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ABSTRACT: Antifungal peptides are effective, biocompatible, and
biodegradable, and thus, they are promising to be the next generation of
drugs for treating infections caused by fungi. The identification
processes of highly active peptides, however, are still time-consuming
and labor-intensive. Quantitative structure−activity relationships
(QSARs) have dramatically facilitated the discovery of many bioactive
drug molecules without a priori knowledge. In this study, we have
established an effective QSAR protocol for screening antifungal
peptides. The screening protocol integrates an accurate antifungal
peptide classification model and four activity prediction models against
specified target fungi. A demonstrative application was performed on
more than three million candidate peptides, and three outstanding
peptides were identified. The whole screening took only a few days,
which was much faster than our previous experimental screening works.
In conclusion, the protocol is useful and effective for reducing repetitive laboratory efforts in antifungal peptide discovery. The
prediction server (antifungal Web server) is freely available at www.chemoinfolab.com/antifungal.

KEYWORDS: Quantitative structure−activity relationship, artificial intelligence, machine learning, large-scale screening, drug discovery,
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Identification of bioactive peptides has become more critical
than ever on account of the advances in peptide drugs.1 The

first peptide therapeutics started in 1922 with the medical use
of insulin. At present, there are around 80 peptides on the
global markets, more than 150 peptides in clinical develop-
ment, and 400−600 peptides undergoing preclinical studies.2

Many inherent advantages are associated with bioactive
peptides, such as larger surface areas, greater chirality, and
more complex spatial structures,2,3 making them sometimes
more effective and selective than small molecules.4

Antifungal peptides, as a particular category of bioactive
peptides, were regarded as promising therapeutic agents for
curing many diseases caused by fungi.5 Antifungal peptides can
mimic natural ligands6 and recognize multiple microbial targets
to reduce the induced resistance.7 At present, however,
isolation, purification, and identification of antifungal peptides
are still time-consuming and labor-intensive processes. In
general, antifungal peptides can be isolated from plants or
animal tissues by using physical and chemical methods and
subsequently purified by gel filtration chromatography, ion-
exchange chromatography, capillary reverse-phase high-per-
formance liquid chromatography, fast protein liquid chroma-
tography, etc. The above processes may take from several
weeks to months. In our previous works,8−10 more than three

years were devoted to discover and characterize the antifungal
peptide AMP-17. Therefore, development of efficient large-
scale screening protocols for antifungal peptide identification is
essential.
In silico approaches have greatly facilitated the discovery

process of antifungal peptides.11,12 In these methods,
quantitative structure−activity relationship (QSAR) provides
a new perspective by relating molecular properties to
bioactivity.13 Generally, peptides are represented by sequence
descriptors that reflect physical or chemical information on
molecules,14,15 such as hydrophobicity, bulkiness, charge, and
surface energy. Bioactivity data can be retrieved from many
specialized databases, such as the DBAAPS,16 APD3,17

DRAMP,18 and CAMP19 databases. Machine learning methods
can effectively associate the peptide sequences with their
bioactivity values,20−22 and we have proposed many effective
algorithms.23−27 However, to the best of our knowledge, few
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complete works integrate a large-scale screening protocol,
successful screening application, chemical synthesis, and
bioactivity validation of antifungal peptides.
In this study, an in silico protocol was proposed to select

potential antifungal peptides, in which a classification model
and four activity prediction models against specified fungi

(Candida albicans, Candida krusei, Cryptococcus neoformans,
and Candida parapsilosis) were included. Moreover, an
antifungal index (AFI) was also proposed to provide a final
ranking to these screened peptides. A demonstrative
application was conducted on more than three million
candidates, and three outstanding sequences were determined.
Chemical synthesis and experimental validation were applied,
and the results confirmed the prominent antifungal properties
of the selected peptides (as in Scheme 1). Antifungal Web
server integrating all established models is freely available at
www.chemoinfolab.com/antifungal.
Data set 1 was collected for establishment of the antifungal

classification model, in which 5775 antifungal peptides and
5775 negative ones were contained. Figure 1 shows the peptide
information in the data set. In Figure 1a, skewed distributions
of sequence lengths can be observed, and most are distributed

in the range of 11−50 amino acid residues. Figure 1b shows
amino acid profiles. Figure 1c depicts the scatter points of
charge dense versus isoelectric point (pI), and the points of
these two classes of peptides are almost overlapping. In Figure
1d, principal component analysis (PCA) was conducted on the
peptide descriptors by resorting to a python package of scikit-
learn 0.24.2,28 and the scores of the first two principal
components are plotted. The above properties failed to directly
separate the antifungal peptides from negatives, suggesting a
sophisticated calibration model is needed for an accurate
classification.
An antifungal peptide classification model was established by

utilizing the support vector machine (SVM) method. Hyper-
parameter C and γ were optimized by 10-fold cross validation
in the ranges of 10−1∼105 and 10−8∼102, respectively. Figure
2a presents the mean accuracy of the obtained models with
different combinations of C and γ. A large accuracy score
represents that an efficient classifier was obtained. When the
score reaches the maximum value of 0.91, the optimal C and γ
equal 101.08 and 10−4.73, respectively. With the optimized
parameters, a classification model was trained. Figure 2b shows
the receiver operating characteristic (ROC) curve of the
model. The area under the ROC curve (AUC) of the
calibration and validation set reaches 0.99 and 0.95,
respectively. The results indicate that the obtained model is
accurate and robust for antifungal peptide classification.
Considering obtained decision values, there are obvious gaps
between antifungal peptides and negative ones in the
calibration set (Figure 2c) and validation set (Figure 2d),
indicating that the trained model is unambiguous for
identifying antifungal peptides. The metrics in Table S3
further confirm that the obtained model is effective for
identifying antifungal peptides with different lengths.

Scheme 1. Workflow Scheme of Large-Scale Screening for
Antifungal Peptides

Figure 1. Information of peptides in data set 1 for antifungal peptide
classification. Distributions of the sequence lengths (a), amino acid
profiles (b), scatter plot of charge density versus isoelectric point (pI)
(c), and the PCA scores (d) for peptides in data set 1.

Figure 2. Results of antifungal peptide identification. (a) Mean
accuracy scores obtained by the models with different combinations
of hyperparameters C and γ. (b) ROC curve of the established model
for the calibration and validation set. Parts c and d are decision value
distributions of peptides in the calibration and validation set,
respectively.
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Data set 2 was generated for antifungal activity prediction, in
which 1583, 95, 275, and 148 activity values (pMIC) were
included against C. albicans, C. krusei, C. neoformans, and C.
parapsilosis, respectively. Figure 3 displays the information of

these peptides. The length distributions of anti-C. albicans,
anti-C. krusei, anti-C. neoformans, and anti-C. parapsilosis
peptides are displayed in Figure 3a, d, g, and j, respectively.
Most of them have sequence lengths smaller than 75 amino
acid residues. The distributions of pMIC values against the
four target fungi are displayed in Figure 3b, e, h, and k. To
indicate the location of the antifungal peptides in principal
component space, peptide descriptors in the data set were
calculated and projected onto the space spanned in data set 1.
The blue dots in Figure 3c, f, i, and l are projections of anti-C.
albicans, anti-C. krusei, anti-C. neoformans, and anti-C. para-
psilosis peptides, respectively, and the gray points represent the
whole antifungal peptide in data set 1. The peptides in this data
set account for a very small proportion of data set 1, indicating
that only a few antifungal peptides have been measured for a
specific antifungal activity.
Activity prediction models against C. albicans, C. krusei, C.

neoformans, and C. parapsilosis were established by using the
support vector regression (SVR) method. Prediction was made
on the calibration and validation set, and the results are
presented in Figure 4. For C. albicans (Figure 4a), an excellent
linear relationship can be observed in terms of the correlation
coefficient (R) of 0.93. Figure 4b, c, and d shows the
relationships between predicted and experimental pMIC
against C. krusei, C. neoformans, and C. parapsilosis,
respectively. All models yielded acceptable linearity because
all R are larger than 0.90, indicating that accurate models were
obtained for predicting antifungal activity.
To further validate the performance of the built models,

metrics including RMSE and R2 for the calibration and
validation set are listed in Table S4. The RMSEs, as a reflection
of the mean prediction error, are close to 1. The results
indicate that the prediction error of pMIC is approximately at
the experimental level of one broth dilution step (MIC
determination method). R2 is another criterion for evaluating
the prediction efficiency, and a larger value indicates a more
effective model. The R2 values of calibration and validation are
in the ranges of 0.90−0.94 and 0.66−0.89, respectively. The

Figure 3. Information of peptides in data set 2 for antifungal activity
prediction. Distributions of sequence lengths (a), pMIC values (b),
and PCA scores (c) of anti-C. albicans peptides. Subplots d−f, g−i,
and j−l are the corresponding distributions of anti-C. krusei, anti-C.
neoformans, and anti-C. parapsilosis peptides, respectively. The gray
points in parts c, f, i, and l are reference spaces indicating the whole
antifungal peptides.

Figure 4. Results of antifungal activity prediction with the targets of
C. albicans (a), C. krusei (b), C. neoformans (c), and C. parapsilosis (d).

Figure 5. Demonstration of large-scale screening for antifungal
peptides.
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results confirm that the built models are efficient for predicting
antifungal activity against the four specified fungi.
With the established five accurate models, a multistep

screening protocol was proposed to stepwise select potential
antifungal peptides without a priori knowledge. Rather than the
conventional QSAR method with a single model, the protocol
integrates five accurate models. It allows a gradual removal of
the most unlikely antifungal peptides in multistep screening,
thus giving a relatively high confidence level in the final
selected peptide. Moreover, an antifungal index (AFI) was also
proposed to provide a final ranking to those selected peptides.
A large-scale screening application was made to evaluate the

usefulness of the proposed protocol. A total of 3445312
peptides were collected from the UniProt knowledgebase by
restricting sequence lengths in the range of 11−75 amino acid
residues. Among these sequences, up to 99.7% of peptides have
been only computationally analyzed, and 0.3% have been
manually annotated. A demonstrative application was con-

ducted on the unknown peptides, as in Figure 5. After the first
step of screening, 491827 antifungal peptides were identified,
accounting for just 14% of total sequences. After the second,
third, fourth, and fifth steps, only 312327, 306234, 98119, and
61020 peptides with relatively high antifungal activities (MIC
< 32 μM) remained, respectively. Finally, three top-ranking
antifungal peptides were selected in order of smallest to largest,
i .e. , KWCFRVCYRGICYRKCR (AFI = 2.11 μM),
RRWCFRVCYRGFCYRKCR (AFI = 2.25 μM), and
KWCFRVCYRGICYRRCR (AFI = 2.34 μM). For compar-
ison, another 13 reference peptides with moderate antifungal
activity (AFI: 4.44−22.71 μM) were also selected by
considering both synthesis costs and experiences. Table 1
shows the predictions of the screened 16 peptides. The raw
data sets and prediction results are freely available at https://
github.com/JinZhangLab/antifungal.
The screened peptides were synthesized and experimentally

validated by measuring their antifungal activity. The exper-

Table 1. Screened Peptides and the Predicted MIC and AFIa

Predicted MIC/μM (probability/%)

No. Sequences C. albicans C. krusei C. neoformans C. parapsilosis AFI/μM (probability/%)

1 KWCFRVCYRGICYRKCR 1.41(99.1) 4.25(95.0) 0.20(63.4) 16.79(94.4) 2.11(56.3)
2 RRWCFRVCYRGFCYRKCR 1.07(99.2) 5.22(96.6) 0.22(72.7) 20.9(98.7) 2.25(68.8)
3 KWCFRVCYRGICYRRCR 1.87(99.1) 5.22(95.4) 0.17(56.0) 18.25(95.3) 2.34(50.5)
4 MRLRKCHKPLTLRLVPWKKQIM 0.86(99.3) 9.48(93.1) 3.70(98.5) 12.91(96.0) 4.44(80.5)
5 MTKILLIVKRLRTVYTKRCLCFRA 4.15(99.4) 7.90(78.7) 1.66(97.7) 10.87(99.6) 4.93(74.0)
6 MYSVFISSIFLFLKIRFKLYPR 1.18(99.5) 7.94(91.9) 5.03(99.3) 18.98(98.5) 5.47(81.2)
7 MRPKWKKKRMRRLKRKRKQRRARYK 3.59(99.0) 5.29(70.8) 4.47(91.7) 14.5(83.7) 5.92(49.7)
8 MNKIFRVIFSKILGRLIVT 6.94(99.9) 9.23(97.8) 1.18(99.1) 17.65(98.5) 6.04(88.0)
9 MTKKQKRKKGIKTKSAGRFGARYGRRIRKAI 8.71(94.3) 6.74(67.2) 4.03(80.0) 12.52(65.3) 7.38(29.9)
10 MKYKKLWALAGIALSCNLLLTA 1.94(99.5) 19.59(90.1) 5.18(99.1) 16.91(91.8) 7.60(78.1)
11 VFQFLGRIIHHVGNFVHGFSHVF 10.24(99.9) 8.77(91.1) 6.63(99.8) 7.75(98.9) 8.24(88.9)
12 MLKKKFGFVFLVCFVIFHSCK 13.32(99.9) 8.43(90.8) 6.74(96.7) 8.01(98.8) 8.83(80.1)
13 YHKIHKVWHIIMKLLAHI 37.07(99.8) 9.06(98.3) 6.51(99.8) 5.40(96.3) 10.43(94.3)
14 YFISCAIHFKILKIRSAAKRREHTKLR 5.42(97.4) 10.5(76.9) 5.33(89.7) 40.38(63.6) 10.52(41.4)
15 MATKKKVVKKAVKKVAKKAPKKAVKKVAKKK 47.94(92.6) 8.06(78.3) 0.84(64.7) 38.56(68.1) 10.59(31.9)
16 PVLKELKSVQKTKSGDTLY 58.66(99.5) 29.96(95.0) 5.79(99.9) 26.13(97.3) 22.71(87.2)

aThe bold represents the screened top three peptides.

Table 2. Experimental MIC and AFI of the Screened Peptidesa

Experimental MIC/μM

No. Sequences
C. albicans SC

5314
C. krusei IFM

56881
C. neoformans

H99
C. parapsilosis
ATCC22019 AFI/μM

1 KWCFRVCYRGICYRKCR 14.28 28.56 1.79 7.14 8.5
2 RRWCFRVCYRGFCYRKCR 4.07 4.07 1.02 1.02 2.0
3 KWCFRVCYRGICYRRCR 14.1 28.2 3.53 7.05 10.0
4 MRLRKCHKPLTLRLVPWKKQIM >92.2 >92.2 92.2 >92.2 >92.2
5 MTKILLIVKRLRTVYTKRCLCFRA 43.75 21.88 5.47 43.75 21.9
6 MYSVFISSIFLFLKIRFKLYPR >92.44 >92.44 >92.44 >92.44 >92.4
7 MRPKWKKKRMRRLKRKRKQRRARYK >73.77 >73.77 2.31 18.44 >21.9
8 MNKIFRVIFSKILGRLIVT 14.23 56.92 7.12 14.23 16.9
9 MTKKQKRKKGIKTKSAGRFGARYGRRIRKAI >70.71 >70.71 8.84 4.42 21.0
10 MKYKKLWALAGIALSCNLLLTA >105.7 >105.7 >105.7 >105.7 >105.7
11 VFQFLGRIIHHVGNFVHGFSHVF >94.99 >94.99 >94.99 >94.99 >95.0
12 MLKKKFGFVFLVCFVIFHSCK >101.5 >101.5 >101.5 >101.5 >101.5
13 YHKIHKVWHIIMKLLAHI 28.06 7.02 7.02 14.03 11.8
14 YFISCAIHFKILKIRSAAKRREHTKLR 77.88 19.47 38.94 77.88 46.3
15 MATKKKVVKKAVKKVAKKAPKKAVKKVAKKK >74.87 >74.87 37.44 >74.87 >63.0
16 PVLKELKSVQKTKSGDTLY >119.94 >119.94 >119.94 >119.94 >119.9

aThe bold highlights the MIC values less than 10 μM.
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imental MIC values against C. albicans SC 5314, C. krusei IFM
56881, C. neoformans H99, and C. parapsilosis ATCC22019 are
presented in Table 2. The top three sequences all exhibited
excellent antifungal activity. Specifically, the second peptide
outperformed most of the reported antifungal peptides in
terms of anti-C. neoformans and anti-C. parapsilosis activity. For
the remaining 13 screened peptides with moderate activity,
nine of them showed moderate antifungal activity.
Comparisons were conducted by querying the selected three

top-ranking peptides on other online prediction platforms. In
Antifp,22 the three top-ranking peptides were predicted to be
antifungals with scores of 0.49, 0.56, and 0.52, respectively, but
without activity against specific fungi. In DBAASPv3.0,

16 the
first and second were predicted to be nonantimicrobials, and
only the third peptide was an antimicrobial peptide. In
CAMPR3,

19 the screened peptides were predicted to be
antimicrobials with relatively high scores (0.959−1.000) but
still without antifungal activity. As mentioned above,
approximately 14% of the peptides with appropriate lengths
in the Uniprot database are plausible antifungal, but only a few
of these peptides have been reported to have specific activity.
This implies that the antifungal activity of most peptides may
be somewhat less worthy of being reported or studied. The
comparison highlights that the activity prediction models are
indispensable and the proposed protocol is more comprehen-
sive and valuable for antifungal peptide screening.
Herein, we develop a screening protocol for antifungal

peptides, in which an accurate classification model and four
activity prediction models against specified fungi were
included. Through the protocol, three promising antifungal
peptides were screened from three million sequences within a
few days in a personal computer. The screened peptides were
synthesized and experimentally validated. The results con-
firmed the outstanding antifungal properties. Compared with
the previous experimental identification process, the protocol
was fairly efficient for large-scale antifungal peptide screening.
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RMSE, root-mean-square error; R2, coefficient of determi-
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