 1.22–
1.69

1.56×10−5

HS

rs9925100 C Rec. 0.316 2.32 1.19–
4.35

0.01481 0.328 2.49 1.48–
4.07

0.00087 2.44 1.63–
3.61

1.34×10−5

rs9930659 C Rec. 0.350 2.87 1.54–
5.20

0.00112 0.364 1.98 1.20–
3.17

0.00829 2.29 1.57–
3.34

1.82×10−5

B-ASC rs4435266 A Dom. 0.182 0.75 0.64–
0.88

0.00041 0.184 0.71 0.54–
0.94

0.01447 0.74 0.64–
0.85

2.02×10−5

NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; HS = hippocampal 
sclerosis; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological changes; B-ASC = brain arteriolosclerosis; MOI 
= mode of inheritance; Rec. = recessive MOI; Add. = additive MOI; Dom. = dominant MOI; OR = odds ratio; and CI = confidence interval.
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