Skip to main content
. 2022 Jan 3;8:749274. doi: 10.3389/frobt.2021.749274

TABLE 11.

Gender recognition (GR).

Reference AI Algorithm Best Achieved accuracy Dataset/Input features Task
Kwon and Lee, (2021) KNN, SVM, NB, DT, 100% UPCVgaitK1, UPCVgaitK2 GR
Zhang et al. (2019b) multi-task CNN, AE: MAE = 5.47, GR: 98.1% OULP-Age dataset GEI from video GR and AE
El-Alfy and Binsaadoon, (2019) LK-SVM with FLBP Normal: 96.40% CASIA-B GEI from video GR
Carrying: 87.97%
Wearing coat: 86.54%
(Jain and Kanhangad, 2018) Bootstrap DT 94.44% 1D HG extracted from Smartphone in the front pocket GR
(Castro et al., 2017) CNN F:77%, M:96% TUM-GAID: extracted from low-resolution video streams recorded with MS Kinect automatic PI and GR
Lu et al. (2014) AP clustering + SRML PI: 87.6% GR: 93.1% Own dataset: ADSCAWD USF and CASIA-B C-AGI instead of GEI from MS Kinect Depth Sensor PI and GR

Legend: Sparse Reconstruction-based Metric Learning (SRML), Cluster-based Averaged Gait Image (C-AGI), Affinity Propagation (AP), Optical Flow (OF), Person Identification (PI), Gender Recognition (GR), Age Estimation (AE), Fuzzy Local Binary Pattern (FLBP), Linear Kernel SVM (LK-SVM).

Datasets: UPCVgaitK1 (Kastaniotis et al., 2013), UPCVgaitK2 (Kastaniotis et al., 2016), OULP-Age (Iwama et al., 2012), CASIA-B (Yu et al., 2006), TUM-GAID (Hofmann et al., 2014), USF (Sarkar et al., 2005).