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Abstract

Breast cancer ecosystems are composed of complex cell types, including tumor, stromal 

and immune cells, each of which can assume diverse phenotypes. Both the heterogeneous 

composition and spatially distinct tumor microenvironment impact breast cancer progression, 

treatment response and therapeutic resistance. Thus, a deeper understanding of breast cancer 

heterogeneity may help facilitate the development of novel therapies and improve outcomes for 

patients. The advent of paradigm shifting single-cell analysis and spatial pathologies allows for a 

comprehensive analysis of the tumor ecosystem as well as the interactions between its components 

at unprecedented resolution. In this review, we discuss the insights gained through single-cell 

analysis and spatial pathologies on breast cancer heterogeneity.
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1. Introduction

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer 

death in women worldwide (1). Breast cancer is composed of mosaic populations of tumor, 

immune and stromal cells with varying genetic, epigenetic, and phenotypic characteristics. 

Heterogeneous tumor cell subpopulations allow for selection and Darwinian evolution 

and enable beneficial cooperative interactions that may promote tumor progression and 

therapy resistance (2–4). The tumor immune and stroma context, i.e. the composition, 

spatial organization, and functional orientation of various immune and stromal cell 

subsets also strongly influences the disease course and patient outcome. The recent 

advancement of antibody-based immune-checkpoint blockage (ICB) therapies has paradigm 

shifted cancer treatment (5). However, only a minority of breast cancer patients respond 

to immunotherapy (6–8). A deeper analysis of the complexity and diversity of the 

tumor ecosystem holds promise for stratification of patients, prediction of therapeutic 

responsiveness, and potentially the identification of new druggable targets. Traditional bulk 
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tumor profiling can reveal global tumor features, but cannot decode the cellular origin 

of gene expression, the spatial organization within tumors or the variability of individual 

cellular programs. Cutting-edge single-cell analysis and spatial pathologies are paving 

the way for comprehensively studying tumor heterogeneity. In this review, we summarize 

initially the conventional view of breast cancer heterogeneity. We then provide an overview 

of the recent technological developments of single-cell analysis and spatial pathologies. Key 

examples that leverage these technologies are provided to help elucidate the manifestations, 

drivers, and consequences of breast tumor heterogeneity. Finally, we discuss how this 

knowledge might be translated into novel therapeutic approaches.

2. Conventional breast cancer classification

Multiple efforts have been made to assess the intertumor and intratumor heterogeneity 

of breast cancer. Historically in the 1990s, breast cancer was defined as a disease with 

variations in prognosis and response to therapy. In the decade beginning in 2000, breast 

cancer was shown to be comprised of multiple subtypes. Beginning in 2014, based on a 

combination of histopathology, molecular profiles, and mutational repertoires, each tumor 

was shown to be genetically heterogeneous and composed of multiple clones (9).

Breast cancer can be categorized using different parameters. When classified by histological 

features, invasive ductal carcinoma not otherwise specified (IDC NOS) and invasive lobular 

carcinoma (ILC) are the two most common subtypes making up approximately 90% 

of all breast cancers (10). Immunopathological classification based on the presence of 

the estrogen receptor (ER), progesterone receptor (PR), and human epidermal receptor 2 

(HER2) defines subtypes with distinct prognosis and targeted treatment options. The more 

recently described intrinsic subtypes of breast cancer rely on mRNA expression that reflect 

tumor cell intrinsic properties from bulk tissue, and separate breast tumors into luminal 

A, luminal B, HER2-enriched, basal-like, and normal-like subtypes (11, 12). A variety of 

related classifiers also have been being proposed (13–19). Relationships among the above-

mentioned classifications have been reviewed elsewhere (20, 21).

Besides tumor cell intrinsic features, the tumor microenvironment also allows for 

stratification and has prognostic significance (22, 23). Immunogenomic analysis of The 

Cancer Genome Atlas (TCGA) data which profiled bulk tumors identified six immune 

subtypes across cancer types: Wound healing, IFN-γ dominant, Inflammatory, Lymphocyte 

depleted, Immunologically quiet, and TGF-β dominant (24). Luminal A breast cancer is 

enriched in the wound healing subtype whereas highly mutated breast tumors are enriched 

in the IFN-γ dominant subtype (24). Tumor microenvironment (TME) features also have 

been associated with triple-negative breast cancer (TNBC) molecular subtypes and overall 

survival (25).

Intratumor heterogeneity poses a significant challenge in applying molecular prognostic 

markers and classifying patients that might benefit from specific therapies. The IHC 

threshold for ER/PR positivity is defined as greater than 1% of cells display expression 

(26, 27). Positive HER2 status is reported when tumors exhibit amplification of the ERBB2 
(HER2) gene or the proportion of HER2+ tumor cells within the tumor exceeds a 10% 
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threshold (28). This leaves the majority of cells uncharacterized. Besides tumor cells, a 

better characterization of tumor infiltrating immune and stromal cells may provide a better 

strategy for stratifying patients and overcoming immune suppression.

3. Enabling technologies for assessing tumor heterogeneity

Traditional bulk genomic, transcriptomic, and epigenetic analyses have provided valuable 

information, but this is integrated from multiple tumor clones and both tumor and 

nontumor cells derived from the microenvironment. This information, therefore, is 

difficult to completely deconvolve and critical differences between individual cells 

may be obscured. Recent advancements in single-cell analysis, spatial pathologies, and 

accompanying computational methodologies have enabled a comprehensive analysis of 

cellular heterogeneity, spatial organization, and cell-cell interactions (Table 1). These 

transformative technologies have prompted several large-scale initiatives to generate single 

cell and multiparametric atlases for understanding the tissue ecosystem in health and disease 

(29–34). For example, the Human Cell Atlas, the Human Tumor Atlas Network and the 

Tumor Profiler studies adopted a two-pronged strategy that pairs single-cell sequencing 

from dissociated specimens with spatially resolved multiplexed imaging assays in situ 
(29, 33, 34). Since single-cell profiling approaches often do not preserve the spatial 

organization and spatially resolved imaging approaches currently multiplex considerably 

fewer measurements, the combination of these two complementary methods can interrogate 

both the composition and architecture of tumor ecosystems (Fig. 1). A comprehensive 

summary of the current single-cell and spatial omics methodologies has been provided 

elsewhere (35–37).

3.1 Single-cell sequencing

Single-cell DNA-sequencing (scDNA-seq) detects copy-number aberrations or mutations in 

individual cells circumventing the problem of low sensitivity in detecting rare mutations 

in bulk DNA-seq (38). Applications of scDNA-seq include clonal substructure dissection, 

clonal lineage reconstruction, tumor evolution inference, and mutation co-occurrence or 

mutual exclusivity interrogation (36). However, scDNA-seq cannot reveal cell type or state 

and may be limited in its coverage.

Single-cell RNA-sequencing (scRNA-seq) provides transcriptional profiles of individual 

cells at a snapshot in time (39). The development of droplet-based systems greatly increases 

reaction throughput, reduces the cost, and improves the utility of scRNA-seq (40). Potential 

limitations of scRNA-seq include doublet contamination and dropout of low abundance 

transcripts. The applications of this technology include identifying cell populations, 

dissecting cell states, elucidating gene signatures, categorizing expression subtypes, 

inferring tumor lineages, and analyzing cell type specific differential expression (36). 

Multiple studies have utilized scRNA-seq to characterize mammary cell subpopulations and 

differentiation trajectories across different stages of mammary gland development (41).

Single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) measures 

chromatin accessibility across the genome of single cells and has an application range 

similar to scRNA-seq (42). A major limitation of this method is the low coverage with 
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an estimated 1–10% extraction of the total accessible peaks (43). However, compared 

with scRNA-seq, scATAC-seq may provide deeper insights into gene regulation, and more 

faithfully distinguishes cell lineages and identities (44).

As standard single-cell sequencing approaches use disaggregated cells as the input, the 

spatial organization of single-cell phenotypes is not preserved. To reflect spatial context, 

laser capture microdissection has been used together with scDNA-seq (45) or scRNA-seq 

(46), which is often referred to as topographic single-cell sequencing. scRNA-seq alone may 

not always differentiate between cell populations with subtle transcriptomic differences, and 

direct transcriptional profiles may not directly correlate with protein expression due to post-

transcriptional regulation. To overcome these limitations, several single-cell multi-omics 

methods have been developed to improve cell type and state characterization. For example, 

scRNA-seq has been combined with highly multiplexed protein marker detection in Cellular 

Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and RNA Expression 

and Protein sequencing assay (REAP-seq). In both methods, oligonucleotide-barcoded 

antibodies are used to provide a quantitative readout of cellular proteins in combination 

with existing scRNA-seq (47,48).

3.2 Suspension mass cytometry

Another typical single-cell analysis is flow cytometry, which employs fluorophore-

conjugated antibodies to detect and quantify protein abundance in individual cells. However, 

due to the overlap of the fluorescent spectra of the labelling dyes, the number of proteins 

that can be analyzed simultaneously by flow cytometry is restricted to around 10 in 

conventional flow and up to 30 in spectral flow. Mass cytometry, or cytometry by time-of-

flight (CyTOF), is a high-dimensional single-cell proteomic analysis method which uses 

rare earth metal ion tags rather than fluorochromes for antibody labeling. Analysis of 

metal abundance using the mass cytometer allows evaluation of marker levels with minimal 

spillover between channels (49, 50). In mass cytometry assays, over 40 protein parameters 

can be simultaneously quantified at single-cell resolution enabling the evaluation of cell 

subsets in the TME (51). Mass cytometry allows for the detection of low abundance 

proteins which otherwise may not be detectable in scRNA-seq. However, it is dependent 

on the availability and specificity of antibodies and relies on a prior knowledge of cell 

markers which limits its utility for biomarker discoveries. Similar to single-cell sequencing, 

suspension mass cytometry uses dissociated tissues and therefore does not capture spatial 

information.

3.3 High-dimensional imaging

Although single-cell sequencing or suspension mass cytometry enables enumeration of 

cell subsets found in the TME, the properties of tumors are determined not only by the 

presence of heterogeneous cell populations, but also by complex cellular interactions (52). 

Highly multiplexed imaging fills this gap through quantitative measurement of dozens 

of proteins simultaneously in intact tissue. This technique enables the generation of a 

detailed spatial map of single-cell phenotypes and cellular communities. This is instrumental 

for understanding the spatial and phenotypic features affecting tumor progression and 

therapeutic response. Early generations of multiplexed imaging technologies such as cyclic 

Zhao and Rosen Page 4

Semin Cancer Biol. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immunofluorescence (CycIF) were based on traditional immunofluorescence (IF) and rely 

on cycles of epitope staining followed by chemical quenching of fluorophores and restaining 

to progressively build a multichannel image (53, 54). Such methods only allow assessment 

of a dozen antigens at a given time. The advent of mass spectroscopy immunohistochemistry 

(IHC) has enabled robust measurement of around 40 markers simultaneously. In this 

method, primary antibodies for protein detection are conjugated to metal isotopes and 

then incubated with tissue sections similarly with IHC. Next, either laser ablation (in 

imaging mass cytometry (IMC)) (55) or ion beam (in multiplexed ion beam imaging 

by time-of-flight (MIBI-TOF)) (52, 56) are employed to liberate metals for detection by 

the mass spectrometer. Of note, both lineage markers and signaling molecules, especially 

phosphorylated proteins, can be interrogated in high-dimensional imaging, which enables 

the analysis of cell signaling networks in a cell-by-cell spatially resolved manner (35). 

Similar to suspension mass cytometry and all other antibody-based detection methods, IMC 

is limited by antibody specificity. Furthermore, because of tumor heterogeneity, multiple 

regions need to be analyzed to minimize bias.

3.4 Spatial transcriptomics

Emerging technologies for spatial transcriptomics characterize gene expression profiles 

while retaining spatial information that overcome limitations associated with scRNA-seq. 

Such methodologies provide detailed molecular maps, enabling a further understanding 

of the relationship between cellular gene expression and the interactions with the local 

environment. Some of these technologies reach single-cell or even subcellular resolution. 

For example, fluorescent in situ RNA sequencing (FISSEQ) and its adapted version 

expansion sequencing (ExSeq) can provide high dimensional gene expression in a single cell 

in situ by sequencing cross-linked complementary DNA amplicons (57, 58). Multiplexed 

error-robust fluorescence in situ hybridization (MERFISH) can simultaneously image 100 

to 1000 RNA species in an individual cell by using combinatorial FISH labeling with 

error-robust encoding schemes (59). Other spatial transcriptomic approaches that do not 

have single-cell resolution such as spatial transcriptomic microarrays (60) and Slide-Seq 

(61) offer high throughput and genome-wide spatial transcriptomics profile at a 10–100 

cell resolution. The recently released 10x Genomics Visium platform expands the spatial 

resolution fivefold beyond the first-generation spatial transcriptomic microarrays, reaching 

a 1–10 cell resolution depending on the tissue type (62, 63). Immunofluorescence can 

also be combined with this method for protein co-detection. Further development of these 

spatial technologies will be instrumental in constructing high-resolution cellular atlases 

from heterogeneous tumor ecosystems and for defining the molecular pathways involved in 

tumorigenesis. In the following sections, we will discuss new insights obtained from these 

new technologies that improved our understanding of breast cancer heterogeneity.

4. The spectrum of breast cancer heterogeneity

The breast tumor ecosystem is extremely complex. Cell-to-cell variations of breast cancer 

cells manifest in genetic backgrounds, epigenetic profiles, cellular phenotypes, spatial 

distributions, and interactions with the TME. Immune and stromal cells in the breast TME 

also exhibit substantial molecular and functional diversity. To highlight the applications to 
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breast cancer of the technologies mentioned in Section 3, a few representative examples 

are provided below. Readers are directed to a recent review on this subject for additional 

information (64).

First, moving into the single-cell analysis era, Chung et al. performed scRNA-seq for 

515 cells which contained both tumor cells and non-tumor immune cells from 11 breast 

cancer patients across the intrinsic molecular subtypes (65). They found that tumor cells 

variably expressed aggressive cancer signatures such as epithelial-mesenchymal transition 

(EMT), stemness, angiogenesis, proliferation and recurrence, whereas most T cells and 

macrophages displayed immunosuppressive characteristics (65). Although informational, 

this study is restricted by the low cell number analyzed. To elucidate the immune cell 

phenotypic diversity in breast cancer, Azizi et al. performed scRNA-seq on 45,000 sorted 

immune cells from 8 breast tumors as well as matched normal breast tissue, blood, and 

lymph nodes (66). All the major populations of immune cells are present in breast cancer. 

These include both lymphocytes such as T cells, B cells and natural killer cells, and 

myeloid cells such as macrophages, dendritic cells, granulocytes such as neutrophils and 

eosinophils, and mast cells. Analyses by Azizi et al. further revealed significantly increased 

heterogeneity of lymphoid and myeloid cells in tumor in comparison to normal breast 

tissue. This heterogeneity was characterized by combinatorial expression of genes reflecting 

responses to diverse environmental stimuli. They also observed a continuum of T cell states 

which suggests that the conventional notion that only a few discrete states of differentiation 

or activation shape the TME is oversimplified (66). To characterize stromal heterogeneity, 

Wu et al. performed scRNA-seq in 5 TNBCs and observed two cancer-associated fibroblast 

(CAF) and two perivascular-like (PVL) subpopulations. CAFs clustered into myofibroblast-

like CAFs or inflammatory-like CAFs and PVL cells clustered into differentiated PVL or 

immature PVL cells. These stromal subpopulations differed in their morphology, surface 

marker expression, spatial localization, and functional properties in regulating the ECM. 

Moreover, the expression of gene signatures derived from inflammatory-like CAF and 

differentiated PVL cells is associated with cytotoxic T-cell dysfunction and exclusion 

in independent TNBC cohorts (67). Such findings suggest crosstalk of stromal-immune 

compartments and may provide potential strategies for overcoming immune therapy 

resistance.

Second, studies by Wagner et al. utilized suspension mass cytometry which has a much 

higher throughput to reveal the tumor and immune cell diversity in breast tumor ecosystems 

(68). These investigators analyzed the expression of 73 proteins using tumor and immune 

cell-centric antibody panels in 26 million cells from 144 human breast tumor and 50 non-

tumor tissue samples. For the tumor cell compartment, they established three computational 

scores to represent heterogeneity: 1) Tumor individuality describes whether tumor cells 

of a sample were more similar to cells of the same sample; 2) Phenotypic abnormality 

measures the tumor cell phenotypic deviation from non-tumor epithelial cells; and 3) 

Tumor richness quantifies the number of different co-existing tumor cell phenotypes. The 

results of these studies indicated that tumors exhibit individuality in tumor cell composition, 

including phenotypic abnormalities and phenotype dominance. In addition, for the immune 

cell compartment, a high abundance of PD-L1+ tumor associated macrophages (TAMs) 

and exhausted T cells was observed in high-grade ER+ and ER- tumors. The hierarchical 
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clustering of both tumor and immune components revealed distinct groups which were able 

to stratify patients (66).

Third, to map the spatial organization of single-cell phenotypes of breast cancer, 

Bodenmiller and colleagues utilized IMC to simultaneously quantify over 30 biomarkers 

spanning multiple cell lineages in hundreds of patients (69, 70). They reported 

that tumors in general were spatially segregated into separate tumor communities as 

opposed to interspersed heterogeneous tumor masses, and that patients with tumors 

with spatiophenotypic heterogeneity had a worse prognosis (69). The observation of the 

presence of stromal cells in every clinical subtype at similar densities prompted the 

authors to investigate whether the tumor-stromal microenvironment communities were 

more informative than the tumor or stromal phenotype content alone in predicting patient 

survival. Indeed, spatially defined cell communities were independently associated with 

patient outcome but not single-cell phenotypes or cellular metaclusters (69). In their IMC 

analyses of samples from METABRIC, a large breast-cancer cohort with an extensive 

genomic annotation, they found that distinct combinations of single-cell phenotypes and 

multi-cellular communities were associated with genomic subtypes and aberrations of breast 

cancer. For example, epithelial luminal cell phenotypes are divided into those driven by 

either mutations or copy-number alterations. A model that combines contributions of both 

cell phenotypes and their neighborhoods improved outcome prediction as compared to cell 

composition alone, highlighting the clinical relevance of spatial statistics (70).

Finally, with the goal of depicting the immune landscape of the TNBC microenvironment, 

Keren et al. used MIBI-TOF to simultaneously measure in situ expression of 36 proteins 

covering cell identity, function, and immune regulation in 41 patients at sub-cellular 

resolution (71). As expected, they found that the composition of tumor-immune populations 

varied across individuals. More interestingly, the spatial infiltration by immune cells varied 

from compartmentalized to mixed patterns, and a compartmentalized immune structure 

along the tumor-immune border was associated with better patient survival (71). Taking 

a different approach, Park and colleagues profiled the tumor immune compartment by 

laser capture microdissection-derived gene expression to stratify TNBC based on the 

tumor immune microenvironment (72). They found that stromal restriction of CD8+ T 

cells and stromal expression of PD-L1 defined a distinct poor-outcome immunomodulatory 

microenvironment, whereas infiltration of granzyme B+ CD8+ T cells and a type 1 IFN 

signature defined an immunoreactive microenvironment with good patient outcomes (72).

5. Sources of breast cancer intratumor heterogeneity

Phenotypic and functional heterogeneity among breast tumor cells is a complicated 

phenomenon that entails both genetic clonal diversity and nongenetic sources of 

heterogeneity (73).

5.1 Genetic events

Cancer is an evolutionary process and genetic diversification is the primary mechanism 

for clonal evolution. This genetic diversity arises from genomic instability that operates 

at multiple levels, ranging from single point mutations to chromosomal rearrangements 
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(74, 75). Genomic instability might be caused by exposure to exogenous mutagens and 

aberrations in endogenous processes such as errors in DNA replication and repair (2). Under 

the assumption that mutational complexity increases with time, phylogenetic analysis can be 

applied to infer genetic lineages and to order the chronology of mutations that have occurred 

over time (76). Therefore, the genetic heterogeneity of tumor populations can be used to 

reconstruct tumor evolution from a single time-point sample.

Different models of clonal evolution have been proposed, including linear, branching, 

neutral, and punctuated evolution (77, 78). Linear evolution is defined by sequential clonal 

succession where new driver mutations provide a strong selective advantage that can lead to 

clonal expansion and that clone can outcompete previous populations and become dominant. 

In branching evolution, divergent subclones emerge independently from a common ancestor. 

In this model, acquired new driver mutations lead to expansion of tumor populations which 

do not outcompete all other populations. The simultaneous expansion of multiple clones 

raises the possibility of clonal cooperation which has been experimentally supported in 

several studies (79–82). Neutral evolution is defined by the absence of selection, wherein 

random mutations accumulate over time leading to genetic drift. In the neutral evolution 

model, heterogeneity is proposed to be a byproduct of tumor progression that results 

from stochastic processes and has no functional significance in driving tumor growth. All 

these three models assume that mutations are acquired sequentially and gradually over 

time. In contrast in the punctuated model, chromosomal aberrations are acquired in short 

evolutionary bursts at the early stage of tumor progression, and this leads to multiple 

genotypes some of which are stabilized without much later evolution (78).

To explore how the breast cancer genome evolves to generate heterogeneity, Navin and 

colleagues first used an early generation scDNA-seq to profile 1,000 single cells from 12 

TNBC samples. They identified that punctuated genome-wide aneuploidy is acquired at 

an early stage of tumor evolution in short bursts of genomic instability. This is followed 

by stable clonal expansions that eventually constitute the tumor mass (83). It is possible 

that dysfunctional p53 causes genomic instability early in TNBC evolution since TP53 
is the most commonly mutated gene (17). This punctuated evolution pattern has been 

described for other cancer types as well (84–86). However, due to the small number of 

cells that were sequenced and the low resolution in these early generation scDNA-seq 

method in that study, the question of whether copy number profiles continue to evolve at 

small scale after the initial burst of genome rearrangements could not be answered. With 

more recent advancements in scDNA-seq technologies, the Navin group performed copy 

number analysis of 16,178 single cells from 8 TNBC samples. They found that copy number 

evolution is ongoing during clonal expansion after the initial catastrophic event, suggesting 

that tumor cells never stop improving their fitness during the growth of the primary tumors 

(87)

5.2 Non-genetic events

Heterogeneity Importantly does not only manifest itself as genetic alterations such as 

somatic mutations and copy number aberrations. Non-genetic sources of heterogeneity 

also lead to cell-to-cell phenotypic variability. These include epigenetic, transcriptomic, 
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proteomic and metabolic differences in tumor cells which possess similar genetic alterations. 

Numerous epigenetic alterations including DNA methylation, histone modifications, and 

chromatin remodeling contribute to heterogeneity within tumors (88). A diversity of 

chromatin landscapes within both the stromal and tumor cell populations was reported 

by Grosselin and colleagues, who performed single-cell chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) in breast cancer patient-derived xenograft (PDX) 

samples (89). In ER-positive breast cancer, the expression of the histone H3 lysine 4 (H3K4) 

demethylase KDM5B promotes transcriptomic heterogeneity within tumor cells which may 

lead to endocrine resistance (90).

Another factor that contributes to cellular variability is the plasticity of cell states. EMT is 

the best-known example of cellular plasticity in breast cancer. Instead of being entirely 

comprised of cancer cells with either epithelial or mesenchymal features, most breast 

cancers exhibit a spectrum of epithelial and mesenchymal phenotypes (91). Intermediate or 

partial EMT, which involves a combination of epithelial and mesenchymal gene expression, 

may confer cancer cells with increased plasticity and cancer stem cell properties as well as 

therapeutic resistance (92, 93). For more information on the role of genetic and non-genetic 

clonal diversity in tumor evolution and the insights gained through single-cell analyses, 

readers are referred to several comprehensive recent reviews (74, 94).

6. Consequences of intratumor heterogeneity

Tumor cell clonal heterogeneity and cooperative plasticity equip tumors with substantial 

functional adaptability which may potentiate tumor growth and metastasis. In a mouse 

mammary tumor model, Cleary et al. showed that aberrant expression of Wnt1 can generate 

tumors comprising both basal Hras-mutant Wnt1-low and luminal Hras wild-type Wnt1-high 

subclones. These subclones cooperate to maintain tumor growth as the basal cells depended 

on Wnt1 secreted by luminal cells for growth. When Wnt1 production is blocked, basal 

cells recruit heterologous Wnt-producing cells to restore tumor growth (80). In a basal-

like Trp53-null mouse model, Zhang et al. reported that the presence of a mesenchymal-

like subpopulation supported tumor growth by providing paracrine niche ligands to tumor-

initiating cells. Knockdown of these ligands in the mesenchymal cells or their corresponding 

receptors in the tumor-initiating cells led to reduced tumorigenicity and prolonged tumor 

latency (81). Similarly, the Polyak group discovered that minor cancer cell subclones can 

drive tumor growth at both the primary and metastatic sites in a non-cell-autonomous 

manner (79, 82).

Besides the cooperation between tumor cell subpopulations, the complex interactions 

between tumor cells and stromal cells also promote tumor progression and can be exploited 

for therapy development. In a C3(1)/SV40 Tag-derived mouse mammary tumor model, 

Cazet et al. used scRNA-seq to find that CAFs are the primary population in the TME 

that respond to Hedgehog ligand secreted by tumor cells. The Hedgehog-activated CAFs in 

turn express Ffg5 and remodel the ECM to promote cancer stemness and chemoresistance. 

Interruption of this tumor-CAF interplay by treatment with inhibitors of Smoothened 

involved in Hedgehog signaling sensitized tumors to docetaxel chemotherapy in both PDX 
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mouse models and in patients from a Phase I clinical trial (95). Similarly, crosstalk between 

other cell populations in the TME can be predicted computationally in scRNA-seq (67).

Another major consequence of intratumor heterogeneity is therapeutic resistance. The 

existence of varying genetic and phenotypic subpopulations within a tumor provides a 

substrate for Darwinian evolution (96). Janiszewska et al. developed a specific-to-allele 

PCR-FISH (STAR-FISH) method that allows for the combined detection of PIK3CA 
mutation encoding His1047Arg and HER2 copy number alterations in single cells in intact 

tissues. In untreated HER2-positive breast cancer, they identified a major population of 

cells with HER2 amplification and wild-type PIK3CA and a minor population of cells with 

mutant PIK3CA. However, neoadjuvant chemotherapy dramatically increased the frequency 

of PIK3CA mutant cells and reduced the dominant HER2-amplified population, which 

may confer resistance to the HER2-targeting antibody trastuzamab (97). Grosselin et al. 

performed scChIP-seq and discovered that a common chromatin signature was shared 

between a subclone of cells from treatment-naive tumors and cells from tamoxifen-resistant 

tumors derived from the same ER-positive PDX model (89). This implies that instead of 

epigenetic reprogramming of cancer cells, the selective expansion of rare cells with distinct 

chromatin features may underly therapy resistance.

Because of the paucity of well-defined specific therapeutic targets in TNBC, the standard 

of care for these patients in the neoadjuvant setting is chemotherapy (NAC), which usually 

includes a combination of anthracyclines and taxanes. Although 40–50% of patients with 

stage II to III TNBC may achieve a pathologic complete response (pCR), many patients 

develop chemoresistance (98). Two alternative hypotheses have been developed to explain 

the genomic basis of chemotherapy resistance: (1) adaptive resistance which results from 

the selection and expansion of rare pre-existing clones; or (2) acquired resistance wherein 

new genomic alterations are generated to confer a chemoresistant phenotype. Due to 

the lack of techniques to resolve intratumor heterogeneity and the difficulty to detect 

rare mutations in the bulk sequencing era, the question of which mechanism caused 

chemoresistance in TNBC was unresolved. With the advent of single-cell technology, Kim et 

al. tackled this question by combined scDNA-seq and single-nucleus RNA-seq (snRNA-seq) 

of longitudinal samples collected from TNBC patients before, during, or after neoadjuvant 

NAC treatment. In half of the patients, NAC led to clonal extinction wherein clones were 

completely eliminated and no residual tumor cells were detected; in the other half of 

patients, clones persisted after treatment with shifted frequencies. In the clonal persistence 

patients, copy-number aberrations were adaptively selected rather than de novo acquired 

in response to chemotherapy. Consistently, they did not observe an increase in mutation 

burden in response to NAC in the samples. In contrast to the adaptive evolution at genomic 

level, the chemoresistant transcriptomic profiles did not pre-exist and were acquired via 

transcriptional reprogramming after treatment. This implies that adaptive genomic evolution 

and acquired transcriptional evolution collectively lead to phenotypic adaptation. In their 

gene set variation analysis of the snRNA-seq data, gene signatures including AKT1/mTOR, 

hypoxia, EMT, extracellular matrix degradation, and angiogenesis, were upregulated in the 

chemoresistant tumor cells post NAC treatment (99). This suggests that it might be possible 

to overcome chemoresistance by targeting the Akt/mTOR pathway, reprogramming EMT or 

perhaps by inhibiting HIF-1α.
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7. Concluding remarks

Intratumor heterogeneity represents a major challenge to effective cancer therapy and 

personalized medicine. However, with the aid of new technologies such as single-cell 

analysis and spatial pathologies, investigators are now beginning to elucidate the complex 

composition and dynamics of tumor ecosystem during disease progression and treatment. 

This should help reveal novel predictive biomarkers, prognostic features, and therapeutic 

targets, although the translation of this knowledge to the clinic still has yet to be fully 

realized. While targeted therapies will remain an important approach, in order to minimize 

resistance to a single drug, different combinations will need to be tailored based upon tumor 

heterogeneity and evolution. However, it is likely that no combination will suffice to target 

all tumor cells, and that the bystander effects elicited by the immune system will be required 

to eliminate residual disease caused by heterogeneity. Importantly, spatially resolved 

immunophenotypes may help inform the response and resistance to immunotherapies. 

Mapping which cells express immune checkpoint ligands and receptors and where these 

interactions occur within tumors will be key for treatment design. Combination therapy 

directed at both tumor cells and the TME will no doubt be required for improved treatment 

regimens for breast cancer.
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Fig. 1. 
The applications of single-cell analysis and spatial pathologies in studies of breast cancer 

heterogeneity.

New technologies such as single-cell sequencing, mass cytometry and spatial pathologies 

have helped to dissect the cellular composition and community, evolution and 

microenvironment of breast tumors. The elucidation of the heterogenous ecosystem of breast 

cancer should facilitate the development of novel predictive biomarkers, prognostic features, 

and therapeutic targets.
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Table 1.

Summary of enabling technologies for assessing tumor heterogeneity

Technology scRNA-seq
Suspension mass 
cytometry Imaging mass cytometry Spatial transcriptomics

Molecule detected RNA Protein Protein RNA

Resolution Single cell Single cell Single cell 1 to 10 cells

Multiplexicity Whole transcriptome Around 40 markers Around 40 markers
From 100 RNA species to 
whole transcriptome

Spatial

No, unless combined 
with laser capture 
microdissection No Yes Yes

Limitations

Dropout of low abundant 
transcripts; Doublets 
contamination

Depends on the 
availability and 
specificity of antibodies; 
Relies on a prior 
knowledge of cell 
markers

Depends on the availability 
and specificity of antibodies; 
Relies on a prior knowledge 
of cell markers; Multiple 
fields need to be analyzed to 
minimize regional bias

Not single cell resolution in 
some platforms

cost-effective 
(calculated per cell) *** ***** ** *
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