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ABSTRACT: Hepatocellular carcinoma (HCC) is the second or third leading cause of

Whnt/B-Catenin Pathwa; |
cancer mortality worldwide (depending on which statistics are used), yet there is no | P Y

effective treatment. Currently, there are nine FDA-approved drugs for HCC, five , Inactivator 0‘4 L-Glnﬂ
monoclonal antibodies and four tyrosine kinase inhibitors. Ornithine aminotransferase ST T

(OAT) has been validated as a target in preclinical studies, which demonstrates that it is a l
potential target to treat HCC. Currently, there are no OAT inactivators in clinical trials HCCB
for HCC. This Innovation describes evidence to support inhibition of OAT as a novel

approach for HCC tumor growth inhibition. After the mechanism of OAT is discussed,

the origins of our involvement in OAT inactivation, based on our previous work on mechanism-based inactivation of GABA-AT, are
described. Once it was demonstrated that OAT inactivation does lead to HCC tumor growth inhibition, new selective OAT
inactivators were designed and their inactivation mechanisms were elucidated. A summary of these mechanistic studies is presented.
Inactivators of OAT provide the potential for treatment of HCC, targeting the Wnt/f-catenin pathway.
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I I epatocellular carcinoma (HCC) is the sixth or seventh B SIGNIFICANCE OF THE Wnt/f-CATENIN PATHWAY
most common cancer and the second or third leading FOR CANCER GROWTH

cause of cancer death worldwide (depending on which statistics Activation of the evolutionarily conserved Wnt/f-catenin

are used); " over 800 000 people worldwide contract HCC each signaling pathway'® in liver'” correlates with the development
year, and about 700 000 die. Various current treatments include of HCC and is essential to normal cellular processes, such as
surgery, radiation therapy, chemotherapy, immunotherapy, growth, development, survival, and regeneration. The simplified
targeted therapy, hormone therapy, stem cell transplant, and mechanism involves binding of Wnt to co-receptors Frizzled and
precision medicine.” Despite these numerous approaches low-density lipoprotein receptor-related protein5/6 (LRP5/6),
available, prognosis for recovery is very poor,”* with an overall which leads to the translocation of f-catenin to the nucleus.

S-year survival rate of <10%° (33% for localized HCC, 11% for Binding of f-catenin to T-cell factor/lymphoid enhancer factor
(TCF/LEF) transcription factors in the nucleus activates

transcription of Wnt target genes, such as c-myc, cyclin D1,
and AXIN2, important for cell proliferation (Figure 1).'®
However, because of mutations in members of the Wnt/j-
catenin pathway, f-catenin also is associated with the initiation
and progression of cancer.'’ The development of HCC in liver

spread to nearby structures, and 2% if distant spreading®), and
side effects are extensive, largely because HCC is highly
chemotherapy-" and radiation-therapy®-resistant. Although
there are nine FDA-approved drugs for hepatocellular
carcinoma,” the HCC market still has a high unmet need

because of the lack of efficacy of current treatments. Well over correlates with the upregulation of Wnt/f-catenin pathway

150 clinical trials for HCC have been terminated or withdrawn, proteins ornithine aminotransferase (OAT), glutamate trans-

mostly because of liver toxicity, flaws in trial design, and porter GLT-1, and glutamine synthetase.”” OAT converts L-

marginal potency. ornithine to L-glutamate, which is transported by GLT-1 to
HCC occurs most frequently in Asia and Africa,'® but because glutamine synthetase to produce L-glutamine. Loss of OAT

of the spread of hepatitis B and hepatitis C virus infections,

which lead to HCC, the incidence of HCC in the United States Received: September 23, 2021 e s

is rising,"' where about 90% of primary liver cancers are HCC."” Accepted: November 22, 2021

HCC also is part of the natural history of nonalcoholic Published: December 9, 2021

steatohepatitis (NASH).'” Other causes for the dramatic
increase of HCC in the United States include obesity'* and an
increase in diabetes.'”
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Figure 1. Binding of Wnt to the Frizzled-LRPS/6 co-receptor allows f-
catenin to be translocated into the nucleus, where it binds to TCF/LEF
transcription factors, leading to transcription of Wnt target genes.

activity shuts down the formation of its product, L-glutamate,
and this leads to the blockage of the synthesis of L-glutamine,”!
which is essential for both normal and neoplastic cell growth.
Glutamine, however, is taken up more efficiently by tumor cells
than normal cells,”” and tumor growth is more accelerated by
glutamine than normal cell growth.”

One important function of glutamine is to maintain
tricarboxylic acid cycle intermediates (using the carbon atoms
of glutamine) and in the biosyntheses of nucleotides,

nonessential amino acids, and hexosamine (from the nitrogen
atoms in glutamine).”* Another critical role for glutamine is to
suppress oxidative stress by its catabolism to glutathione, an
important intracellular antioxidant.”> Consequently, the survival
and proliferation of tumor cells depend on a continuous supply
of glutamine. As in the case of glucose metabolism, increased
glutamine uptake is controlled by oncogenes, such as c-myc,*
and the inhibition of glutamine biosynthesis by oncogenes
inhibits the growth of cancer.”” The increased requirement for
glutamine by cancer cells is for the purpose of supporting
anabolic processes that stimulate proliferation.*®

glutamine supply by enhancement of OAT activity resulting

An increase in

from Wnt/f-catenin activation leads to an increase in tumor cell
growth, independent of glutamine supply. Therefore, OAT
inhibition to decrease glutamine production has been suggested
as a viable mechanism to inhibit tumor grovvth.29 Also, it has
been found that OAT is required to establish spindle formation
in cancer cells, again indicating that inhibition of OAT should be

. 30
an effective cancer treatment.

B ORNITHINE AMINOTRANSFERASE

As shown in Scheme 1, OAT, a pyridoxal 5’-phosphate (PLP)-
dependent mitochondrial enzyme, catalyzes the reversible
interconversion of ornithine (1) and a-ketoglutarate (a-KG,
2) to L-glutamate semialdehyde, which cyclizes to A'-pyrroline-
S-carboxylate (PSC, 3), and L-glutamate (4). OAT also is
involved in proline and hydroxyproline metabolism in cancer
cell survival, proliferation, and metastasis.”’ Both proline and
glutamine are important molecules for tumor growth,*” and they
are interconvertible and linked in their metabolism. Under a
hypoxic microenvironment proline metabolism is markedly
altered in HCC, with accelerated utilization of proline and
accumulation of hydroxyproline, which correlates with secretion
of alpha-fetoprotein, a biomarker for HCC, and poor prognosis
in disease progression. Accumulation of hydroxyproline further
promotes HCC growth and resistance to sorafenib, a primary
chemotherapeutic agent for HCC.” There is considerable
interplay among ornithine, proline, and glutamine, and their
metabolites, a-KG and P5C, in the regulation of OAT and/or
proline dehydrogenase/oxidase-dependent proliferation, apop-

tosis/autophagy, and metastasis.”*

Scheme 1. Conversion of L-Ornithine to L-Glutamate Catalyzed by Ornithine Aminotransferase (OAT)
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Figure 2. GABA analogues screened for OAT activity. Figure modified from ref 35. Copyright 2015 American Chemical Society.
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Figure 3. (A) Administration of § inhibits serum AFP secretion in vivo. Mice were treated for 27 days, 3 times a week, starting 3 weeks following HCC
transplantation with two doses of 1 (0.1 mg/kg [2 pug], green bars or 1 mg/kg [20 yg], red bars), compared with untreated controls (blue bars). Levels
are normalized to the starting day of therapy. (B) Compound $ diminishes tumor volume in both treated groups (0.1 mg/kg [2 ug], green bars and 1.0
mg/kg [20 pg], red bars) compared to untreated controls (blue bars). Figure reproduced from ref 35. Copyright 2015 American Chemical Society.

B FROM GABA AMINOTRANSFERASE
INACTIVATORS TO OAT INACTIVATORS

About 15 years ago I received an email message from Dr. Yaron
Ilan, Professor of Medicine in the Gastroenterology & Liver
Units of Hebrew University-Hadassah Medical Center in
Jerusalem, asking if I would be willing to send him some of
my y-aminobutyric acid aminotransferase (GABA-AT) inacti-
vators to test in his HCC mouse model. He explained that a
DNA microarray analysis was carried out of genes in the liver of a
normal rat compared with those in the liver of a rat (Psammomys
obesus) that spontaneously develops HCC, and seven genes,
including the gene encoding for OAT, were overexpressed.”” He
said he wanted to test an OAT inhibitor, but he did not have
access to one, and his research assistant had seen my work on
GABA-AT inactivators and thought they might work. At first, I
thought that it would be futile to test GABA analogue
inactivators with OAT because of the low overall sequence
identity (17%)® between the two enzymes. However, a closer
look at the active sites revealed that the residues in the two
enzymes are quite similar’’ and share a high structural
homology.*® Also, OAT is a member of the evolutionary
aminotransferase subgroup of PLP-dependent enzymes that
includes GABA-AT,” an enzyme found in glial cells and

40

presynaptic neurons;*’ all aminotransferases have very similar
catalytic mechanisms.*" They both transfer the amino group of
their respective substrates (ornithine for OAT and GABA for
GABA-AT) to a-ketoglutarate, giving succinic semialdehyde
(from GABA)"' or glutamate y-semialdehyde (from orni-
thine)* and 1-glutamate.” But what really got my attention
was when I found out that HCC is the most common primary
liver malignancy and one of the principal causes of cancer death
worldwide." However, I thought I should not just send my most
potent GABA-AT inactivators because the active sites are not
identical between GABA-AT and OAT. Instead, I chose to send
a mixture of mediocre potency, low potency, and inactive
inhibitors in addition to potent ones (Figure 2).

Bl OAT INACTIVATORS INHIBIT HCC GROWTH

Using these compounds, we showed, for the first time, that OAT
inactivators significantly suppress alpha-fetoprotein (AFP)
secretion, a biomarker for HCC, in Hep3B and HepG2 cells;
the most potent OAT inactivator at that time (S, Figure 2),
which was one of the compounds that theoretically could
inactivate GABA-AT but did not and, therefore, was OAT
selective, significantly suppressed AFP serum levels (Figure 3A)
and tumor growth (Figure 3B) in patient-derived HCC-
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Scheme 2. Inactivation Mechanism for § with Human Ornithine Aminotransferase”
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“Scheme reproduced from ref 45. Copyright 2019 American Chemical Society.
harboring mice, even at 0.1 mg/kg.>® This compound is water- Argd13
soluble and 42% orally bioavailable, does not inhibit cytochrome o
P450s or the hERG channel, and is not metabolized by human
liver microsomes over 90 min; plasma protein binding is only
62%, maximum tolerated dose is 30 mg/kg (mice), and, in a 7-
Glu235

day repeat study, the no observed adverse effect level (NOAEL)
was 10 mg/kg in mice and 30 mg/kg in rats, indicating a
therapeutic index of 100—300.

Bl INACTIVATION MECHANISM FOR OUR FIRST OAT
INACTIVATOR

Compound § is a mechanism-based inactivator** of OAT, and
the inactivation mechanism, shown in Scheme 2, was elucidated
by a combination of intact protein mass spectrometry and
crystallography as well as the use of a fluoride ion electrode,
partition ratio determination (the number of equivalents of §
converted to product per inactivation event), and metabolo-
mics.*> Compound § forms a Schiff base with coenzyme PLP to
give 6. Deprotonation to 7 followed by fluoride ion elimination
gives 8. Intermediate 7 does not undergo hydrolysis to 9, but in
92% of the turnovers 8 is hydrolyzed to 10. The remainder of
turnovers (8%) results in inactivation from Michael addition of
Lys-292 with a loss of two fluoride ions followed by hydrolysis to
give covalent adduct 11; hydrolysis of the PLP imine gives 12.
Structure 11 was confirmed by intact protein mass spectrometry
and the crystal structure shown in Figure 4.

From the crystal structure it is apparent that only the syn-CF;
group is involved in the inactivation chemistry of S. The
corresponding Z-(13) and E-monotrifluoromethyl (14) ana-
logues, however, had previously been shown to inactivate OAT
with comparable inactivation kinetics.*”

GIn266

Arg180

Lys292

PLP

Figure 4. X-ray crystal structure of OAT following inactivation by §
(PDB code: 60IA). Figure reproduced from ref 45. Copyright 2019
American Chemical Society.

This was rationalized as the result of interconversion of the
intermediates derived from 13 and 14 during inactivation. To
prevent rotation and interconversion, the corresponding syn-
(15) and anti-monotrifluoromethyl esters (16) were synthe-
sized (modeling showed that the ester group could bind with the
enzyme to prevent rotation), and, indeed, 15 was comparable in
inactivation efficiency to § and 16 was inactive.

41 https://doi.org/10.1021/acsmedchemlett.1c00526
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B EARLY INACTIVATORS OF OAT

Compound $ is not the first compound to inactivate OAT; L-
canaline ((S)-2-amino-4-amino- oxybutyrlc acid, 17), a natural
product analogue of ornithine,” and L-fluoromethylornithine
(5-FMO; 18)*” were reported in 1965 and 1988, respectively, as
inactivators of OAT. However, 17 was shown to strongly inhibit
the activity of seven PLP dependent enzymes," which could
account for its toxicity."” The alkoxylamine group of 17 forms an
oxime V\nth the PLP coenzyme of OAT, causing irreversible
inhibition.”” The crystal structure of 17 with human OAT
confirmed the oxime structure.”’ 5-FMO (18) also irreversibly
inhibits OAT, but selectively, and long-term inhibition of OAT
does not produce apparent detrimental effects in mice,”
possibly because 10—20% of OAT is refractory to inactivation
by 18.% Of the four possible stereoisomers of 5-FMO, only the
(28,58) isomer inactivates OAT.”* The crystal structure of
human OAT inactivated by SFMO> shows that the PLP is
modified to give the expected product of mechanism-based
inactivation by an enamine mechanism (19, Scheme 3).>* The
enamine inactivation mechanism was first introduced by Metzler
and co-workers for two other PLP-dependent enzymes,
glutamate decarboxylase®® and aspartate aminotransferase,’’
both inactivated by L-serine O-sulfate.

NH,
‘00C _~_J.,_F

HN 18

-00C o
W ~ NH,

HN 17

B NEWER OAT INACTIVATORS AND INACTIVATION
MECHANISMS

We have designed several new OAT mechanism-based
inactivators on the basis of organic chemical intuition and
computer modeling, including 20-23. (S) 3-Amino-4,4-di-
fluorocyclopent-1-enecarboxylic acid (20)® is an irreversible
inhibitor of OAT, comparable in inactivation efficiency to 5. The
corresponding cyclopentane analogue is a very weak inactivator,
but that was expected on the basis of our earlier studies showing
that incorporation of a double bond into CPP-115 (24)™ to give
OV329 (25) enhances inactivation efficiency 10-fold. 0 With
the aid of intact protein mass spectrometry, metabolomics, and
protein crystallography, the turnover and inactivation mecha-
nisms for 20 were elucidated (Scheme 4).°" Transient-state
kinetic measurements, using rapid-mixing spectrophotometry,
were used that supported an initial direct E2 elimination of HF
from the PLP complex to give 27 (pathway a) over the typical
E1cB mechanism (26, pathway b). The major pathway (97%)
from 27 involves an attack by Lys292 to release, after hydrolysis
of the enamine, 28 (pathway c); only 3% of turnovers proceed
by water attack to give 29 (pathway d). The loss of a fluoride ion
from 29 gives 30, which, based on transient-state spectropho-
tometry and intact protein mass spectrometry, undergoes
tautomerization to give noncovalent adducts 31/32 84% of
the turnovers (pathway e) and attack by Lys292 to give covalent
adducts 33/34 16% of the turnovers (pathway f). In the
conversion of 27 to 28, evidence for Lys292 attack (pathway c)
was obtained by soaking 20 into OAT crystals and determining
the X-ray crystal structure (Figure SA); the co-crystallization of
20 with OAT gave the structures of 31/32 (Figure SB).
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Scheme 3. Mechanism of Inactivation of OAT by 5-Fluoromethylornithine (18)
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Scheme 4. Mechanism Proposed for the Inactivation of OAT by 20

F)a

Fcoz-

d
.+ HN H,N—Lys292 Lys292-PLP
9 LB/ H\Z) !

CO,

_ b-|
| (O (
HNY_\_oPo;
5
o |F
> £
S|E
£|5
<|g
o F
w F( COo, Hoﬁcoz_
HN? E Pathway d Hﬁ 2
L - o 5 - . -0 HoN. — 0
y > w “Lys292 3% &
./7" OPO; H,}‘\ OPOg* Q" OPO,2
HNLZS o HN.
26 27 29
-F
e
HO HO !—B H-O
- Yo oo
H + 4
OJH.-N Lys292 ——= '(O\H\NH Lys292 ‘—Path‘”ayf o) HN
v N 16% °(\n_HaN—Lys292
¢, }_opos ) "\ opog
HN" 3 HNT .~ OP0s HNZ
N
34 33 30

HN

AGP = -26.36 kcal mol!

Pathway e
~84%
(o)
CO .
L Boa
\ai/OPCh
HN g" 0PO
HNLS

AGP = -49.89 kcal mol!

“Scheme modified from ref 61. Copyright 2021 American Chemical Society.

Because of the larger active site pocket of OAT relative to that
of GABA aminotransferase (GABA-AT), CPP-115° and
0V329°" are nonselective inactivators of both enzymes. By
increasing the size of the fluorine substituents on these
inactivators to trifluoromethyl groups (to give S), selective
OAT inactivation was realized. Another approach to gain
selectivity over GABA-AT based on size was taken by increasing
the ring size from cyclopentene to cyclohexene (21/ 22).
Kinetic analyses revealed that 21 was 2.9 times more efficient as
an inactivator of OAT than 5 and 22 is 23.4 times more efficient
than S. Although 21 and 22 also inactivate GABA-AT, they do so
much less efficiently: 65.6 times and 13.3 times less efficiently,
respectively. With the aid of fluoride ion release studies, intact
protein mass spectrometry, and protein crystallography,
inactivation mechanisms were proposed for 21 and 22. Three
potential mechanisms are shown in Scheme 5. They all are
initiated by Schiff base formation with the active site PLP
followed by deprotonation and elimination of a fluoride ion to
give 35. Pathway a is an enamine mechanism; when X = H,
enamine adduct 36 results, and when X = F enamine addition is
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followed by elimination of HF and aromatization (37). Pathway
b results in aromatization without loss of X (38). Pathway c is a
Michael addition mechanism, leading to either covalent adduct
39 when X = H or aromatized adduct 40 when X = F. On the
basis of intact protein mass spectrometry, 21 formed a covalent
adduct with OAT with an additional mass (369.29) that
corresponds to either 36a in pathway a or 39 (pathway c,
Scheme $5); 22 added an additional 366.34 mass units to OAT,
which corresponds to either 37 (pathway a) or 40 (pathway c).
Protein crystallography clarified the structures, clearly showing
adduct 36a (pathway a) from 21 and adduct 40 (pathway c)
from 22 (Figure 6). A difference of a single fluorine atom made
the difference between an enamine mechanism (21) and a
Michael addition/aromatization mechanism (22). Furthermore,
shrinkage of the ring from cyclohexene (22) to cyclopentene
(20) was sufficient to again change the inactivation mechanism
(Scheme 4), this time to Michael addition by water followed by
tautomerization (31/32) or attack by Lys292 (33/34). The
major pathway (97%) for 20, however, was the release of
metabolite 28 (pathway c).
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Scheme S. Possible Inactivation Mechanisms by 21 and 22°

Ly5292
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pathway a

“Scheme reproduced from ref 62. Copyright 2020 American Chemical Society.

A chimera of 22 and OV329 (25) resulted in 23, which was
expected, if it were an inactivator, to have an inactivation
mechanism similar to that for 22 or 25. Compound 23 is 22
times more efficient as an inactivator of OAT than 5 and
comparable to 22; however, another completely different
inactivation mechanism was revealed.®> On the basis of native
mass spectrometry (to preserve noncovalent substrate binding
and protein quaternary structure), intact protein mass
spectrometry (to identify covalent adducts), top-down tandem
mass spectrometry (to fragment the intact protein), protein
crystallography, and metabolomics, the most plausible mecha-
nisms for turnover and inactivation are shown in Scheme 6. The
methods used to identify each of the intermediates and final
adducts are given next to the structures. Schift base formation of
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23 with the active site PLP gives 41. Deprotonation to 42 leads
to partitioning of the pathway, with 63% (pathway a) leading to
inactivation intermediate 43 and 37% (pathway b) leading to
turnover intermediate 44. Attack by Lys292 on 44 gives 4S5,
which eliminates F~ to give 46; deprotonation leads to aromatic
metabolite 47. Inactivation intermediate 43 undergoes bond
rotation because of steric hindrance with the difluoromethylenyl
group to give 48. Tautomerization results in reactive
intermediate 49, which first is attacked by Thr322, displacing
a F™ to give 50, whose crystal structure was obtained by soaking
23 into crystalline OAT (Figure 7A). Attack by Lys292 gives
intermediate 51; protonation leads to the final double covalent
adduct (52, Figure 7B), the first example of a mechanism-based
inactivator leading to a single adduct with two covalent bonds
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Scheme 6. Plausible turnover and Inactivation Mechanisms for the Inactivation of OAT by 23“
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from two different active site residues, one of which is not
catalytic.

The compounds described above have been designed to allow
for a variety of potential inactivation mechanisms to occur.
Inactivators with related structures demonstrate how minor
structural differences can have a major impact on inactivation
mechanisms. Enzymes evolve to catalyze highly specific
chemistry on specific molecules, but when enzymes are
presented with compounds having unnatural structures,
unexpected catalytic chemistry can result. This exemplifies the
ongoing struggle between Man and Nature, each trying to outwit

the other. With the assistance of mechanism-based inactivators,
it is sometimes possible to get the better of Mother Nature.
Currently, there are nine FDA-approved drugs for HCC. Five
are monoclonal antibodies that either act as checkpoint
inhibitors to trigger the immune system to fight the cancer or
act by binding to VEGF, leading to a reduction in microvascular
growth of tumor blood vessels and limiting the blood supply to
the tumor. The other four drugs are tyrosine kinase inhibitors.
OAT is a novel target for drugs to treat HCC. Inactivators of
OAT provide the promise of treatment for this dreaded disease
by targeting a yet untapped point of a new pathway, the Wnt/f-
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catenin pathway. Possibly a combination of drugs acting on
different pathways will be the way forward to successfully inhibit
progression of this disease.
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