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ABSTRACT
Objectives  Giant cell arteritis (GCA) is the most 
common primary vasculitis, preferentially affecting the 
aorta and its large-calibre branches. An imbalance 
between proinflammatory CD4+ T helper cell subsets 
and regulatory T cells (Tregs) is thought to be involved 
in the pathogenesis of GCA and Treg dysfunction has 
been associated with active disease. Our work aims to 
explore the aetiology of Treg dysfunction and the way 
it is affected by remission-inducing immunomodulatory 
regimens.
Methods  A total of 41 GCA patients were classified 
into active disease (n=14) and disease in remission 
(n=27). GCA patients’ and healthy blood donors’ (HD) 
Tregs were sorted and subjected to transcriptome and 
phenotypic analysis.
Results  Transcriptome analysis revealed 27 genes, 
which were differentially regulated between GCA-derived 
and HD-derived Tregs. Among those, we identified 
transcription factors, glycolytic enzymes and IL-2 
signalling mediators. We confirmed the downregulation 
of forkhead box P3 (FOXP3) and interferon regulatory 
factor 4 (IRF4) at protein level and identified the 
ineffective induction of glycoprotein A repetitions 
predominant (GARP) and CD25 as well as the reduced T 
cell receptor (TCR)-induced calcium influx as correlates 
of Treg dysfunction in GCA. Inhibition of glycolysis in HD-
derived Tregs recapitulated most identified dysfunctions 
of GCA Tregs, suggesting the central pathogenic role of 
the downregulation of the glycolytic enzymes. Separate 
analysis of the subgroup of tocilizumab-treated patients 
identified the recovery of the TCR-induced calcium influx 
and the Treg suppressive function to associate with 
disease remission.
Conclusions  Our findings suggest that low glycolysis 
and calcium signalling account for Treg dysfunction and 
inflammation in GCA.

INTRODUCTION
Giant cell arteritis (GCA) is the most common form 
of systemic vasculitis, affecting the elderly, with a peak 
incidence at the age of 70–80 years.1 GCA typically 
involves the aorta and/or its large-calibre branches.2 
The localisation and type of affected arteries largely 
determines the clinical manifestations of GCA, which 
include cranial symptoms such as headache and masti-
catory claudication, polymyalgia and non-specific 
systemic symptoms, that is, fever, night sweat and 
unintended weight loss. The histological hallmark of 
GCA is focal granulomatous inflammation.3 Different 

studies suggested infectious agents, such as herpes 
simplex virus, varicella zoster virus, parvovirus B19 
and Chlamydia pneumoniae as likely disease trig-
gers.4–6 Such infectious agents or an alternative trigger 
have been suggested to cause abnormal maturation of 
dendritic cell in the adventitia and the consequent acti-
vation of CD4+ T cells.7–9 The Th1-interferon γ (IFNγ) 
axis and the IL-6-Th17 axis are the main immune 
responses that dominate the GCA inflammation. While 
glucocorticoids or tocilizumab (TCZ), a monoclonal 
antibody against the IL-6 receptor, effectively suppress 
the IL-6-Th17 axis, the Th1 pathway appears to be less 
amenable to treatment.8 9

Various autoimmune diseases such as rheumatoid 
arthritis, multiple sclerosis, systemic lupus erythema-
tosus and systemic sclerosis have been associated with 
regulatory T cell (Treg) dysfunction.10–12 The forkhead 
box P3 (FOXP3) is indispensable for the development 
and function of Treg. Several studies have associated 
reduced expression of FOXP3 with the loss of immune 
tolerance and autoimmune inflammation.13–15 Besides 
FOXP3, the suppressive potential of Tregs critically 
depends on an array of molecules, which stabilise 
their polarisation and/or directly mediate their effector 

Key messages

What is already known about this subject?
►► Tregs, displaying reduced suppressive function 
and increased expression of IL-17, have been 
implicated in the pathogenesis of giant cell 
arteritis (GCA).

What does this study add?
►► Comparative transcriptomic and protein 
expression analysis of GCA-derived and health 
blood-donor-derived Tregs identified aberrations 
of GCA Tregs such as downregulation of 
transcription factors, glycolytic enzymes as well 
as low activation-induced calcium signalling 
and induction of effector molecules.

How might this impact on clinical practice or 
future developments?

►► We identify novel pathogenic correlates of GCA 
activity, which may be useful for monitoring 
disease activity, especially in tocilizumab-
treated patients.

►► Treg dysfunction may represent a new target for 
the treatment of GCA.

http://www.eular.org/
http://ard.bmj.com/
http://orcid.org/0000-0003-0855-2945
http://dx.doi.org/10.1136/annrheumdis-2021-220955
http://dx.doi.org/10.1136/annrheumdis-2021-220955
http://dx.doi.org/10.1136/annrheumdis-2021-220955
http://crossmark.crossref.org/dialog/?doi=10.1136/annrheumdis-2021-220955&domain=pdf&date_stamp=2021-11-03


125Adriawan IR, et al. Ann Rheum Dis 2022;81:124–131. doi:10.1136/annrheumdis-2021-220955

Vasculitis

functions. Notable examples include the interferon regulatory factor 
4 (IRF4), the α chain of the interleukin 2 receptor (IL-2Rα/CD25), 
the cytotoxic T lymphocyte protein 4 and the glycoprotein A repe-
titions predominant (GARP).16–22 Genetic variants affecting the 
function or the expression of these molecules have been reported 
to underlie monogenic inborn errors of immunity, which cause 
immune dysregulation18–22 or to confer susceptibility for autoim-
mune diseases.23–25

An imbalance between proinflammatory CD4+ T helper (Th) 
cell subsets, that is, Th1 and Th17 cells, and Tregs is thought to 
be involved in the pathogenesis of GCA. There is scarce evidence 
regarding the role of regulatory T cells (Tregs) in GCA inflammation. 
In particular, two studies reported reduced Treg counts in peripheral 
circulation of patients with GCA, which, however, did not associate 
with the GCA activity.26 27 A more recent study identified increased 
Treg counts as a correlate of TCZ-induced remission of GCA.28 
Furthermore, Tregs in GCA were reported to display proinflamma-
tory Th17-like properties at the expense of their suppressive func-
tion.28 In this study, we aimed to delineate the dysfunction of Tregs in 
GCA. To this end, we integrated transcriptomic and proteomic data 
from Tregs, collected from patients with different disease activity and 
variable immunomodulatory regimens.

MATERIALS AND METHODS
Information on the study population and the experimental methods 
employed in the present work, including RNA-sequencing, the 
phenotypic and functional characterisation of regulatory T cells as 
well as the statistical analysis, is provided in the online supplemen-
tary text.

RESULTS
Study population
Studied subjects characteristics are summarised in table 1. Informa-
tion on GCA patients’ disease activity status and treatments at blood 
sampling is provided in online supplemental table 1.

Transcriptomic profiling of GCA Tregs
First, we performed differential transcriptome analysis 
between Tregs from patients with GCA (n=12; active disease, 
n=6, in remission, n=6; see online supplemental table 2 for 
patients’ characteristics) and healthy blood donors (HD, n=6). 

Pairwise comparison of active GCA versus HD-derived Tregs, 
using adjusted p value <0.05 and cut-off fold change  >1.47 
(log2FC=0.56), identified 27 differentially expressed genes 
(DEGs) (figure  1A). Among DEGs, we highlighted an enrich-
ment for genes related to three molecular classes: Treg tran-
scription factors (FOXP3, IRF4 and IKZF4), glycolytic enzymes 
(ENO1, PFKP, LDHA) and molecules downstream to IL-2 
signalling (CISH, SOCS2). Furthermore, relative quantifica-
tion showed an overall lower expression of these transcripts 
in GCA Tregs, especially in the active cases, as compared with 
healthy Tregs (figure  1B). To evaluate the influence of gluco-
corticoids on the observed differences in transcript expression, 
we reanalysed transcriptome data after classifying patients with 
GCA (both active and inactive) into glucocorticoid-receiving 
(n=7) and those without glucocorticoid treatment (n=5). This 
identified no significant differences (CISH: p value=0.5025; 
ENO1: p value=0.3308; FOXP3: p value=0.9773; IKZF4: p 
value=0.7096; IRF4: p value=0.7096; LDHA: p value=0.6010; 
PFKP: p value=0.7424; SOCS2: p value=0.7096), suggesting 
that differential transcript expression by GCA Tregs was inde-
pendent of the treatment with glucocorticoids.

Differential expression of FOXP3 and IRF4 at the level of 
transcript was evaluated at protein level by flow cytometry 
(figure 2). In line with the transcriptome data, both FOXP3 and 
IRF4 levels were lower in GCA Tregs than HD Tregs. Lower 
expression levels of FOXP3 in GCA Tregs did not associate 
with significant differences in FOXP3-positivity within CD4+ 
CD25hiCD127lo Tregs (online supplemental figure 1). Treg 
from patients in remission and those with active GCA displayed 
similar expression levels of FOXP3 and IRF4. On the other 
hand, TIGIT, whose transcript levels were reduced in most GCA 
samples, displayed similar expression among different groups of 
patients and HD.

Treg dysfunction in GCA
Despite the fact that patients with GCA and HD displayed similar 
CD4+ CD25hiCD127lo Treg counts (figure  3A), we identified 
several qualitative abnormalities with respect to the expression 
of effector molecules by GCA Tregs. GARP is involved in TGF-β 
maturation and the suppressive potential of Tregs both in vitro 
and in vivo depends on its expression.19 29 After 18 hours of 

Table 1  Characteristics of studied subjects at blood sampling

HD (n=28) Active GCA (n=14) Inactive GCA (n=27) P†

Age (years)—median (IQR) 61.8 (58.9–76.8) 68.3 (63.3–77.7) 69.3 (61.5–77.1) 0.3548 (ns)

Sex, female—no (%) 15 (53.6) 8 (57.1) 16 (59.2) 0.9122 (ns)

N.European ethnicity—no (%) 27 (96.4) 13 (92.3) 23 (85.2) 0.3260 (ns)

Disease duration (years)—median (IQR) – 1.1 (0.1–4.1) 3.5 (0.8–6.2) 0.1446 (ns)

CRP (mg/L)—median (IQR) – 30.9 (11.1–60.6) 1 (0.5–2.6) <0.001‡

ESR 1 hour (mm)—median (IQR) – 45 (33–80.5) 8 (5–22) <0.001‡

Relapsed cases—no (%) – 8 (57.1) – –

TCZ—no (%) – – 12 (44.4) –

Duration of TCZ treatment, median (years)—median (IQR) – – 1 (0.4–2.8) –

Corticosteroids as monotherapy—no (%) – 3 (21.4) 8 (29.6) 0.7186 (ns)

Prednisolone or prednisolone equivalent dose (mg)—median (IQR) – 0 (0–5) 2.5 (0–5) 0.2040 (ns)

MTX—no (%) – – 7 (25.9) –

LFN—no (%) – 1 (7.1) 1 (3.7) –

*P<0.05.
†P<0.001.
‡ns, non-significant.
CRP, C reactive protein; GCA, giant cell arteritis; HD, healthy blood donor; LFN, leflunomide; MTX, methotrexate; ns, non-significant; TCZ, tocilizumab.
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CD3/CD28 stimulation with Dynabeads, GCA Tregs expressed 
significantly lower levels of GARP than HD Tregs (figure 3B). 
The suppressive function of Tregs critically depends on CD25, 
whose reduced expression by Tregs has been linked to diverse 
autoimmune diseases.30 31 Similar to GARP, GCA Tregs displayed 
impaired induction of CD25 after CD3/CD28 stimulation 
(figure 3C). However, we observed no difference in GARP or 
CD25 expression between Tregs from active and inactive GCA. 
TCR-induced calcium signalling has been linked to both Treg 
development and suppressive function.32 Here, we identified 
a marked reduction in immediate TCR-induced calcium influx 
in GCA Tregs, especially in those from patients with active 
disease (figure 3D,E). In contrast, the difference in calcium flux 
between GCA Tregs in remission and healthy Tregs was not 
statistically significant (p value=0.1936). It has been demon-
strated that the exon 2 of FOXP3 physically binds RORγT to 
prevent Th17 polarisation, and that patients with GCA display 
a higher frequency of IL-17 producing and FOXP3-exon 2 defi-
cient (FOXP3∆2) Tregs, which could play a pathogenic role in 

GCA.28 We were able to recapitulate these observations in our 
cohort (figure 3G–I). In addition, we observed that at single cell 
level, FOXP3Δ2 Tregs expressed less CD25, as compared with 
their FOXP3 exon 2-expressing counterparts. To evaluate the 
relevance of identified phenotypic abnormalities of GCA Tregs, 
we performed a suppression assay evaluating the proliferation 
of conventional T cells (CD4+ CD25loCD127hi) in the presence 
or absence of CD4+ CD25hiCD127lo Tregs (figure  3H). The 
results show significantly reduced suppressive potential of GCA 
Tregs. Furthermore, the fact that the suppressive potential of 
Tregs from active patients was significantly lower to the one of 
patients in remission, suggests the association of Treg dysfunc-
tion with disease activity. Differences in differentiation state of 
Tregs could account for Treg dysfunction in GCA. To evaluate 
this, we measured the frequencies of activated Tregs and resting 
Tregs, as those were defined by Miyara et al.33 In line with 
previous reports,27 28 the latter revealed comparable propor-
tions of activated to resting Tregs between GCA patients and 
HD (online supplemental figure 2), suggesting the occurrence 

Figure 1  Transcriptional, metabolic, and signalling disturbances in GCA Tregs. (A) Volcano plot showing differentially expressed genes between 
active GCA Tregs vs healthy Tregs (adjusted p value<0.05, log2(fold change)>0.56). (B) Heatmap analysis showing differential expression of selected 
genes encoding transcription factors, glycolytic molecules, and IL-2/STAT-5 signalling pathway, in Tregs from different groups (active GCA cases, GCA 
in remission, healthy donors). Treatment of each studied patient is indicated: CS, corticosteroids; csDMARDs, conventional synthetic disease-modifying 
antirheumatic drug; GCA, giant cell arteritis; TCZ, tocilizumab.

Figure 2  Reduced expression of FOXP3 and IRF4 by GCA Tregs, measured by flow cytometry as MFI. Bars represent the means±SDs. GCA, giant cell 
arteritis; HD, healthy blood donor; MFI, median fluorescence intensity.

https://dx.doi.org/10.1136/annrheumdis-2021-220955
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of Treg dysfunction in the presence of normal Treg population 
dynamics.

Glycolysis inhibition recapitulates dysfunction of GCA Tregs
As presented above, transcriptome analysis revealed lower 
expression of glycolytic enzymes, such as phosphofructoki-
nase (PFKP) and enolase 1 (ENO1), in GCA Tregs (figure 1B). 
Despite several controversies regarding Treg metabolism, recent 
studies have shown that glycolysis promotes FOXP3 expres-
sion, and under certain circumstances, the suppressive func-
tion of human Tregs.34 35 Therefore, to evaluate the likely role 
of reduced glycolysis in human Treg dysfunction, we evaluated 
the effect of glycolysis inhibition on Treg phenotypes, using 
2-deoxyglucose (2-DG). Glycolysis inhibition in healthy Tregs 
led to failure of GARP and CD25 upregulation after 18 hours 
of TCR stimulation (figure  4A,B). Furthermore, TCR-induced 
calcium influx was effectively abolished by glycolysis inhibition 
(figure  4C,D). These findings suggests a direct link between 
glycolysis and calcium signalling in human ex vivo Tregs. On the 
other hand, glycolysis inhibition in GCA Tregs had no signifi-
cant additive effect on reduced upregulation of GARP or CD25 
(online supplemental figure 3A,B). Similar was the case with 

TCR-induced calcium influx in Tregs from patients with active 
GCA (online supplemental figure 3C). Finally, as glycolysis has 
also been linked to alternative splicing of FOXP3 in human 
iTregs,36 we tested whether glycolysis inhibition in healthy Tregs 
could lead to higher frequencies of FOXP3Δ2 Tregs, which was 
the case (figure 4E). Similar to ex vivo GCA Tregs, FOXP3Δ2 
cells expressed less CD25 than FOXP3 exon 2-expressing Tregs 
(figure 4F).

TCZ partially normalises GCA Treg dysfunction
As TCZ has been shown to enhance the suppressive function of 
Treg in GCA,28 we evaluated the previously identified pheno-
typical changes in GCA Tregs in the subgroup of TCZ-treated 
patients, which all were in remission. As shown in figure 5A,B, 
TCZ treatment appears to enhance IRF4 but not FOXP3 expres-
sion in Tregs. Furthermore, the induction of GARP and CD25 
remained impaired, also in Tregs from TCZ-treated patients 
(online supplemental figure 4). Similar to the rest of patients 
in remission, treatment with TCZ appears to normalise TCR-
induced calcium influx in Tregs (figure  5C). Finally, we were 
able to recapitulate the previously described reduction in the 
frequency of FOXP3Δ2 Tregs in TCZ-treated patient with CGA 

Figure 3  Treg dysfunction in GCA. (A) Frequencies of Tregs (CD4+CD25hiCD127lo) in different groups (active GCA, GCA in remission, healthy 
donors). (B) Protein expression of GARP after 18 hours of CD3/CD28 stimulation. (C) Protein expression of CD25 at rest and after 18 hours of CD3/
CD28 stimulation. (D) Representative calcium flux tracing (GCA patients vs healthy donors). At 60 s, anti-CD3 (clone: OKT3) was added (5 µg/mL). At 
180 s, CaCl2 was added (7 mM). At 330 s, ionomycin was added (14 µg/mL). (E) Calcium flux in Tregs (normalised to baseline) after CaCl2 addition. (F) 
Representative gating strategy to quantify FOXP3Δ2 cells, using anti-FOXP3 clone 236A/E (total FOXP3) and clone 150D (measuring only exon 2). (G) 
Frequencies of FOXP3Δ2 cells (% Tregs). (H) Single-cell expression level of CD25 in FOXP3Δ2 Tregs versus FOXP3 exon 2-expressing Tregs at the basal 
state. (I) Frequencies of IL-17 producing Tregs (IL-17A+) (% Tregs, CD4 +CD25 hi CD127lo). (J) Treg suppression assay, conventional T cell proliferation 
in the presence of autologous Tregs: representative plots from patients with GCA (active and in remission) and a HD are shown. (K) Summary of cell 
proliferation normalised to the positive control of each sample (without Tregs) in patients with GCA (GCA-active: n=5, GCA-remission: n=10) and HD 
(n=5). GCA, giant cell arteritis; HD, healthy blood donor; MFI, median fluorescence intensity.
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(figure  5D).28 Partial reversion of Treg dysfunction by TCZ, 
is suggested by the improved suppressive potential of Tregs in 
the context of the suppression assay (figure  5E). Altogether, 
these findings demonstrate that IL-6 receptor blockade seems 
to improve calcium signalling and the suppressive function of 
Tregs in GCA. Most evaluated Treg parameters, especially TCR-
induced calcium influx and the suppressive function, whose 
recovery correlates with remission, were comparable in GCA 
remission with or without TCZ (figure  5B–E). This together 
with the similar results after performing a subanalysis of patients 
in remission with or without methotrexate (online supplemental 
figure 5), suggest that improved function of Tregs is rather the 
consequence of effective immunomodulation in GCA and not a 
medication-specific effect.

DISCUSSION
Here we explored the aetiology of Treg dysfunction in GCA 
and identified for the first time the downregulation of IRF4 

and FOXP3, which are critical transcription factors for both the 
polarisation and suppressive functions of Tregs, the reduction 
of TCR-induced calcium signalling as well as the insufficient 
upregulation of effector molecules as causes of Treg pathoge-
nicity in GCA. Further, using transcriptome analysis we identify 
a marked downregulation of glycolytic enzymes in GCA Tregs, 
which may play a central role in the aetiology of most identified 
Treg dysfunctions.

Imbalances in the expression of FOXP3 isoforms have been 
reported in various autoimmune diseases, including rheuma-
toid arthritis and autoimmune thyroiditis.37 Among FOXP3 
isoforms, expression of the exon 2 containing FOXP3 appears 
critical for the suppressive function of human iTregs.36 The 
fact that patients with FOXP3 variants selectively affecting 
the expression of exon 2 develop IPEX, provides additional 
evidence on its in vivo regulatory function.38 Mechanistically, 
based on murine Treg findings, it has been suggested that the 
regulatory role of the exon 2 of FOXP3 can be explained by the 

Figure 4  Glycolysis inhibition of healthy Tregs. (A) Protein expression of GARP after 18 hours of CD3/CD28 stimulation, following 48 hours of pre-
incubation with 2-deoxyglucose (2-DG) (2 mM). (B) Protein expression of CD25 at rest and after 18 hours of CD3/CD28 stimulation, following 48 
hours of 2-DG (2 mM). (C) Representative calcium flux tracing. Sorted Tregs were analysed in the presence or absence of 2-DG (50 mM). Anti-CD3, 
CaCl2, and ionomycin were added at timepoints as described for figure 3D. (D) Calcium flux in Tregs (normalised to baseline) after CaCl2 addition. Two 
concentrations of 2-DG were used for glycolysis inhibition (50 mM and 2 mM). (E) Frequencies of FOXP3Δ2 cells (% Tregs). (F) Single-cell expression 
level of CD25 in FOXP3Δ2 Tregs versus FOXP3 exon 2-expressing Tregs at the basal state, with and without 2-DG (2 mM). GARP, glycoprotein A 
repetitions predominan; MFI, median fluorescence intensity.

https://dx.doi.org/10.1136/annrheumdis-2021-220955
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fact that it physically antagonises RORγT, and exon 2-skipping 
increases the propensity of Tregs to produce IL-17, which poten-
tially exacerbates inflammation.39 40 The finding by Miyabe et al 
that GCA patients display higher frequencies of FOXP3∆2 Tregs, 
which we confirmed, proved evidence on the pathogenicity of 

alternative FOXP3 splicing and especially reduced expression of 
the exon 2 of FOXP3 in GCA.28

TCR-induced calcium signalling largely depends on the 
pathway of store-operated calcium entry (SOCE).41 Conditional 
deletion of SOCE mediators in murine Tregs and the consequent 

Figure 5  Tocilizumab normalised IRF4, FOXP3Δ2, and calcium flux. (A) Protein level of IRF4 in Tregs. (B) Protein level of FOXP3 in Tregs. (C) 
Frequencies of FOXP3Δ2 (% Tregs). (D) Calcium flux in Tregs (normalised to baseline) after CaCl2 addition. (E) Treg suppression assay, conventional T 
cell proliferation in the presence of autologous Tregs: summary of cell proliferation normalised to the positive control of each sample (without Tregs) 
in patients with GCA (GCA-active: n=5, GCA-remission-TCZ: n=5, GCA-remission-TCZ: n=5) and HD (n=5). GCA, giant cell arteritis; HD, healthy blood 
donor; TCZ, tocilizumab.
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loss of TCR-induced calcium influx, affected both their polar-
isation and effector differentiation, resulting in systemic auto-
immunity.32 Human STIM1 deficiency abrogates TCR-induced 
calcium influx and besides immunodeficiency causes autoim-
munity,42 which given the role of SOCE in murine Tregs could 
be explained by Treg dysfunction. Here we identify reduced 
TCR-induced calcium influx in GCA Tregs, which appeared to 
normalise in Tregs from TCZ-treated and the rest of patients in 
remission, suggesting the direct correlation of this finding with 
GCA inflammation.

Despite the longstanding belief that Tregs are not glycolytic 
but rather rely on the oxidative pathway of glucose metabo-
lism,43 35 several recent studies have identified various aspects of 
human Treg biology, including FOXP3 alternative splicing, cell 
migration, proliferation and IL-2 signalling, which all depend on 
glycolysis.35 36 43–46Likewise, reduced glycolysis and the conse-
quently compromised suppressive potential of Tregs has been 
implicated in pathogenesis of autoimmune diseases, such as 
multiple sclerosis and type 1 diabetes mellitus.36 47 Mechanisti-
cally, de Rosa et al have shown that glycolysis controls FOXP3 
splicing and enhances the expression of exon 2-containing 
FOXP3, which is involved in the suppressive activity of Tregs.36 
Furthermore, a murine T cell study reported that the glyco-
lytic metabolite phosphoenolpyruvate enhances TCR-induced 
calcium influx and that calcium mobilisation in T cells was 
reduced after 2-DG-mediated inhibition of glycolysis.48 In this 
study, side-by-side characterisation of GCA Tregs and in vitro 
glycolysis-inhibited Tregs demonstrate that GCA-associated Treg 
abnormalities, such as the increased frequency of FOXP3∆2 
Tregs and the reduced TCR-induced calcium influx, can be reca-
pitulated by glycolysis inhibition in healthy Tregs. Considering 
the central role of exon 2-expressing FOXP3 and the direct link 
between glycolysis and calcium signalling in Tregs, which we 
identify in the present study, our findings suggest that the down-
regulation of glycolytic enzymes in GCA Tregs is a central event 
in the aetiology of Treg dysfunction in GCA.

Longer term follow-up of GiACTA trial revealed that a 
minority of treated patients, that is, 42%, maintained clinical 
remission after stopping treatment with TCZ.49 The require-
ment of long-term treatment together with the limited reliability 
of acute phase reactants under TCZ treatment can render the 
monitoring of disease activity expensive, necessitating vascular 
imaging such as PET.50 Therefore, laboratory biomarkers 
reflecting disease activity independently of the acute phase 
response may be useful for evaluating disease activity in TCZ-
treated patients. Our findings suggest the TCR-calcium response 
and the expression of IRF4 by Tregs as markers of GCA remis-
sion in TCZ-treated patients.

Apart from the above-mentioned correlates of remission, GCA 
Tregs – even from TCZ-treated patients – still display a largely 
dysfunctional phenotype, including lower activation-induced 
expression of CD25 and GARP. This suggests the need for novel 
therapeutic approaches with a broader effect on Treg dysfunc-
tion. On the other hand, the fact that TCZ or csDMARD-
induced remission associated with normalised calcium influx 
only, highlights the central pathogenic role of compromised 
calcium signalling in GCA Tregs. The lack of steroid-sparing 
effect of the calcineurin inhibitor cyclosporine in GCA51 may 
stem from the critical role of calcium signalling for Treg function 
and comes in line with the aforementioned finding.

The strengths of our study include the analysis of CD4+ 
CD25hiCD127lo cells as this gating strategy reliably distin-
guishes ex vivo Tregs,52 53 and the phenotypic analysis of ex vivo 
unprimed Tregs, which better reflects the in vivo setting. The 

use of RNA-Seq for transcriptomic profiling has been suitable 
to enumerate pathologies in GCA Tregs, which we validated at 
protein level and experimentally with in vitro analysis of healthy 
Tregs. Our patient cohort was representative of GCA, including 
patients in remission and active cases as well as treatment naïve 
patients. Weaknesses of the study include the small number of 
tested patients, especially for the transcriptome analysis, where 
a bigger number of patients could potentially have led to the 
detection of more DEGs. Study of a larger number of patients 
with GCA, including pretreatment samples as well as samples 
from patients with same disease activity status, receiving similar 
treatment, may have aided evaluation of the possible differential 
effects of the immunomodulatory agents on the Treg phenotype. 
On the other hand, small sample size can have underpowered 
the detection of differences between TCZ-treated patients and 
HD and may also account for the identification of normal Treg 
frequency in GCA, in the present study, which deviates from the 
reported reduced Treg counts in some of the previous studies 
on GCA Tregs.26 27 In addition, we have not demonstrated the 
metabolic disturbance directly with a metabolic assay, most well-
established of which is the Seahorse metabolic flux assay, due 
to limitations both regarding the assay sensitivity and the cell 
availability.54 Another point that requires further research is the 
characterisation of Tregs from inflamed arteries, whose study 
would necessitate fresh samples and/or the development staining 
protocols reliably identifying Tregs and the expression levels of 
key tolerogenic molecules.

In summary, we present novel abnormalities of Treg function 
in GCA, suggesting the pathogenic role of low glycolysis and 
calcium signalling in GCA Tregs. Our findings may aid the devel-
opment of therapeutic approaches targeting Treg dysfunction in 
GCA and provide new correlates of disease remission, which 
may be useful for monitoring disease activity, especially in case 
of TCZ-treated patients.
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