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The quantification of richness within a sample—either measured as the number of observed species or
approximated by estimation—is a common first step in microbiome studies and is known to be highly
dependent on sequencing depth, which itself is highly variable between samples. Rarefaction curves
serve as a tool to investigate this dependency and it is often argued that after rarefying data—sub-
sampling to an equal sequencing depth—richness estimates no longer depend on sequencing depth.
However, the estimation of richness from data obtained by high throughput sequencing methods and
processed by current bioinformatics pipelines may be subject to various sources of variation related to
sequencing depth. Those that may confound inference based on richness estimates and cannot be solved
by sub-sampling. We investigated how pipeline settings in DADA2 and deblur affect estimates of richness
and showed that the use of rarefaction and sub-sampling is inappropriate when default pipeline settings
are applied. Furthermore, we showed how independent sample-wise processing established spurious
correlations between sequencing depth and richness estimations in data produced by DADA2 and how
this problem can be solved by a pooled processing approach.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The estimation of alpha diversity—the diversity within a given
environment—is a common first step when investigating ecological
communities. The most common and simple measure of alpha
diversity is the richness in terms of either the observed or esti-
mated number of species within a given community. In current
microbiome research, however, communities are not directly
observed, but inferred from biological samples using high-
throughput sequencing methods. These methods make use of the
bacterial gene content in a biological sample to infer its microbial
community structure. However, the number of reads (i.e. the num-
ber of gene sequences) that are sequenced per sample can be
highly variable for purely technical reasons. As a higher overall
read count (sequencing depth) increases the chance of detecting
rare sequences, richness is positively correlated with sequencing
depth.

Rarefaction is a common yet strongly criticized method devel-
oped to assess the coverage of detected sequences in a sample by
plotting the number of observed sequences (or taxa, i.e. genera
or species) as a function of sequencing depth. When this rarefac-
tion curve reaches a plateau (Fig. 5 B), only few new sequences
are detected with increasing sequencing depth. Therefore, one
may conclude that the sample sufficiently covered the original
community it was taken from. Rarefaction is often used with the
intention to assess whether a fair comparison of richness between
microbial communities measured with unequal sequencing depths
is possible. Another strategy typically applied is to sub-sample all
communities to an equal sequencing depth – usually the lowest
observed sequencing depth among all samples – to reduce the
influence of sequencing depth inequalities on richness estimations
(See Fig. 1).

In recent microbiome research, rarefaction curves as well as
sub-sampling are still frequently used. However, current pipelines
(i.e. DADA2 [1] or deblur [2]) use a fundamentally different
approach as compared to former bioinformatics pipelines by incor-
porating an error model to correct for sequencing errors (denois-
ing) and derive exact sequence variants, instead of grouping
similar sequences into operational taxonomic units (OTU) to
account for sequencing errors. Although this approach allows for
computational efficient sample-wise processing, it is not clear
how these differences affect sub-sampling and rarefaction in data
obtained by those denoising pipelines.
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Fig. 1. Two common patterns in rarefaction curves. Panel A shows a smooth incline in observed richness. Panel B shows a steep incline and early plateau for all samples.
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The aim of this study is to investigate the effects of rarefaction
and sub-sampling on alpha diversity estimated from data pro-
cessed using denoising pipelines based on the example of DADA2
[1] and deblur [2] and to assess which aspects of the pipeline affect
richness estimations.
2. Methods

To assess how different processing approaches affect rarefac-
tion and sub-sampling followed by estimation of alpha diversity,
several datasets were processed using DADA2 and deblur with dif-
ferent pipeline setups. DADA2 and deblur are pipelines that aim to
infer sample sequences exactly up to single nucleotide differences.
The resulting error corrected sequences are referred to as amplicon
sequence variants (ASV).

All datasets were published previously and are publicly avail-
able via the European Nucleotide Archive. Derivation of ASVs in
all datasets was achieved using four different approaches in
DADA2 (v.1.20.0). At first, among all approaches, the following
DADA2-parameters remained fixed: maxEE = 2, truncLen = (250,2
50), trimLeft = c(17,21), rm.phix = TRUE, while all other parameters
were pipeline default settings. In addition, chimeric reads were fil-
tered using the removeBimeraDenovo-function. For further expla-
nation of these parameters, please refer to [1].

For DADA2, the difference in the four processing approaches is
the combination of two argumentsin the DADA2 pipeline. The first
argumentdefines whether to use standard sample-wise processing
(1) or to pool information across samples (2). DADA2, by default,
processes samples independently (sample-wise). This is computa-
tionally efficient, but may result in poor sensitivity to very low
abundant sequences. For example, suppose we have two samples
and the same sequence was observed once in the first sample
and five times in the second. Due to independent sample-wise pro-
cessing, the sequence will be discarded in the first sample, but not
in the second sample. However, pooling information would keep
those reads in all samples and increase sensitivity. The second
argument is the whether to process data without prior information
(a) or to include prior information about sequences (b). Regardless
of whether we process data pooled or unpooled, we can pass a list
of sequences that we expect to find as an argument to the main
DADA2-function dada. If a singleton is detected in a sample, it will
not be discarded if it is present in the list of prior sequences.

To assess the effects of sub-sampling, two different approaches
were used. In the first approach, the sub-sampling was performed
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before deriving ASVs by randomly sampling raw sequence reads
using the FastqSampler-function in the ShortRead package
(v.1.50.0) (pre-ASV). The second approach performed sub-
sampling on the processed data after deriving ASVs (post-ASV)
using the rarefy_even_depth()-function of the phyloseq package
(v.1.36.0) [3].

The combination of sub-sampling approach and pipeline setup
resulted in 3� 2� 2 ¼ 12different scenarios per dataset ((Full
data/ pre-ASV sub-sampling/ post-ASV sub-sampling) � (pooled/
unpooled) x (prior/ no prior)).

Note, that the resulting sequences of the scenarios without
prior and without sub-sampling served as set of prior sequences
for all scenarios with prior. A detailed overview of the workflow
is shown in Fig. 2.

In addition to DADA2, the analysis were replicated using deblur
[4] as implementet in QIIME2 [2]. Deblur is a pipeline that, similar
to DADA2, uses a denoising approach to derive amplicon sequence
variants with a resolution up to a single nucleotide. Just as DADA2,
deblur processes data sample-wise. However, deblur does not
allow pooling of information, which prevents direct comparison
of DADA2 and deblur. To have comparable setups, two different
scenarios were applied for deblur. In the first scenario, the data
was processed with the default setting in which sequences with
less than one reads will be discarded. In the second scenario, to
achieve similar increase in sensitivity to singletons as in DADA2
pooled processing, the minimal read count of a single sequence
was set to one, to keep singleton reads in all samples. To achieve
maximum comparability, the data that was already filtered and
trimmed by the DADA2 pipeline was used as input for deblur. Note,
that, although deblur follows a similar approach as DADA2, the two
core algorithms are fundamentally different.

For all scenarios, alpha diversity in terms of observed richness,
Shannon index, Simpson index, Chao1 index [5], the ACE index [6],
Good’s coverage [7], Margalef’s diversity index and Menhinick’s
diversity index were estimated at the ASV level using the packages
HillR (v.0.5.1 [8]),fossil (v.0.4.0 [9]),abdiv (v.0.2.0 [10]),and QsRutils
(v.0.1.5 [11]). Observed richness, Shannon index and Simpson
index were calculated through Hill numbers. Hill numbers are gen-
eralizations of alpha diversity that converge to observed richness
(order zero), Shannon index (order one) and Simpson index(order
two), respectively [12]. Rarefaction curves were obtained using
the package iNext (v.2.0.20 [13]) and adjusted using the ggplot2-
package (v.3.3.5 [14]). Due to technical reasons, some observations
may lose a lot of sequences when sub-sampled and will be dis-



Fig. 2. Workflow of pipelines to generate rarefied datasets.

Table 2
Formal definition of calculated diversity indices. pi refers to the relative abundance of
ASV i. q refers to the order of the hill number. Sobs refers to the number of observed
ASVs. Sn1 and Sn2 refer to the number of singletons and doubletons, respectively. Sabund
and Srare refers to the number of ASVs with absolute abundance above or below 10,
respectively. Nrare refers to the total number of reads in the rare ASVs.

Index Formula

Observed richness Sobs ¼ 0D ¼ PS
i¼1p

0
i

� �
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carded from the sample. Therefore, we selected only observations
with at least 10,000 reads in the full (not sub-sampled) dataset
and at least 2000 reads after sub-sampling. Moreover, observations
were only kept when they were available among all 12 scenarios.
All analyses and processing steps were performed in the R statisti-
cal programming language [15] running on an high-performance
computing cluster. All R scripts are available at https://github.-
com/SvenKB/RichnessEstimationDenoising.
Shannon index
H0 ¼ �PSobs

i¼1pi � ln pi ¼ 1D ¼ PSobs
i¼1p

1
i

� �1=ð1�ðq!1ÞÞ

Simpson index
DSim ¼ 2D ¼ PSobs

i¼1p
2
i

� �1=1�2

Chao1 index Schao1 ¼ Sobs þ Sn1 ðSn1 �1Þ
2ðSn2 þ1Þ

ACE index 1,2
SACE ¼ Sabund þ Srare

CACE
þ Sn1

CACE
c2ace

Good’s coverage index C ¼ 1� Sn1
N

Margalef’s diversity index DMg ¼ Sobs�1
lnðNÞ

Menhinick’s diversity index DMn ¼ Sobsffiffiffi
N

p
Þ

1 CACE ¼ 1� Sn1
Nrare

.
2 c2ace ¼ max Srare

CACE

iði�1ÞSn1
ðNrareÞðNrare�1Þ � 1;0

h i
.

3. Results

The analyses showed that alpha diversity estimates as well as
correlations with sequencing depth are highly dependent on the
pipeline setup that was used to derive ASVs. The use of pooled pro-
cessing allowed to share information across samples, resulting in a
higher sensitivity for low abundant reads and may produce single-
tons within single samples. The use of prior information resulted in
a similar, partial, pooling effect. The sequences detected in one
sample will be used as information for other samples. Therefore,
a previously detected singleton may now be kept, when the same
sequence is in the list of prior sequences (See Table 1).

We found that in the unpooled szenario without sub-sampling,
observed richness was positively correlated with sequencing depth
among all datasets. Post-ASV sub-sampling had almost no effect on
observed richness as well as on the correlation with sequencing
depth. Pre-ASV sub-sampling, however, substantially decreased
observed richness in all three datasets. In addition, the correlation
with the original sequencing depth almost vanished (Fig. 3 C and
A) or was substantially reduced (Fig. 3 B). For the pooled scenario,
we found that average richness was substantially higher as com-
pared to the unpooled scenario when no sub-sampling was per-
formed. As expected, this increase in richness was driven by a
large increase in singleton reads (Table 3). A positive correlation
with sequencing depth was still observed for two datasets, but
not for dataset A. For the datasets C and B, the correlation with
Table 1
Description of data used for example analyses. All datasets were publicly available at the

Reference Body site Diagnosis

Almeida-Santos et al., 2021 Oral (Saliva) Diabetes/ healthy controls
Manor et al., 2018 Gut (Stool) No diagnosis
Aho et al., 2019 2 Gut (Stool) Parkinson’s disease/ healthy controls

1 Note, that the original sample size was N = 648. For feasibility, only a subset of the or
2 Due to repeated measurements, two samples were available per observation. For our
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original sequencing depth decreased or vanished after sub-
sampling, both pre- and post-ASV derivation. For dataset A, post-
ASV sub-sampling resulted in a negative correlation (Table 3).
The use of priors during processing produced similar results. In
fact, the correlation between observed richness and sequencing
depth was still observed. However, in contrast to scenarios without
prior, post-ASV sub-sampling was able to reduce this correlation in
unpooled scenarios (Fig. A.1 and Table A.1).

When data was processed with deblur, the correlation between
observed richness and sequencing depth was observed as well. The
strengths of correlation differed substantially between deblur and
DADA2, with some correlations being stronger in the former and
some in the latter (Table 3 and Table B.1). Sub-sampling, however,
substantially reduced this correlation in all scenarios, regardless of
European Nucleotide Archive under the given ENA accession number.

16S rRNA region Sample size ENA accession Sub-sampling depth

V3-V4 Cases = 25 HC = 25 PRJNA679485 11150
V3-V4 N = 601 PRJNA471742 21092
V3-V4 PD = 64 HC = 64 PRJEB27564 12341

iginal data was used for our analyses.
analyses, we selected the more recent sample.

https://github.com/SvenKB/RichnessEstimationDenoising
https://github.com/SvenKB/RichnessEstimationDenoising


Fig. 3. Scatter-plots with fitted regression line showing the association of observed richness with sequencing depth for data processed in a pooled and unpooled approach
without prior for the data of A Almeida-Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019.

S. Kleine Bardenhorst, M. Vital, André Karch et al. Computational and Structural Biotechnology Journal 20 (2022) 508–520
whether it was performed pre- or post-ASV. Moreover, keeping
singletons had little effect on the correlation between sequencing
depth and observed richness.

The effects of pipeline settings in DADA2 were different for the
various alpha diversity indices. While richness is directly associ-
ated to the observed number of ASVs, other alpha diversity indices
511
may be less or more sensitive to changes in the number of ASVs.
Chao1 estimates were almost identical to observed richness in
unpooled scenarios. For pooled scenarios, the Chao1 estimates
exceeded the estimates of observed richness as it was highly dri-
ven by the high number of singletons in the pooled data. Effects
of sub-sampling, however, were similar to those for observed rich-



Table 3
Estimates of observed richness and correlation with original sequencing depth for data processed with DADA2. Estimates shown are calculated on data processed without use of a
prior.

Study Processing Sub-sampling q1 Mean observed richness (SD) Mean singletons

Aho et al., 2019 (C) Unpooled None 0.54 256.12 (70.30) 1.00
Post 0.50 241.65 (63.70) 17.99
Pre 0.07 101.80 (17.80) 0.43

Pooled None 0.23 820.02 (217.00) 251.00
Post �0.02 469.16 (110.00) 145.98
Pre �0.01 388.27 (80.70) 125.14

Almeida-Santos et al., 2021 (A) Unpooled None 0.34 372.90 (127) 10.80
Post 0.27 309.76 (94.7) 45.39
Pre 0.04 83.90 (14.1) 1.32

Pooled None 0.08 3178.07 (1104) 2044.85
Post �0.40 971.76 (352) 554.71
Pre �0.01 704.66 (150) 407.93

Manor et al., 2018 (B) Unpooled None 0.42 226.53 (92.20) 0.00
Post 0.36 216.05 (84.90) 12.33
Pre 0.27 106.53 (43.50) 0.00

Pooled None 0.30 592.53 (166.00) 129.40
Post 0.09 384.10 (110.00) 94.82
Pre 0.15 296.28 (77.60) 66.93
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ness. As expected, Shannon diversity and Simpson diversity were
less sensitive to differences between scenarios (pooled or
unpooled) and sub-sampling strategy. The Good’s coverage estima-
tor assumed almost full coverage of the sample in the unpooled
scenario, irrespective of sub-sampling strategy. For the pooled sce-
nario, the coverage in the data without sub-sampling was substan-
tially lower and further decreased when sub-sampling was
performed. Both Margalef’s and Menhinick’s diversity index
showed increased diversity when using post-ASV sub-sampling,
with a higher magnitude for the latter. Results in scenarios with
prior were similar across all diversity measures. Most notably,
across all indices, estimates after pre-ASV sub-sampling were
higher as compared to scenarios without prior.

Across all indices , alpha diversity was substantially different
when processed with deblur (as compared to DADA2), regardless
of whether singletons were discarded or retained. DADA2 generally
had lower diversity when processed without pooling. However,
with pooling, the diversity increased and exceeded diversity
obtained by deblur. Further, post-ASV and pre-ASV sub-sampling
reduced diversity measures. Again, the effects where independent
of keeping singletons.

Rarefaction curves showed considerable differences between
scenarios. For all unpooled scenarios, the rarefaction curves showed
a steep increase and an early plateau suggesting a sufficient cover-
age of the sample (Fig. 5 A1, B1 and C1). This pattern was caused by
the low (or not existent) number of singletons in data processed
without pooling. However, when data were processedwith pooling,
the rarefaction curves changed across all datasets. In fact, none of
the rarefaction curves seemed to be close to reaching a plateau
(Fig. 5 A2, B2 and C2), suggesting that the sample was not fully cov-
ered to detect all ASVs. These findings were in line with the conclu-
sions drawn from Good’s coverage shown in Fig. 4.

When data was processed with deblur, rearefaction curves pre-
sented very different as compared to the rarefaction curves calcu-
lated on data produced by DADA2 (Fig. B.3). Instead of the early
plateaus as observed in unpooled scenarios of DADA2, rarefaction
curves showed smooth inclines with some curves showng tenden-
cies to reach plateaus (e.g. Fig. B.3 C2).
4. Discussion

Our results show that pipeline setup affects both the richness
estimates as well as the correlation of richness with the original
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sequencing depth. The observed effects are the interplay of two dif-
ferent processes.

First, denoising pipelines such as DADA2 aim to infer sample
sequences with resolution up to differences of only a single nucleo-
tide. Since it is not possible to distinguish whether a single read is a
true sequence variant or a result of a sequencing error, the default
DADA2 (and deblur) pipeline strictly treats singletons as sequenc-
ing errors and discards those reads. However, rarefaction is highly
dependent on the number of singletons in a sample – the rarer the
sequence, the more likely it is that it will be observed only once in
a sample. When all singletons are discarded beforehand, effects of
rarefaction are limited, as observed in the unpooled scenarios
(Table 3). Furthermore, as richness estimation is highly dependent
on singletons, richness estimates are not valid on those data.
Although pre-ASV sub-sampling seems to have an effect on rich-
ness, these effects are the result of sequences that became single-
tons through sub-sampling (sub-sampling-induced singletons).
While post-ASV sub-sampling kept those singletons, the pipeline
discarded those sub-sampling-induced singletons in pre-ASV sub-
sampling. Using the sequences obtained in the baseline dataset
as prior information to inform the processing of the sub-sampled
datasets prevented the pipeline from discarding sub-sampling-
induced singletons – this approach minimized the differences in
pre- and post-ASV sub-sampling.

The second process that affected the results is the independent
sample-wise processing of the DADA2 pipeline. By default, sam-
ples are processed independently without sharing information
across samples. This influences how singletons are handled dur-
ing processing. The higher the sequencing depth, the higher the
probability that a rare ASV is detected more than once. This in
turn leads to an increased probability that a sequence is retained
in a sample, while the same sequence is discarded in a sample
with lower sequencing depth. This leads to a spurious correlation
of sequencing depth with observed or estimated richness. Our
analyses showed that this spurious correlation can be completely
resolved by pooled processing of the data. When pooling the data,
the information of sequences in one sample is used to inform the
processing in all other samples. Therefore, a sequence that is
observed once in one sample may still be retained when it is also
present in at least one other sample. In fact, if the data are pro-
cessed sample-wise, the individual sequencing depth is directly
related to the probability of retaining rare ASVs in a sample.
However, when pooling data, this direct relationship is broken.
The probability of keeping rare sequences is now related to the



Fig. 4. Distribution of alpha diversity indices for the full and saub-sampled data using DADA2 with pooled and unpooled processing without priors for the data of A Almeida-
Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019.
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overall sequencing depth of all samples and constant across sam-
ples. Using the prior information for sub-sampled datasets can
also be seen as partial pooling of information between samples.
Therefore, the results presented mainly focused on the compar-
ison between pooled and unpooled data, as the mechanisms driv-
ing the effects are the same.

We show that pipeline settings substantially affect alpha diver-
sity estimation. With the exception of the Shannon and the Simp-
son diversity index – both compound measures of richness and
evenness – the magnitude of all diversity indices where highly
influenced by the choice of pooled or unpooled processing. This
influence was mainly driven by the number of singletons in the
data. As all measures that aim to estimate richness incorporate a
unique treatment of singleton (or very low abundant) reads
(Table 2), these estimators are invalid for data processed with
the standard unpooled pipeline. For example, the Chao1 estimator
converges to the simple observed richness (Fig. 4) for unpooled
data . Margalef’s and Menhinick’s diversity indices show even con-
tradictory – and technically implausible – behaviour, with
increased diversity after sub-sampling. This is caused by the
decreasing number of overall reads in the denominator, while
the number of observed ASVs stays almost constant.

We further present that the choice of either pooled or unpooled
processing critically changed the pattern of rarefaction curves. It is
a common strategy to use the sequencing depth at which these
curves reach a plateau as sub-sampling depth. The curves in the
unpooled data reach plateaus even at very low sequencing depth,
which is an artifact of the treatment of singletons in the unpooled
513
pipeline. For pooled data, none of the curves seem to be close to a
plateau. Therefore, using rarefaction to decide on sequencing depth
is not a valid strategy when using unpooled processing in DADA2.

Although deblur follows an approach similar to DADA2 and also
utilizes independent sample-wise processing, not all results could
be replicated in data processed by deblur. While the association of
richness with sequencing depth was observed with similar magni-
tude, the correlation could be substantially reduced when sub-
sampling was applied, independent if sub-sampling was per-
formed before or after deriving ASVs. Furthermore, the magnitude
of decrease in the correlation between sequencing depth and
observed richness was higher when singletons were not discarded
in the pipeline. The results suggest that, despite the similarity in
approaches, DADA2 and deblur perform differently, with less sev-
ere effects for deblur.

Researchers using denoising pipelines who are interested in the
quantification and investigation of alpha diversity, expecially rich-
ness, should be aware of these influences and adjust their pipelines
or analyses accordingly. Our results further show that rarefaction
or sub-sampling is not an adequate tool to ensure that richness
is not related to sequencing depth, especially when using DADA2.
Pooled processing in combination with sub-sampling, however,
solves this issue by mitigating the spurious correlation induced
by sample-wise processing. If one decides to make use of sub-
sampling in data generated with DADA2, we argue, based on our
conclusions, to use a pooled processing approach together with
sub-sampling after derivation of ASVs to ensure highest sensitivity
and data quality.



Fig. 5. Rarefaction curves for the data of A Almeida-Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019. processed either 1 unpooled or 2 pooled with DADA2.
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Although our analyses focused on DADA2 and deblur, the
results extend to other pipelines that follow a similar denoising
approach to call amplicon sequence variants. Several studies inves-
tigating biases and differences in bioinformatics pipelines showed
that denoising pipelines had overall similar estimates of observed
richness which were insensitive to most filtering steps [16], but
differed significantly from classical approaches that construct
operational taxonomic units [17].

We only used some filtering steps on overall read depth
throughout our analyses. More strict filtering, e.g. the removal of
ASVs below a specific count threshold, may affect the observed
biases. Therefore, the analyses presented here should be used to
investigate biases within studies, e.g. by rarefaction curves or
investigation of correlation between diversity estimates and
sequencing depth. Moreover, we argue that in situations where
alpha diversity is subject to statistical analyses, sequencing depth
should always be included as a covariate to adjust for confounding.
When alpha diversity is only inspected exploratively, e.g. by visual
inspection or descriptive statistics, researchers should also provide
descriptive or visual information on possible systematic differ-
ences in sequencing depth between the subjects of interest.

At this point, it is crucial to note that the treatment of singletons
in DADA2, deblur and other denoising pipelines is not an error or
incorrect – in fact, it is possible to change this default behavior
and keep singleton reads – but the aim of those pipelines is to infer
sequence variants individually. On an individual level, it is almost
impossible to infer whether an observed singleton is a valid single-
ton or a sequencing artifact and it may be reasonable to discard
those sequences. Therefore, one may argue that denoising pipeli-
nes are not designed to estimate richness and should not be used
514
for this purpose. Currently, it is still common to inspect richness
in data obtained from denoising pipelines. Therefore, the results
presented here are important for raising awareness of the
described issues and enabling informed decisions about how to
handle alpha diversity estimation for inference based on those
estimates.
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Appendix A. DADA2 results with prior

See Figs. A.1,A.2 and Table A.1.



Fig. A.1. Scatter-plots with fitted regression line showing the association of observed richness with sequencing depth for data processed in a pooled and unpooled approach
with prior for the data of A Almeida-Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019.
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Fig. A.2. Distribution of alpha diversity indices for the original and rarefied data processed with deblur with and without keeping singleton reads for the data of A Almeida-
Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019.

Table A.1
Estimates of observed richness and correlation with original sequencing depth for data processed with DADA2 with priors.

Study Processing Sub-sampling q1 Mean observed richness (SD) Mean singletons

Aho et al., 2019 (C) Unpooled None 0.22 796.98 (287.02) 190.44
Post 0.02 462.54 (152.98) 138.80
Pre �0.09 466.27 (115.35) 228.85

Pooled None 0.08 3178.44 (1104.34) 2045.37
Post �0.40 975.1 (350.43) 560.27
Pre �0.24 1283.32 (314.91) 1024.80

Almeida-Santos et al., 2021 (A) Unpooled None 0.31 345.77 (136.82) 13.40
Post 0.23 293.47 (108.68) 39.62
Pre 0.24 204.55 (79.44) 15.23

Pooled None 0.30 592.55 (166.24) 129.40
Post 0.10 383.4 (111.94) 94.47
Pre 0.15 337.98 (94.43) 95.28

Manor et al., 2018 (B) Unpooled None 0.40 516.07 (123.08) 48.00
Post 0.22 386.8 (86.82) 84.05
Pre 0.13 290.88 (59.89) 46.23

Pooled None 0.24 819.84 (216.97) 250.89
Post �0.06 472.11 (109.51) 147.79
Pre �0.05 436.06 (96.90) 158.07
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Appendix B. Deblur results

See Figs. B.1–B.3 and Table B.1.
Fig. B.1. Scatter-plots with fitted regression line showing the association of observed richness with sequencing depth for data processed with deblur with and without
keeping singleton reads for the data of A Almeida-Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019.
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Fig. B.2. Distribution of alpha diversity indices for the full and sub-sampled data processed with deblur with and without keeping singleton reads for the data of A Almeida-
Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019.
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Table B.1
Estimates of observed richness and correlation with original sequencing depth for data processed with deblur.

Study Keep singletons Sub-Sampling q1 Mean observed richness (SD) Mean singletons

Aho et al., 2019 (C) No None 0.49 1050.16 (286.87) 61.35
Post 0.18 886.3 (193.87) 179.07
Pre �0.12 433.32 (79.89) 33.55

Yes None 0.44 1362.7 (345.77) 360.13
Post 0.03 993.16 (206.55) 262.38
Pre �0.05 625.64 (118.78) 218.45

Almeida-Santos et al., 2021 (A) No None 0.57 257.04 (110.88) 16.02
Post 0.05 221.05 (62.38) 49.12
Pre 0.35 64.51 (27.17) 3.84

Yes None 0.60 297.18 (127.15) 60.24
Post 0.01 234 (66.45) 58.12
Pre 0.35 64.51 (27.17) 3.84

Manor et al., 2018 (B) No None 0.21 288.48 (94.17) 7.62
Post 0.16 250.05 (79.62) 34.12
Pre 0.11 160.33 (42.45) 4.47

Yes None 0.21 327.12 (100.4) 46.00
Post 0.11 260.78 (80.22) 42.75
Pre 0.11 160.33 (42.45) 4.47

Fig. B.3. Rarefaction curves for the data of A Almeida-Santos et al., 2021, B Manor et al., 2018 and C Aho et al., 2019. processed either 1 without or 2 with keeping singletons
with deblur.
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