Table 1.
Log marginal likelihood for the small BVAR model.
| Weak | SZ | Strong SZ | Weak | SZ | Strong SZ | |||
|---|---|---|---|---|---|---|---|---|
| 19Q4 | −1748.65 | −1336.97 | −1440.18 | 19Q4 | −1686.01 | −1261.99 | −1381.34 | |
| 20Q1 | −1791.18 | −1376.40 | −1475.32 | 20Q1 | −1707.68 | −1283.12 | −1402.46 | |
| 20Q2 | −1886.03 | −1484.85 | −1585.18 | 20Q2 | −1740.65 | −1315.44 | −1434.05 | |
| 20Q3 | −1966.81 | −1539.32 | −1631.13 | 20Q3 | −1772.91 | −1348.37 | −1463.95 | |
| 20Q4 | −1986.24 | −1550.60 | −1642.30 | 20Q4 | −1786.26 | −1359.18 | −1475.18 | |
| 21Q1 | −2003.93 | −1568.70 | −1658.81 | 21Q1 | −1802.27 | −1374.57 | −1490.36 | |
| 21Q2 |
−2016.85 |
−1577.25 |
−1667.85 |
21Q2 |
−1813.50 |
−1384.72 |
−1501.50 |
|
| (a) BVAR with Gaussian errors | (b) BVAR with fat-tailed errors | |||||||
Note: The bold figure indicates the maximum log marginal likelihood for each model in a selected estimation window. ‘Weak’ stands for a weakly informative prior, and ‘SZ’ stands for Sims and Zha.