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Abstract

Recent spatial gene expression technologies enable comprehensive measurement of transcriptomic 

profiles while retaining spatial context. However, existing analysis methods do not address 

the limited resolution of the technology or use the spatial information efficiently. Here, we 

introduce BayesSpace, a fully Bayesian statistical method that uses the information from spatial 

neighborhoods for resolution enhancement of spatial transcriptomic data and for clustering 
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analysis. We benchmark BayesSpace against current methods for spatial and non-spatial clustering 

and show that it improves identification of distinct intra-tissue transcriptional profiles from 

samples of the brain, melanoma, invasive ductal carcinoma and ovarian adenocarcinoma. Using 

immunohistochemistry and an in silico dataset constructed from scRNA-seq data, we show 

that BayesSpace resolves tissue structure that is not detectable at the original resolution and 

identifies transcriptional heterogeneity inaccessible to histological analysis. Our results illustrate 

BayesSpace’s utility in facilitating the discovery of biological insights from spatial transcriptomic 

datasets.

Knowledge of the spatial location of transcript expression can provide vital insights into 

biological function and pathology. Single-cell RNA sequencing (scRNA-seq) achieves 

high-throughput and high-resolution profiling of gene expression, but because tissue is 

dissociated for sample preparation, spatial information is not retained. Recent methods 

for high-throughput profiling of gene expression while retaining spatial information allow 

analyses to be made within the context of the biological tissue1. Studies performed with 

the Spatial Transcriptomics (ST) platform and the improved Visium platform have already 

generated insights into diverse are as such as tumor heterogeneity2,3, brain function4 and 

the pathophysiology of sepsis5. The primary technological limitation of these spatial gene 

expression platforms is resolution, with the unit of observation being spots that are 100μm 

in diameter on the ST platform and 55μm in diameter on the Visium platform. As such, the 

number of cells within a spot may range from one to 30 on the Visium platform and up to 

200 on the older ST platform, depending on the biological tissue6. Alternative approaches 

include fluorescence in situ hybridization (FISH) technologies, such as seqFISH and 

multiplexed error-robust FISH, and other recently developed spatial sequencing methods, 

such as Slide-seq and ZipSeq7–10. While these methods provide increased resolution, most 

are lower throughput, less sensitive, rely on custom protocols or are not widely available.

Here, we propose BayesSpace, a computational method that uses the neighborhood structure 

in spatial transcriptomic data to increase the resolution to the subspot level (Fig. 1a). Our 

method draws from the existing literature for use of Bayesian statistics to achieve super-

resolution images11–13. In contrast to existing deconvolution methods using scRNA-seq 

data14–16, the enhanced-resolution modeling of BayesSpace, which approaches single-cell 

resolution with the Visium platform, does not require independent single-cell data and 

allows us to infer the spatial arrangement of subspots. While integration with scRNA-seq 

is appealing, it may be costly if matched samples are used or introduce bias if publicly 

available references are used. Furthermore, deconvolved mixtures are still only spatially 

resolved at the original scale of the ST or Visium technology, and the neighborhood 

structure of cell types cannot be recovered.

In addition, there is a need for new statistical methods for the analysis of spatial gene 

expression data that efficiently use the available spatial information. Clustering is an 

important step in the analysis of such data that allows downstream analyses, such as 

cell type or tissue annotation and differential expression, to provide unbiased biological 

insights. Existing analyses of spatial gene expression data often rely on clustering methods 

for non-spatial scRNA-seq data2,4. The additional spatial information available from ST 
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and Visium can help address the analytical challenges of sparsity and noise by smoothing 

over adjacent spots, which are more likely to have similar transcriptomic profiles. Zhu 

et al.17 proposed a hidden Markov random field model (HMRF) for clustering of low-

resolution in situ hybridization data into distinct spatial domains by jointly modeling gene 

expression and spatial neighborhood structure17. This approach was later adapted for use 

with high-throughput spatial transcriptomic data through selection of spatially differentially 

expressed genes before clustering18. Another recently developed spatial clustering algorithm 

is stLearn, which uses deep learning features extracted from histopathological images as 

well as expression of neighboring spots to spatially smooth data19.

BayesSpace enables spatial clustering by modeling a low-dimensional representation of the 

gene expression matrix and encouraging neighboring spots to belong to the same cluster 

via a spatial prior (Fig. 1b). Our method draws from previously developed spatial statistics 

methods for image analysis and microarray data20,21. Compared with previous approaches, 

BayesSpace allows for a more flexible specification of the clustering structure and error 

term than alternative approaches. From a user perspective, BayesSpace is accessible in that 

it takes the widely used Bioconductor SingleCellExperiment object as input22, does not 

require the additional task of marker gene preselection and involves minimal parameter 

tuning.

Using several datasets, we show that BayesSpace improves the identification of spatially 

distributed tissue domains through spatial clustering and enhances the resolution of gene 

expression maps. We use immunohistochemistry as a ground truth in two cancer samples to 

validate that our enhanced-resolution clustering identifies a tissue structure consistent with 

cell surface markers, and we report examples of transcriptional heterogeneity in the tumor 

microenvironment not achievable by immunohistochemical analyses alone. Furthermore, 

using in silico spatial transcriptomic datasets generated from aggregating scRNA-seq data, 

we show that BayesSpace can recover the true spatial structure at near single-cell resolution.

Results

Spatial clustering improves identification of known layers in brain tissues.

Recently, Maynard et al.4 presented Visium spatial expression profiles of 12 dorsolateral 

prefrontal cortex (DLPFC) samples, as well as manual annotations of the six cortical layers 

and white matter for each sample as part of the spatialLIBD package4 (Fig. 2a). Maynard et 

al.4 annotated DLPFC layers by considering cytoarchitecture and selected gene markers. 

Here, we evaluate BayesSpace’s ability to identify distinct layer-specific expression 

profiles and compare its performance to other spatial and non-spatial clustering methods. 

Specifically, we compare the performance of four non-spatial algorithms commonly applied 

to scRNA-seq data, k-means, mclust23, Louvain24 and SC3 (ref. 25); two recently published 

spatial clustering algorithms, HMRF (as implemented in the Giotto package)18 and 

stLearn19; and the clustering partitions originally reported by Maynard et al.4 in the 

spatialLIBD package, which involve Walktrap clustering of spatial coordinates and principal 

components (PCs) calculated from highly variable genes (HVGs) or known layer-specific 

marker genes. Following the methodology of Maynard et al.4, we use the adjusted Rand 
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index (ARI) to quantify similarity between cluster labels and manual annotations, which are 

considered the ground truth.

BayesSpace substantially outperforms the original spatialLIBD clustering partitions, as well 

as all non-spatial clustering algorithms and spatial clustering methods developed for spatial 

transcriptomic data (Fig. 2b). BayesSpace and the non-spatial methods were applied on 15 

PCs calculated from the top 2,000 HVGs. Spatial clustering methods Giotto and stLearn 

were implemented based on the original authors’ recommended parameters (Supplementary 

Note). We also show Giotto and stLearn results using precomputed PCs from BayesSpace 

to provide a more controlled comparison, although we found that this did not improve 

either method’s performance (Supplementary Fig. 1). As an example, in sample 151673, 

we found that only SC3 (ARI = 0.42), mclust (ARI = 0.42), stLearn (ARI = 0.37) and 

BayesSpace (ARI = 0.55) generated clusters that qualitatively followed the expected layer 

pattern (Fig. 2c). Most clustering partitions aside from BayesSpace exhibited substantial 

noise and lack of clear spatial separation between clusters. By contrast, BayesSpace 

leveraged spatial information to smooth the data and provided distinct layers of clusters. 

The t-distributed error model that BayesSpace uses is particularly robust against outliers in 

clusters, which may be driven by technical artifacts generated during sample preparation 

or downstream analyses (Supplementary Fig. 2). Additionally, BayesSpace’s runtime and 

memory footprints are comparable to those of other spatial clustering methods, requiring 27 

min of wall time and 9.6 GB of memory in this sample (Supplementary Fig. 3).

Increased resolution clustering leads to identification of known tissue structures missed 
by other methods.

We used BayesSpace to analyze a melanoma ST sample first annotated and described 

by Thrane et al.2. As the manual annotation identified regions of melanoma, stroma and 

lymphoid tissue and left an additional area unannotated (Fig. 3a), we ran spatial clustering 

with k = 4 clusters (Fig. 3b). The resulting clusters corresponded well with the manually 

annotated tissue types. Furthermore, the melanoma tissue was split into the central region 

of the tumor and an outer ring of mixed tumor and lymphoid tissue. BayesSpace enhanced 

spatial clustering provided a higher-resolution map of the tissue types (Fig. 3c). Notably, 

the enhancement identified lymphoid regions along the tumor border and possible immune 

infiltration into the tumor that could not be discerned at the original resolution. These 

regions were also largely not identified by other clustering methods (Supplementary Fig. 

4). While most clustering methods identified heterogeneity between the periphery and the 

center of the tumor, only SC3, Giotto and subspot-level BayesSpace identified lymphoid 

regions proximal to the tumor, with BayesSpace providing higher resolution and more robust 

signal (Supplementary Fig. 4). Finally, we also ran BayesSpace at the spot level using five 

and six clusters, identifying potential heterogeneity within the stroma region (Supplementary 

Fig. 4).

Using the enhanced PCs, we can generate high-resolution maps of individual genes or 

expression profiles for major cell types as described in the Methods. Differential expression 

analysis performed on enhanced-resolution gene expression indicated that the lymphoid 

regions had a distinct expression profile. We observed elevated expression of lymphocyte 
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markers such as CD52 and MS4A1 and lower expression of melanoma markers such as 

MCAM and SPP1 relative to that of the surrounding tumor border (Supplementary Fig. 4). 

Enhanced-resolution differential expression analysis between the four clusters highlighted 

additional spatial variation in gene expression (Fig. 3d). In the stroma (cluster 2), expression 

levels were higher for extracellular matrix proteins such as those encoded by DCN and 

COL3A1. Furthermore, we revealed intratumor heterogeneity between the border and center 

of the tumor (clusters 1 and 3, respectively), with higher chemokine (CXCL9, CXCL10) 

activity at the border and elevated expression of genes related to cell proliferation (HSPB1) 

and metastasis (ATP1A1) at the center26,27.

We defined tumor cell (PMEL), fibroblast (COL1A1), B cell (CD19, MS4A1), T cell (CD2, 
CD3D, CD3E, CD3G, CD7) and macrophage (CD14, FCGR1A, FCGR1B) expression 

profiles based on one or more marker genes from existing literature28. The enhanced 

expression profiles provided noticeably higher spatial resolution (Fig. 3e). In particular, we 

could more clearly observe immune expression on the periphery of the tumor. The contrast 

between PMEL expression in the tumor, stroma and lymphoid tissue was also more apparent 

with enhanced resolution.

Immunohistochemistry validates enhanced-resolution clus- ters.

To validate our enhanced-resolution clustering and gene expression, we analyzed an 

unreported breast cancer sample: an estrogen receptor-positive (ER+), progesterone receptor-

negative (PR−), human epidermal growth factor receptor (HER)2-amplified (HER+) invasive 

ductal carcinoma (IDC) prepared on the Visium platform with immunofluorescence staining 

for 4,6-diamidino-2-phenylindole (DAPI) (staining nuclei) and CD3 (staining T cells) 

(Supplementary Note and Supplementary Fig. 5). We additionally analyzed a dataset 

published by 10x Genomics: an endometrial adenocarcinoma of the ovary (ovarian cancer; 

OC) sequenced on the Visium platform and stained with immunofluorescence for DAPI, 

pan-cytokeratin (staining epithelial tissue) and CD45 (staining leukocytes) (Supplementary 

Fig. 6). After examination by a pathologist, out-of-focus and overexposed regions were 

excluded from the analysis (Methods and Supplementary Figs. 7 and 8). Cell segmentation 

of in-focus areas (IDC, n = 2,929 of 4,727 spots; OC, n = 2,041 of 3,493 spots) identified a 

median of 21 cells per spot in the IDC tissue and 19 cells per spot in the OC tissue, along 

with a median of three cells per subspot in both tissues (Supplementary Figs. 7 and 8).

We applied BayesSpace to cluster the IDC sample into ten clusters and the OC sample 

into eight clusters at spot and subspot resolution, selecting the number of clusters based on 

the negative log-likelihood curve (Supplementary Figs. 9 and 10). We analyzed anti-CD3 

and anti-CD45 intensity in the in-focus area of each tissue section (Fig. 4a,f, respectively), 

finding that the immunofluorescence signal correlated well with the corresponding enhanced 

gene expression (Pearson’s r = 0.53 in the IDC; Fig. 4b,g). In both samples, we 

identified clusters enriched for the respective immune immunofluorescence signal and 

dichotomized the clusters into CD3- or CD45-rich and CD3- or CD45-poor areas (Fig. 

4c,h and Supplementary Figs. 9 and 10). From this, we identified regions of interest 

(ROI) between the spot-level and enhanced clustering: areas where the enhancement 

increased the observed heterogeneity and many subspots flipped from immune rich to 
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immune poor or vice versa. We highlight six of these ROI in Fig. 4d,i to demonstrate that 

enhanced clustering qualitatively improves concordance of clustering with the underlying 

immunohistochemical stain. Specifically, we present regions where, compared to the 

coarser spot-level clustering, the enhanced-resolution clustering detects subspots with high 

underlying immunofluorescence stain intensity and refines the boundary between immune-

rich and immune-poor areas.

To quantify the improvement at enhanced resolution, we compared the distribution 

of immunofluorescence intensity between subspots that changed classification after 

enhancement (for example, immune rich at the spot level and immune poor after 

enhancement) and subspots that maintained their classification (for example, immune rich 

at both the spot and subspot level). We found a significant difference in the intensity of 

subspots that changed classification compared to those that maintained their spot-level status 

(Fig. 4e,j), indicating that BayesSpace’s resolution enhancement improves the accuracy of 

expression-based clustering with respect to an orthogonal immunohistochemistry signal.

BayesSpace distinguishes intratumoral heterogeneity in IDC.

We further analyzed the IDC tissue section to identify clusters of biological relevance. 

Pathologist annotation identified regions of predominantly invasive carcinoma (IC), 

carcinoma in situ and benign hyperplasia, from which we derived ground-truth labels for 

each spot (Fig. 5a and Supplementary Fig. 11). The clusters were largely consistent with 

histopathological annotations (cluster purity = 0.839; Fig. 5b and Supplementary Figs. 9 and 

11), and we identified five clusters that corresponded to annotated regions of predominantly 

IC (3–6 and 9), one cluster that encompassed all annotated regions of carcinoma in situ (8), 

one cluster that coincided with the annotated benign hyperplasia and an invasive-appearing 

area (2) and three clusters corresponding to predominantly non-tumor areas (1, 7 and 10; 

Supplementary Fig. 11). We note that, without hematoxylin and eosin (H&E) stains or an 

immunofluorescent stain for a tumor marker, the tumor–stroma interface could not be fully 

delineated histologically and BayesSpace’s enhanced clustering identified heterogeneity 

within the tissue that was not reflected in the annotated boundaries but was clearly supported 

by key tumor marker genes (Fig. 5c–e). This further supports our previous validation with 

immunofluorescence (Fig. 4).

Spatial expression patterns of known marker genes and differential expression analysis 

between these clusters were largely in accord with clinical and histopathological 

annotations. Consistent with the clinical report of ER+PR−HER2+ IDC, we observed high 

expression levels of genes coding for HER2 (ERBB2) and ER (ESR1) through out the tumor 

clusters and minimal expression of the gene coding for PR (PGR) in the sample (Fig. 5c 

and Supplementary Fig. 12). The non-tumor clusters 1, 7 and 10 were characterized by 

the expression of immune genes, with PTPRC (leukocyte-common antigen CD45) highly 

expressed in these clusters. We found that these clusters corresponded to distinct spatial 

transcriptional patterns. Cluster 1 was enriched for signatures of cell-mediated immunity, 

including marker genes expressed by T cells (CD4, CD8A, CD8B) and macrophages (CD14, 

CD68), while clusters 7 and 10 were enriched for genes involved in humoral immunity, 

particularly those encoding immunoglobulin chains (for example, IGHG3; Fig. 5d and 
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Supplementary Figs. 12–15). Compared to other non-tumor clusters, cluster 7 was also 

enriched for expression of ERBB2 and tumor-associated genes, such as ZNF703, suggesting 

that this cluster represents a mixture of tumor and immune cells. Analysis of non-tumor 

subspots (clusters 1, 7 and 10) with CIBERSORT was consistent with differential expression 

results, predicting subspots in cluster 1 to have a greater abundance of T cells, while clusters 

7 and 10 had higher proportions of B and plasma cells (Supplementary Fig. 16).

We found similar heterogeneity within the invasive tumor clusters. Clusters 3, 5 and 6 

displayed elevated expression of known markers of cell proliferation, including genes 

encoding Ki-67 (MKI67) and cyclins, as well as genes associated with tumor progression, 

invasion and proliferation, including COL1A2 (refs. 29–31), MUC1 (refs. 32–35) and MMP11 
(refs. 30,31,36) (Fig. 5e and Supplementary Figs. 13, 15 and 17). Clusters 4 and 9 showed 

increased expression of ZNF703, an oncogene in the more aggressive, ER+ luminal B 

breast cancer subtype37,38 as well as that of GRB2, a gene implicated in breast cancer 

tumorigenesis39,40 and BAMBI, encoding a pseudoreceptor for TGF-β41, the signaling 

pathway of which is implicated in progression to invasion32 (Fig. 5e). These spatial 

expression patterns suggest a transcriptional heterogeneity among compartments of invasive 

tumor inaccessible to histopathological analysis, demonstrating the superiority of spatial 

transcriptomic data over immunofluorescence alone.

BayesSpace enhances gene expression patterns to near single-cell resolution on in silico 
spatial data.

We conducted several simulations to demonstrate that BayesSpace clustering and resolution 

enhancement outperform existing methods. In the first simulation, for which we simulated 

data modeled on two of our experimental datasets (see Methods for details), results showed 

that BayesSpace spot-level clustering consistently outperformed all other methods in both 

the simulated melanoma and ovarian datasets (Fig. 6a). Giotto, another spatial clustering 

method, also outperformed all non-spatial methods but provided slightly worse performance 

than BayesSpace. Among the non-spatial methods, mclust and Louvain clustering performed 

decently.

In the second simulation, we showed that BayesSpace enhanced-resolution clustering 

outperformed the optimal clustering that can be achieved at the spot level in melanoma 

and ovarian samples that were simulated at the subspot level (Fig. 6b). In each dataset, 

the enhanced clustering ARI exceeded the optimal spot-level clustering in all 20 simulated 

replicates. This indicates that BayesSpace is able to increase the resolution of data to better 

recapture finer details of the ground truth.

In the third simulation, we demonstrated that BayesSpace enhanced-resolution clustering 

can increase the resolution of data that were simulated from real, aggregated single cells 

(see Methods for details). BayesSpace captures the spatial distribution of clusters better 

than optimal spot-level clustering, as illustrated in the spatial representation of enhanced 

clustering results from one replicate (Fig. 6c). In regions with high mixing of cell types, 

there is little to no information available to resolve cluster labels at the subspot level, but 

BayesSpace is still able to closely approximate the overall tissue structure at the spot level. 

In these cases, although it is easy to miss isolated cells due to the signal being diluted out 
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from the aggregation of multiple cells at the spot level, we found that BayesSpace was 

still able to recover some of these populations. The simulation results further supported our 

melanoma analyses in which our enhanced analysis recovered lymphoid structure near the 

tumor that was not apparent at the spot level. In all, BayesSpace enhanced clusters recapture 

the ground truth better than all other methods, again highlighting the superior performance 

of our method (Fig. 6d) and showing that BayesSpace is able to successfully enhance the 

resolution of spot-level data.

Enhanced-resolution clustering resolves keratinocyte structure in squamous cell 
carcinoma.

Finally, we also used BayesSpace to analyze a squamous cell carcinoma Visium sample 

first described by Ji et al.42. H&E-stained tissue annotated by a pathologist revealed 

tumor borders and other major tissue structures (Supplementary Fig. 18). We defined 

expression profiles for the major cell types present in the sample based on known marker 

genes from the literature: keratinocytes (KRT1, KRT5, KRT10, KRT14), melanocytes 

(MLANA, DCT, PMEL), myeloid cells (LYZ) and T cells (CD2, CD3D, CD3E, CD3G, 

CD7)28,42. Keratinocytes were further separated into basal keratinocytes (KRT5, KRT14) 

and suprabasal keratinocytes (KRT1, KRT10), as products of KRT5 and KRT14 form 

heterodimers that localize to the basal layer of the epidermis, while products of KRT1 
and KRT10 form heterodimers that localize to the suprabasal layer43. We show that our 

enhanced spatial gene expression plots delineate the border between the basal and suprabasal 

layers more precisely than spot-level plots (Supplementary Figs. 18 and 19) and similarly 

find that the enhanced expression of marker genes for melanocytes, myeloid cells and T cells 

better match the expected patterns based on annotated tissue structures (Supplementary Fig. 

18).

Discussion

BayesSpace seamlessly integrates into the spatial transcriptomic analysis workflow by 

taking as input preprocessed data via the widely used Bioconductor SingleCellExperiment 

data structure. The output is likewise stored in a SingleCellExperiment object that can be 

used for downstream analyses. The methods are all implemented as an R package that is 

openly accessible on Bioconductor.

We have demonstrated the utility of BayesSpace in identifying spatial clusters with similar 

expression profiles and enhancing the resolution of spatial transcriptomics. BayesSpace 

overcomes both the challenge in efficiently using spatial information to inform the clustering 

of expression data and the limited resolution of current spatial transcriptomic technology. 

While there are similarities in the spatial prior specification between BayesSpace and 

Giotto (HMRF), we highlight several differences between the methods. BayesSpace is a 

spatial transcriptomic model-based clustering method that uses a t-distributed error model 

to identify spatial clusters that are more robust to the presence of outliers caused by 

technical noise. BayesSpace also uses Markov chain Monte Carlo (MCMC) to estimate 

model parameters, while HMRF uses expectation–maximization, which might not explore 

the space as efficiently44. BayesSpace also differs from Giotto (HMRF) in that it uses a 
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fixed precision matrix rather than a variable precision matrix across clusters, which we 

found to improve the stability of estimates without compromising clustering performance 

(Supplementary Fig. 20) and in that it uses a more reliable method for detecting the spatial 

neighborhood network.

Studies have not achieved subspot resolution of spatial transcriptomic data without requiring 

the use of additional information aside from spatial coordinates. Immunohistochemical 

analyses in the IDC and OC tissue sections provide validation that our subspot model 

accurately refines and reflects the spatial structure of the underlying tissue. Enhancement of 

gene expression analysis at subspot resolution allows downstream differential expression 

analyses to compare finer and more biologically meaningful clusters. Our analyses of 

differential expression in the IDC tissue section identify transcriptional heterogeneity within 

regions of invasive tumor that appear histologically indistinct. While histological analysis 

of this tissue was limited by available immunofluorescent stains, notably lacking a tumor 

marker or H&E stains, our results suggest the potential for spatial transcriptomics and 

BayesSpace to capture previously uncharacterized spatial patterns of gene expression.

The resolution enhancement approaches single-cell resolution, with approximately three 

cells per subspot for data acquired with the Visium platform, without the need for external 

single-cell data. However, there is potential for the enhanced data to be integrated with 

external single-cell data through deconvolution or label-transfer methods. For example, 

it may be possible to enhance the resolution of spot-level cell-type proportion estimates 

by using a Dirichlet regression model with enhanced PCs as predictors. Integration with 

single-cell data has the potential to improve our ability to resolve cell types in dense and 

complex tissues, and it is a future direction of our research.

While our work focused on the ST and Visium platforms from 10x Genomics, BayesSpace 

should be applicable to other platforms in which spots are arranged on a lattice. Slight 

modifications may be needed so that our spatial model can be used with a different 

neighborhood structure. Because BayesSpace models a lower-dimensional representation 

of data (that is, principal component analysis (PCA)), it should also be applicable to other 

dimensional-reduction techniques such as uniform manifold approximation and projection 

and possibly be applied to other data types such as protein markers and multiomics. Finally, 

it may also be possible to extend BayesSpace to jointly cluster spots from multiple samples 

given appropriate data normalizations.

Methods

Data description.

We applied BayesSpace to samples from five spatial gene expression datasets, of which 

four were generated on the newer Visium platform. All Visium samples that were obtained 

directly from 10x Genomics were procured from BioIVT:ASTERAND. Details on dataset 

processing and availability are provided in the Supplementary Information. The first dataset 

included twelve human DLPFC samples from three individuals run on the Visium platform4. 

Briefly, each sample contained approximately 4,000 spots that were manually annotated to 

belong to one of six DLPFC layers or white matter. The second dataset involved melanoma 
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samples run on the ST platform2. From this dataset, we analyzed the second replicate from 

biopsy 1 because it contained regions annotated as lymphoid tissue and was also described 

extensively in the original paper. Biopsy 1 contains 293 spots covered by tissue. The third 

dataset is publicly available from the 10x Genomics website and includes matching Visium 

spatial gene expression (3,493 spots) and immunofluorescence staining of an endometrial 

adenocarcinoma of the ovary. The sample was stained with an anti-cytokeratin antibody, an 

anti-human CD45 antibody and DAPI. The fourth dataset is from an IDC sample prepared 

on the Visium platform (4,727 spots) and stained with an anti-human CD3 antibody and 

DAPI. The final dataset included data from ten human skin squamous cell carcinomas 

profiled on either the ST or the Visium platform42. Among the two samples run on the 

Visium platform, we chose to analyze that from patient 4 (P4) as the data quality was higher 

as shown in the original paper. Sample P4 contains 722 spots covered by tissue.

Preprocessing and dimension reduction.

In all datasets, raw gene expression counts were log transformed and normalized using 

library size45,46. PCA was then performed on the top 2,000 most HVGs. Two thousand 

HVGs provided the best clustering performance in our benchmarks (Supplementary Fig. 21). 

In downstream analyses, we modeled the top 15 PCs from the Visium libraries, and we 

modeled the top seven PCs from the sample prepared on the ST platform (melanoma). The 

choice to model PCs rather than the full gene expression profile allows for a more tractable 

probabilistic model, avoiding the need for cumbersome multivariate discrete distributions. 

PCs are commonly used in clustering analysis of gene expression data. Here, we recommend 

modeling the top 15 PCs to capture as much of the variability in the data as possible 

while limiting the rapid increase in space that occurs with higher dimensions, although 

users may choose to model a different number of PCs or HVGs using the BayesSpace R 

package. Modeling more than 15 PCs did not provide substantial improvements in clustering 

performance but increased runtime and memory usage in our benchmarks (Supplementary 

Fig. 21). In the melanoma sample, many of the higher PCs exhibited higher numbers of 

extreme outliers (Supplementary Fig. 22) and significantly less variance, suggesting that 

they most likely represent technical variability. Because the older ST technology has lower 

coverage, sequencing depth and throughput, fewer PCs are necessary for modeling.

Spatial clustering model.

BayesSpace implements a fully Bayesian model with a Markov random field before 

encouraging spots of the same cluster to be close to one another. Such models have been 

widely used in image analysis, including analyses of microarray images20,21. ST and Visium 

spots are arranged on square and hexagonal lattices, which provide a natural way to define a 

neighborhood structure (Fig. 1b). For each spot i, a low d-dimensional representation yi (for 

example, PCs) of the gene expression vector can be obtained. We model the data as follows:

yi zi = k, wi ∼ N yi; μk, wi−1Λ−1

zi ∈ {1,…,q} denotes the latent cluster that i belongs to, μk denotes the mean vector 

for cluster k, Λ denotes the precision matrix, and wi denotes an unknown (observation-
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specific) scaling factor. We assume a common (fixed) precision matrix across clusters 

because the number of unknown parameters in the precision matrix quickly rises with higher 

numbers of clusters and numbers of PCs modeled. In practice, we found that the variable 

precision model often required strong priors for parameter estimation. We also assume that 

the common precision matrix is unconstrained as there is correlation between PCs after 

conditioning on cluster, even though PCs are marginally uncorrelated (Supplementary Fig. 

20). On real data, variable and independent precision models both performed poorly relative 

to the unconstrained, fixed precision model.

The number of clusters q is determined by prior biological knowledge when available or 

otherwise by the elbow of the pseudo-log-likelihood plot (Supplementary Figs. 9 and 10). 

We place the following priors on μk, Λ and wi:

μk
i . i . d.N(μ0, Λ0

−1),
Λi.i.d.Wishartd(α, diag (β)d

−1),
iw i.i.d.Γ(v

2 , v
2),

where μ0, Λ0, α and β are fixed hyperparameters. By default, we set μ0 to be the empirical 

mean vector of the data, which is generally the zero vector for PCA input. Λ0 is set to 0.01 

times the identity matrix to provide a weak prior that will be dominated by the data when 

there are spots assigned to the cluster. Similarly, we set α = 1 and β = 0.01 to provide a weak 

prior for the precision matrix. υ denotes a fixed degrees-of-freedom parameter to control 

the heaviness of tails and was set to υ = 4, which was previously shown to overcome the 

influence of outlier spots during clustering21. We also assume that yi and wi are independent. 

As such, when marginalizing over wi, our normal likelihood becomes a multivariable t 

distribution with a mean of 0 and covariance matrix ν
ν − 2Λ−1. This formulation allows us to 

use a simple Gibbs sampling for updating most of the parameters because the observations 

are normally distributed when conditioning on wi. wi values can also be interpreted as 

weights; the model will simply estimate a small weight value for any potential outlying 

data value. This provides robustness against outliers that can be commonly encountered in 

these types of data (Supplementary Fig. 2). Estimation of parameters is carried out using 

an MCMC method. We initialize z using a non-spatial clustering method such as mclust by 

default23. Alternative initializations can also be supplied as a label vector. Next, iteratively 

and sequentially, each μk, Λ and wi is updated via Gibbs sampling, and each zi is updated via 

the Metropolis–Hastings algorithm. Specifically, each zi is updated by taking into account 

both the likelihood and spatial prior information. The Markov random field prior is given by 

the Potts model:

π zi = exp γ
ij ×2 Σ

ij
I(zi = zi) ,

where 〈ij〉 denotes all spots j that are neighbors of i, I represents the indicator function, and 

γ is a fixed parameter controlling the strength of the smoothing. In this way, neighboring 

spots are encouraged to belong to the same cluster. Further details on the MCMC algorithm 
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are provided in the Supplementary Information. Model fitting diagnostics are provided in 

Supplementary Figs. 2 and 20.

Spatial clustering model at enhanced resolution.

To enhance the resolution of the clustering map, we segmented each spot into subspots 

and again leveraged spatial information using the Potts model spatial prior. Specifically, we 

segmented each ST spot into nine subspots and each Visium spot into six subspots (Fig. 1b). 

For ST, we used nine subspots to help increase the resolution of data from lower-resolution 

technology, because ST spots are 100 μm in diameter, while Visium spots are 55 μm in 

diameter. This translates into more than a threefold difference in area. In the IDC and OC 

samples, Visium spots are estimated to contain a median of around 20 cells; therefore, 

subspots will generally represent the expression of a few cells, rather than that of potentially 

dozens of cells at the spot level (Supplementary Figs. 7 and 8).

Relative to the spot-level clustering method, model specification and parameter estimation 

is largely similar for enhanced-resolution clustering, although the unit of analysis is now 

the subspot rather than the spot. As gene expression is not observed at the subspot level, 

it is modeled as another latent variable that is also estimated through MCMC. The latent 

expression of each subspot j that is part of spot i is denoted as γij*, , initialized to be yi and 

then updated via the Metropolis–Hastings algorithm. In each iteration and for each spot, the 

new proposal is given by γij*′=yij* + εij for each subspot, such that the error εij ~ N(0, σ2Id), 

where σ2 is a small fixed parameter and ∑j εij = 0. In effect, this jitters the latent expression 

value of each subspot within a spot while keeping the total expression of the spot fixed. The 

proposal is accepted or rejected based on the conditional likelihood of the proposal given 

the other parameters. We set σ2 such that the acceptance rate ranges from 25% to 40% of 

iterations on average to maximize the efficiency of the Metropolis–Hastings algorithm47. A 

weak Gaussian prior is placed on the latent expression to ensure that the jittered values do 

not drift too far away from yi. Aside from replacing yi with yij,* , all other steps of the MCMC 

algorithm remain the same as in the spot-level clustering method. Model fitting diagnostics 

are provided in Supplementary Fig. 20. Intuitively, the enhancement procedure reassigns the 

total expression within a spot to its constituent subspots by leveraging spatial information, 

ultimately generating a higher-resolution spatial clustering map.

Mapping high-resolution PCs to high-resolution gene expression space.

While BayesSpace can provide higher-resolution maps of spatial transcriptomic patterns, 

the modeling is carried out on the PC space, and an additional step is necessary to map 

the PC values back to the original log-normalized gene expression space. BayesSpace 

implements two options for predicting high-resolution gene expression: linear regression 

and nonlinear regression using XGBoost (default)48. In either case, a model is trained for 

each gene for which the outcome is the measured gene expression at the spot level and the 

predictors are the PCs generated from the original data. The fitted model can then be used 

to predict gene expression from the high-resolution PCs estimated using enhanced-resolution 

clustering. The enhanced gene expression values can be visualized spatially and analyzed 

via differential expression methods (Fig. 1a). In our analyses, we used the two-sided 
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Wilcoxon rank-sum test as implemented in Seurat to identify the top differentially expressed 

genes, and also we used Seurat for heatmap visualization of the centered and scaled gene 

expression values49.

Simulations.

Using several simulations, we evaluated the performance of BayesSpace. The first 

simulation compared BayesSpace spot-level clustering to other non-spatial and spatial 

clustering methods: k-means, Louvain, mclust, SC3 and Giotto. We could not evaluate 

stLearn in simulation due to the need for an image as input. The simulated data were 

based on the melanoma and OC samples introduced in the earlier results. Eight replicates of 

simulated melanoma and OC PCs were generated from t-distributions with means, precision 

and spot labels determined by spot-level clustering results of the real melanoma and OC 

samples, respectively (Fig. 3b and Supplementary Fig. 23). Other clustering methods were 

implemented as described in the Supplementary Information with the true cluster number 

provided as input. BayesSpace was also implemented with the true cluster number provided 

as input. Performance was assessed using the ARI between ground-truth spot labels and 

clustering results.

In the second simulation, we evaluated the performance of BayesSpace subspot-level 

enhanced clustering. We simulated 20 replicates from t-distributions with means, precision 

and labels based on real melanoma and OC samples, but, unlike for the previous simulation, 

we generated subspots using the enhanced clustering results as the ground truth (Figs. 

3c and 4d). The simulated subspot-level PCs were averaged to provide spot-level PCs 

that were given as input to BayesSpace. We can use the modal ground-truth label of the 

subspots within each spot to generate an optimal spot-level clustering for each dataset 

(Supplementary Fig. 23). The ARI between this optimal spot-level clustering and the 

subspot-level ground truth represents the highest ARI that can be achieved when all subspots 

within a spot must belong to the same cluster, as is the case with spot-level clustering.

In the third simulation, we sampled data from real single cells rather than simulating 

PCs. Here, we sampled single cells from scRNA-seq profiling of patients with high-grade 

serous OC (HGSOC)50. The single cells can be sampled into subspots on the OC Visium 

sample, providing another way to evaluate the performance of BayesSpace clustering and 

enhancement relative to other methods without relying on model-based data generation. 

Given the limited number of single cells, we used only the positions from a portion of 

the OC Visium sample. Ground-truth cluster labels were derived from expert single-cell 

level annotation of tumor and stroma compartments within the immunofluorescence stain 

image associated with the OC sample. In each subspot, the ground truth was assigned 

using the modal annotation of the single cells located within the subspot. Consequently, 

the ground-truth assignment takes into account gaps between spots in spatial transcriptomic 

technologies, and the clusters represent realistic biological spatial domains.

To add complexity to the simulation, we separated the tumor compartment into two 

ground-truth clusters and introduced two additional intratumoral clusters that represent 

heterogeneity within tumors. Thus, the simulation included a total of five spatial ground-

truth clusters, including the stroma compartment cluster. The single-cell sampling strategy is 
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shown in Supplementary Table 1, with single cells randomly drawn from single-cell clusters 

into corresponding spatial clusters in each of the eight simulation replicates. As raw counts 

were not available in the HGSOC dataset, pseudocounts were obtained by back transforming 

log-normalized counts, and simulated data were generated by aggregating across all subspots 

within a spot. The data were then processed to generate PCs as described for real data in 

the Methods. Because HGSOC single-cell clusters are very well separated, we also added 

random noise to each simulated PC equal to 25% of its variance, thus adding additional 

complexity to our simulation. This process also made our simulation more realistic when 

comparing the generated PCs to PCs derived from experimental data (Supplementary Fig. 

22).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article

Data availability

Datasets analyzed in this paper are available in raw form from their original authors (see 

details in the Supplementary Note), and the SingleCellExperiment objects that we prepared 

for analysis with BayesSpace are available through the BayesSpace package. Raw count 

matrices, images and spatial data from the IDC sample are accessible on the 10x Genomics 

website at https://support.10xgenomics.com/spatial-gene-expression/datasets.

Code availability

BayesSpace is available as a Bioconductor package at http://www.bioconductor.org/

packages/release/bioc/html/BayesSpace.html, and the source code is publicly available at 

https://github.com/edward130603/BayesSpace.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The BayesSpace workflow.
a, The BayesSpace workflow begins with preprocessed ST or Visium data. Data are spatially 

clustered to infer regions with similar expression profiles. These clusters can be refined via 

enhanced clustering to provide a higher-resolution spatial map. Enhanced clustering also 

provides the basis for predicting gene expression at the higher resolution, which can be 

used in further differential expression analyses. b, From geometric representations of spatial 

distribution of spots in the ST and Visium technologies, neighbors can be identified for each 

spot based on shared edges (top). Each spot can be subdivided into subspots, which again 

have natural edge-based neighbors (bottom).
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Fig. 2. BayesSpace improves computational resolution of layers in the DLPFC.
a, Ground truth. We highlight the manually annotated six DLPFC layers and white matter 

(WM) in sample 151673 from the spatialLIBD dataset. Annotated layers for the remaining 

samples can be found in the original publication4. b, Summary of clustering accuracy in all 

twelve samples. The ARI is used to compare similarity between cluster labels from each 

method against the manually annotated layers for all twelve samples. In the boxplot, the 

center line, box limits and whiskers denote the median, upper and lower quartiles and 1.5× 
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interquartile range, respectively. c, Cluster assignments generated by non-spatial (top) and 

spatial (bottom) methods for sample 151673.
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Fig. 3. Enhanced-resolution clustering identifies tumor-proximal lymphoid tissue in a melanoma 
sample.
a, The original histopathological annotations of H&E-stained tissue (N = 1 tissue section, n 
= 293 spots) revealed a section of melanoma (black) adjacent to tumor-proximal lymphoid 

tissue (yellow) and a region of stroma (red), separating these from a larger section of 

tumor-distal lymphoid tissue (yellow)2. Adapted from ref. 2 with permission from the 

American Association for Cancer Research. Spatial clustering (b) and enhancement (c) 

generate biologically meaningful spatial domains corresponding to the original annotations. 
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Enhanced-resolution clustering identified tumor-proximal lymphoid tissue (cluster 4, 

yellow), which was not resolved at spot-level clustering. d, Differential expression analysis 

between the four clusters highlighted spatial differences in the expression of immune genes, 

cancer markers and genes encoding extracellular matrix proteins. e, For each of the five 

major cell types, the observed total spot-level expression (as measured by the summed log-

normalized counts) of the defined marker genes (left) is shown alongside the corresponding 

enhanced-resolution expression (right). We show spatial expression plots for tumor cells 

(PMEL), fibroblasts (COL1A1), macrophages (CD14, FCGR1A, FCGR1B), B cells (CD19, 

MS4A1) and T cells (CD2, CD3D, CD3E, CD3G, CD7).
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Fig. 4. Immunohistochemistry validates BayesSpace enhancement in an IDC sample and an OC 
sample.
a, Average intensity of the anti-CD3 immunofluorescent stain in the IDC. Intensity was 

scaled to the range (0, 1) for visualization. b, Log-normalized gene expression of CD3E 
measured on the Visium platform (left, ‘spot’) and enhanced with BayesSpace (right, 

‘subspot’). c, Dichotomized clustering of Visium gene expression values. After clustering 

the tissue section into ten clusters, the clusters were binned by their median anti-CD3 stain 

intensity into CD3 ‘high’ and CD3 ‘low’ clusters, shown here. White squares outline three 

ROI where the enhanced clustering revealed areas of increased heterogeneity. d, Zoomed-in 

views of the n = 3 ROI. Each panel shows a 1-mm2 area of the immunofluorescence image. 

DAPI intensity is shown in blue, and anti-CD3 intensity is shown in green. Overlaid on 

each panel in the top row is the spot-level clustering. Each circle corresponds to the position 

and size (55-μm diameter) of a spot on the Visium array and is colored based on whether 

it belongs to a CD3 ‘high’ (yellow) or CD3 ‘low’ (blue) cluster. The bottom row contains 

a similar overlay of the enhanced-resolution subspot clustering, where the circles are now 

subdivided into six wedges corresponding to the positions of subspots in the BayesSpace 
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model. As in the spot overlay, the subspots are colored based on their cluster membership. 

e, Summary of subspot reassignment after enhancement. On the left, we show a contingency 

table describing the number of subspots (n = 17,574) that belong to a CD3 ‘high’ or ‘low’ 

cluster at the spot level and at the subspot level. Using two-sided Wilcoxon rank-sum tests, 

we also show that anti-CD3 intensity in subspots that are reassigned to a ‘high’ cluster is 

significantly higher (P < 2.22 × 10−16) thanthat inthose that remain in a ‘low’ cluster (center) 

and that subspots that are reassigned to a ‘low’ cluster have a significantly lower (P < 2.22 × 

10−16) anti-CD3 intensity than that in those that remain in a ‘high’ cluster (right). f–j, Panels 

for the OC mirror those for the IDC, with anti-CD45 intensity replacing anti-CD3 intensity 

and PTPRC (CD45) gene expression replacing that of CD3E. In e, we show n = 12,246 

subspots. In i, we show n = 3 ROI. In j, using two-sided Wilcoxon rank-sum tests, we show 

that anti-CD45 intensity in subspots that are reassigned to a ‘high’ cluster is significantly 

higher (P < 2.22 × 10−16) than that in those that remain in a ‘low’ cluster (center) and that 

subspots that are reassigned to a ‘low’ cluster’ have a significantly lower (P = 2.9 × 10−11) 

anti-CD45 intensity than that in those that remain in a ‘high’ cluster (right). All reported P 
values are unadjusted values.
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Fig. 5. BayesSpace identifies transcriptional heterogeneity within an IDC.
a, Immunofluorescent imaging of the tissue section (N = 1 tissue section, n = 4,727 spots) 

and histopathological annotations. DAPI intensity is shown in blue, anti-CD3 intensity is 

shown in green, and the Visium fiducial frame is shown in red. Annotated regions of IC 

are outlined in red, those of carcinoma in situ are outlined in yellow, those of benign 

hyperplasia are outlined in green, and those of unclassified tumor are outlined in gray. b, 

Enhanced BayesSpace clustering. c, Spatial expression of genes coding for HER2 (ERBB2) 

and ER (ESR1) and PR (PGR). d, Spatial expression of immune genes PTPRC (CD45), 
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CD4, CD8A, CD14, CD68 and IGHG3. e, Spatial expression of proliferation marker MKI67 
(Ki-67), markers of tumor progression MUC1 and COL1A2, the oncogene ZNF703, GRB2 
(coding for the growth factor receptor protein) and BAMBI (coding for transforming growth 

factor (TGF)-β pseudoreceptor).
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Fig. 6. BayesSpace outperforms spatial and non-spatial clustering methods with simulated data.
a, In N = 8 replicates simulated from the melanoma sample and N = 8 replicates simulated 

from the OC sample, BayesSpace spot-level clustering outperforms other clustering 

methods. b, In N = 20 replicates for the simulation performed at the subspot level, 

BayesSpace enhanced clustering outperforms the optimal spot-level clustering (red dotted 

line). c, In the third simulation using single-cell data, the ground truth is derived from expert 

annotation of an immunofluorescence staining image corresponding to the OC sample (top 

left). Examples of clustering partitions generated by BayesSpace at the spot and subspot 

levels as well as by the next best method (Giotto) are also shown. d, BayesSpace clustering 

at the spot level slightly outperforms competing methods, while BayesSpace enhancement 

to the subspot level generally provides substantially higher performance than that of other 

methods in recapturing ground-truth clusters among the N = 8 simulation replicates. In 

all boxplots, the center line, box limits and whiskers denote the median, upper and lower 

quartiles and 1.5× interquartile range, respectively.
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