Table 2.
Log marginal likelihood for the large BVAR.
| Weak | SZ | Strong SZ | Weak | SZ | Strong SZ | |||
|---|---|---|---|---|---|---|---|---|
| 19Q4 | −6480.35 | −3756.80 | −3918.06 | 19Q4 | −5915.25 | −3485.19 | −3695.15 | |
| 20Q1 | −6615.97 | −3864.18 | −4021.19 | 20Q1 | −5982.10 | −3539.20 | −3751.03 | |
| 20Q2 | −6756.28 | −3978.87 | −4151.69 | 20Q2 | −6062.13 | −3608.26 | −3810.56 | |
| 20Q3 | −6889.06 | −4067.78 | −4233.83 | 20Q3 | −6152.90 | −3717.54 | −3905.92 | |
| 20Q4 | −6964.35 | −4114.55 | −4298.21 | 20Q4 | −6190.53 | −3766.41 | −3957.56 | |
| 21Q1 | −7049.20 | −4151.13 | −4334.66 | 21Q1 | −6299.66 | −3807.15 | −4000.44 | |
| 21Q2 |
−7134.59 |
−4199.77 |
−4388.15 |
21Q2 |
−6323.87 |
−3852.67 |
−4045.27 |
|
| (a) BVAR with Gaussian errors | (b) BVAR with fat-tailed errors | |||||||
Note: The bold figure indicates the maximum log marginal likelihood for each model in a selected estimation window. ‘Weak’ stands for weakly informative, and ‘SZ’ stands for Sims and Zha.