Skip to main content
. 2022 Jan 17;39(1):519–539. doi: 10.1016/j.ijforecast.2022.01.002

Table 1.

Log marginal likelihood for the small BVAR model.

Weak SZ Strong SZ Weak SZ Strong SZ
19Q4 −1748.65 −1336.97 −1440.18 19Q4 −1686.01 −1261.99 −1381.34
20Q1 −1791.18 −1376.40 −1475.32 20Q1 −1707.68 −1283.12 −1402.46
20Q2 −1886.03 −1484.85 −1585.18 20Q2 −1740.65 −1315.44 −1434.05
20Q3 −1966.81 −1539.32 −1631.13 20Q3 −1772.91 −1348.37 −1463.95
20Q4 −1986.24 −1550.60 −1642.30 20Q4 −1786.26 −1359.18 −1475.18
21Q1 −2003.93 −1568.70 −1658.81 21Q1 −1802.27 −1374.57 −1490.36
21Q2
−2016.85
−1577.25
−1667.85
21Q2
−1813.50
−1384.72
−1501.50
(a) BVAR with Gaussian errors (b) BVAR with fat-tailed errors

Note: The bold figure indicates the maximum log marginal likelihood for each model in a selected estimation window. ‘Weak’ stands for a weakly informative prior, and ‘SZ’ stands for Sims and Zha.