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Abstract

Transcription factors bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) 

to modulate chromatin state and gene expression during cell state transitions. A quantitative 

understanding of how motif lexicons influence dynamic regulatory activity has been elusive due 

to the combinatorial nature of the cis-regulatory code. To address this, we undertook multiomic 

data profiling of chromatin and expression dynamics across epidermal differentiation to identify 

40,103 dynamic CREs associated with 3,609 dynamically expressed genes, then applied an 

interpretable deep-learning framework to model the cis-regulatory logic of chromatin accessibility. 

This analysis framework identified cooperative DNA sequence rules in dynamic CREs regulating 

synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter 

assay analysis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked 

to human polygenic skin disease were enriched in these time-dependent combinatorial motif 

rules. This integrative approach shows the combinatorial cis-regulatory lexicon of epidermal 

differentiation and represents a general framework for deciphering the organizational principles of 

the cis-regulatory code of dynamic gene regulation.

The outermost layer of the skin, the epidermis, is formed and maintained by a dynamic 

homeostatic process involving the conversion of metabolically active basal cells that adhere 

to the epithelial basement membrane into cells that undergo cell cycle arrest and migrate 

outwards, engaging a program of terminal differentiation to form cornified keratinocytes1 

(Extended Data Fig. 1a). A host of human diseases are caused by disruption of epidermal 

differentiation2. Calcium-induced differentiation of primary human keratinocytes in vitro 

mimics key properties of in vivo epidermal differentiation, making it a simple, tractable and 

accurate in vitro system to study this medically relevant cellular differentiation process3.

Such differentiation processes involve dynamic cell state transitions accompanied by 

genome-wide changes in gene expression, chromatin state and three-dimensional genome 

organization4,5. Transcription factors (TFs) orchestrate these chromatin and expression 

dynamics by cooperatively binding cognate DNA sequence motifs residing in CREs, such as 

promoters and enhancers, and forming complexes with capacity to activate nearby genes6-8. 

The quantitative changes in chromatin state and expression are hence highly dependent 

on the cis-regulatory code of motif patterns encoded in CREs9-12. Previous studies have 

shown that the process of terminal differentiation alters the expression of thousands 

of genes, CREs, proteins and metabolites13. However, increased temporal resolution is 

required to map dynamic regulation of subtle cell state transitions. While some regulators 

of epidermal differentiation have been identified previously3,8,14-18, the combinatorial, 

dynamic cis-regulatory code of epidermal differentiation has remained elusive.

Recently, deep-learning models such as convolutional neural networks (CNNs) have 

emerged as state-of-the-art predictive models of regulatory DNA. CNNs learn nonlinear 
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predictive functions that can map DNA sequence accurately to genome-wide profiles of 

regulatory activity by learning de novo predictive motif patterns and their higher-order 

combinatorial logic19-22. We and others have recently developed powerful interpretation 

methods to extract rules of cis-regulatory logic from these black-box models23-26. These 

interpretable deep-learning models have the potential to offer new insights into the cis-

regulatory code of epidermal differentiation.

Here, we use a battery of assays to comprehensively profile the multimodal landscape 

of chromatin and expression dynamics across a densely sampled timecourse of epidermal 

differentiation. We train robust CNN models that can accurately predict quantitative changes 

in chromatin accessibility from DNA sequence across the entire timecourse (Fig. 1a). We 

interpret the models to annotate tens of thousands of dynamic CREs with homotypic and 

heterotypic combinations of active motif instances. We introduce an in silico combinatorial 

perturbation framework to decipher quantitative rules of higher-order cis-regulatory logic 

encoded in CREs. We identify multiplicative and supermultiplicative effects of co-occurring 

motif combinations on chromatin accessibility, predict putative TFs that cooperatively bind 

these combinatorial motif patterns, and link dynamic CREs to their putative target genes. 

Finally, we validate temporal dynamics and cis-regulatory logic of combinatorial motif 

rules on intrinsic regulatory activity across differentiation using massively parallel reporter 

assays (MPRAs). Genetic variants associated with diverse skin-related complex traits are 

found to be enriched in time-dependent combinatorial motif rules, supporting a potential 

disease-relevant role in mediating phenotypic effects. This integrative framework can be 

applied broadly to discover dynamic cis-regulatory logic across diverse cell states, cell types 

and conditions.

Results

Multimodal regulatory dynamics in epidermal differentiation.

To characterize the multimodal regulatory landscapes of keratinocyte differentiation, 

transcriptional and chromatin state was profiled across several timepoints of calcium-

induced in vitro differentiation (Fig. 1b) with high-quality, replicated poly(A) site 

sequencing (PAS-seq), assay for transposase-accessible chromatin with sequencing (ATAC-

seq), H3K27ac chromatin immunoprecipitation sequencing (ChIP–seq), H3K4me1 ChIP–

seq, H3K27me3 ChIP–seq and H3K27ac HiChIP experiments (Extended Data Fig. 1a-e and 

Supplementary Tables 1-6). Principal-component analysis (PCA) showed high consistency 

between biological replicates (Fig. 1c). Gene set enrichments validated veridical activation 

of keratinocyte differentiation in these data27 (Fig. 1d). Homogeneity and timepoint 

specificity of the cell cultures were verified by comparing the ATAC-seq replicates with 

single-cell ATAC-seq data from the same differentiation system28 (Extended Data Fig. 1f). 

Important epidermal gene loci showed complex dynamic regulatory landscapes (Fig. 1e).

Using the epigenomic datasets, we identified 424,700 genomic regions enriched for 

chromatin accessibility or histone modifications across all timepoints (Fig. 2a). We 

used the ATAC-seq profiles to identify 225,996 high-confidence, reproducible CREs 

across all timepoints, of which 40,103 CREs exhibited significant variation of chromatin 

accessibility across the timecourse. Clustering these CREs on the basis of their ATAC-seq 
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profiles resulted in 15 distinct trajectories across differentiation29,30 (Fig. 2b). Chromatin 

accessibility dynamics were correlated strongly with the dynamics of activating histone 

marks H3K27ac and H3K4me1. We associated the dynamic CREs to their putative target 

genes on the basis of proximity and H3K27ac HiChIP looping data. Functional enrichment 

analysis of the gene sets associated with each dynamic CRE cluster highlighted relevant 

and expected biological functions that were consistent with expression dynamics (Fig. 2b 

and Extended Data Fig. 2a,b). For example, CREs linked to hemidesmosome genes, whose 

expression characterizes progenitors31, decreased in accessibility during differentiation. In 

contrast, CREs linked to differentiation genes32 were enriched in trajectories activated 

during differentiation. Analysis of gene expression quantification from the PAS-seq 

experiments identified 3,069 dynamic transcripts that clustered into 11 dynamic trajectories 

(Fig. 2c). The dynamic CRE clusters and their associated target genes also exhibited 

synchronous concordance of gene expression and chromatin accessibility dynamics (Fig. 

2d,e), consistent with a picture of coordinated waves of target gene activation driven 

by dynamically accessible CREs. These data map the dynamic regulatory landscape of 

keratinocyte differentiation and indicate a coordinated interplay of tens of thousands of 

CREs with thousands of genes.

CREs overlapping gene promoters and distal CREs showed differing composition and 

dynamics of chromatin states across the timecourse (Fig. 2f-h). Distal CREs associated 

with increasing and decreasing chromatin accessibility also exhibited concordant dynamics 

of flanking active histone modification profiles but no discernable changes in the repressive 

H3K27me3 mark (Fig. 2f,g). In contrast, promoters of dynamically expressed genes were 

associated with temporally invariant chromatin accessibility despite being marked by 

dynamic active histone modifications (Extended Data Fig. 2c,d). Promoters of active genes 

with invariant temporal expression were associated with invariant accessibility and active 

histone marks (Extended Data Fig. 2e). Promoters of inactive genes were enriched for the 

repressive H3K27me3 histone mark (Extended Data Fig. 2f). We also noted a small set of 

dynamically expressed genes (n = 414) enriched for H3K27me3 at their promoters (Fig. 

2i,j). These promoters lost H3K27me3 across the timecourse while simultaneously gaining 

H3K27ac. Prominent regulators of epidermal differentiation, such as MAFB and OVOL1, 

were among genes associated with H3K27me3 release of repression at their promoters 

(Fig. 2i). These observations are supported by previous studies that have found release of 

repression to be an important regulatory mechanism in terminal differentiation33-35.

Deep learning shows a dynamic DNA motif lexicon.

To learn predictive sequence models of chromatin dynamics, we trained multitask CNNs 

to map 1-kb DNA sequences tiled across the genome to associated quantitative measures 

of ATAC-seq signal at ten timepoints across the differentiation timecourse (Fig. 3a). We 

used a tenfold chromosome hold-out cross-validation scheme to train and evaluate the 

predictive performance of the model (Supplementary Table 7). We used a multistage 

transfer learning protocol. We first trained a reference model on a large compendium of 

DNase-seq data from 431 diverse cell types and tissues, then fine-tuned it on the ATAC-seq 

data from our timecourse, accounting for the cross-validation structure of the ten folds 

(Extended Data Fig. 3a and Supplementary Tables 8 and 9). The model’s predictions on 
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all held-out test set chromosomes were correlated strongly with the observed ATAC-seq 

signal in each timepoint (Fig. 3a,b and Extended Data Fig. 3b,c). The model’s predictions 

for dynamic CREs were also correlated strongly with their measured ATAC-seq signal 

across the timecourse (Extended Data Fig. 3d). The transfer learning approach substantially 

improved the performance and stability of the model’s predictions across models and folds 

(Fig. 3a and Extended Data Fig. 3b,c). The predictions of the models from the ten folds for 

each CRE in each timepoint were subsequently calibrated and assembled for downstream 

inference and prediction.

Next, we used the ensemble of trained models to infer sequence features in each CRE 

that are predictive of chromatin accessibility at each timepoint. Specifically, we used 

efficient backpropagation methods26,36 that can infer contribution scores of each individual 

nucleotide in each input sequence to the predicted output from the model at each timepoint 

(Fig. 3c). Although the sequence of a given CRE is the same across all timepoints, the 

base-resolution contribution scores are dynamic and reflect the timepoint-specific activating 

or repressive effect of predictive sequence features through the lens of the model. To 

evaluate the potential functional consequences of predictive nucleotides highlighted by the 

model, we estimated the allelic imbalance of ATAC-seq reads37 of 16,686 SNPs in CREs. 

SNPs overlapping bases with high contribution scores were associated with larger allelic 

effect sizes (Extended Data Fig. 3e). Furthermore, model-derived predicted allelic effects 

using an in silico mutagenesis approach were stronger for SNPs exhibiting statistically 

significant (false discovery rate (FDR) < 0.10) allelic imbalance than for SNPs that were 

allele-insensitive. These results indicate that the base-resolution contribution scores are 

enriched for nucleotides with putative functional effects on chromatin accessibility.

The base-resolution contribution scores highlighted short contiguous stretches of bases, 

reminiscent of TF binding motifs (Fig. 3c). Hence, we used a comprehensive compendium 

of known TF binding sequence motifs from the HOCOMOCO database38 to scan each CRE 

at each timepoint for predictive motif instances as subsequences with statistically significant 

(empirical P < 0.05) motif match scores to the sequence and to the sequence weighted by 

the base-resolution contribution scores (Fig. 3d and Supplementary Table 10). We identified 

185 motifs with predictive motif instances across all timepoints, of which only 49 were 

identified by a conventional motif discovery method39 that estimates motif enrichments 

based solely on sequence match scores (Extended Data Fig. 3f). We identified a subset of 

59 motifs whose predictive motif instances exhibited dynamic contribution-weighted motif 

match scores across the timecourse that were correlated strongly (Pearson R > 0.75) with 

RNA expression levels of TFs previously annotated to bind them (Fig. 3e). For most of 

these 59 motifs, the ATAC-seq signal of peaks containing motif instances identified solely 

on the basis of statistically significant sequence match scores showed significantly lower 

correlation with the TF expression dynamics of the corresponding TFs (Fig. 3f). Hence, the 

model-derived contribution scores of motif instances distilled from the ATAC-seq signal are 

critical to obtain improved estimators of the cis-regulatory activity of TFs. Predictive motif 

instances were also strongly supported by ChIP–seq experiments of matched TFs, indicating 

that they are probably capturing bound motif instances. For example, TP63, ZNF750 and 

KLF4 ChIP–seq40-42 profiles exhibited higher occupancy at their predictive motif instances 

as compared with inactive motif instances with low contribution scores in CREs (Fig. 3g 
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and Extended Data Fig. 3g). Predictive motif instances had consistently higher overlaps 

with ChIP–seq peaks across the entire dynamic range of contribution-weighted match scores 

compared to motif instances ranked on the basis of sequence match scores (Extended Data 

Fig. 3h). Similarly, ATAC-seq footprinting analysis43 identified stronger TF footprints at 

predictive motif instances compared with all motif instances in peaks (Fig. 3h and Extended 

Data Fig. 3i). Genes linked to CREs containing predictive instances of each of the 59 motifs 

were also enriched strongly for epidermis-specific functions (Supplementary Fig. 1). These 

results support the utility of the model-derived contribution scores to decipher active motif 

instances in CREs and infer their dynamic regulatory activity across the timecourse.

We were able to confidently assign 59 predictive motifs to 100 TFs from among paralogous 

sets of candidate TFs with similar binding motifs, on the basis of high correlation of 

motif contribution scores and TF expression across the timecourse (Fig. 3i, Extended Data 

Fig. 3j,k and Supplementary Table 11). Several of these TFs are known to be essential 

in keratinocyte differentiation, such as p63, CEBPA, GRHL2, AHR, FOSB, DLX3, VDR, 

ZNF750, MAFB, RARG, JUNB, KLF4 and OVOL1 (refs. 3,18,40,44). We also identified 

sets of paralogous TFs with different patterns of concordant or discordant expression across 

the timecourse. For example, ETV1, ETV4, ETV5 and ETS1 are paralogs that recognize 

the same motif and concordantly decrease expression across differentiation. In contrast, the 

AP-1 family member FOSL1 is most active early in differentiation, while the other paralogs 

FOS, FOSB, JUNB and JUND are most active late in differentiation. These results indicate 

potential coordination among some TF family members, as well as possible regulatory 

transitions mediated by switching between TF family members.

Next, we identified predictive motifs with strong negative contribution scores since these 

motifs could highlight potentially repressive TFs that are predicted to reduce chromatin 

accessibility. We focused specifically on dynamic CREs that decreased accessibility 

across differentiation as these are most likely to be bound by repressive TFs (Fig. 2g). 

Motifs of CEBPA and KLF4 showed significant negative contribution scores specifically 

in this set of dynamic CREs as well as strong negative correlation of motif activity 

with TF expression across the timecourse (Extended Data Fig. 4a,b). Genes linked to 

CREs containing these predictive motifs were enriched for epidermis-specific proliferation, 

migration and adhesion processes (Extended Data Fig. 4c), indicating a functional role 

for these TFs in decommissioning the progenitor maintenance program. This hypothesis is 

supported by previous studies in reprogramming systems that have noted important roles 

for both CEBPA and KLF4 in decommissioning enhancers by modifying chromatin state 

through interactions with LSD1, HDAC1 and BRD4 as well as by TF displacement45-47. 

Furthermore, CEBPA has been known to be an important reprogramming factor in at least 

two cell types, fibroblasts and B cells48. CEBPA and KLF4 were also identified as having 

predictive motifs with positive contribution scores in other CREs (Fig. 3e), indicating that 

CEBPA and KLF4 probably play both activating and repressing roles during chromatin 

remodeling in keratinocyte differentiation by activating terminal differentiation programs 

and decommissioning progenitor maintenance programs.
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Model interpretation shows combinatorial regulatory logic.

CREs are often composed of a multiplicity of motifs of one or more TFs in different 

syntactic configurations with variable motif density and affinity. However, the regulatory 

role of motif syntax has been difficult to resolve. Hence, we decided to infer the influence 

of motif syntax on chromatin accessibility of CREs across epidermal differentiation through 

the lens of our predictive models. First, we used the neural network models to predict the 

quantitative effect of homotypic motif density on chromatin accessibility using synthetic 

DNA sequence inputs composed of a systematically varying number of motif instances of 

each of the 59 predictive motifs. While most TFs (for example, CEBPD) showed monotonic 

increases in accessibility with increasing homotypic motif density, some TFs (for example, 

FOSB) showed saturation effects indicating nonlinear cooperative homotypic interactions 

(Extended Data Fig. 5a).

Next, we analyzed the relationship between the density and affinity (log odds of motif 

sequence match scores) of predictive motif instances of each motif across all CRE sequences 

in the genome (Extended Data Fig. 5b). For several key epidermal TFs (for example, 

CEBPD and GRHL2), we observed a systematic decrease in the upper limit of motif 

affinity as a function of increasing motif density. This striking tradeoff between motif 

density and affinity is supported by previous studies that have highlighted the critical role 

of suboptimal low-affinity motifs in preventing ectopic or ubiquitous regulatory activity of 

dynamic CREs, thereby allowing more fine-grained context-specific modulation by varying 

TF concentration49,50. We also analyzed the relationship between motif affinity and motif 

position relative to the local maxima of ATAC-seq signal in CREs. Higher-affinity sites 

were preferentially positioned closer to the maxima (Extended Data Fig. 5c). Altogether, 

our models show key principles of homotypic motif syntax encoded in dynamic CREs in 

epidermal differentiation (Extended Data Fig. 5d).

We then used two complementary in silico motif perturbation analysis methods to quantify 

the influence of heterotypic pairs of co-occurring motifs on chromatin accessibility 

dynamics. The first approach quantifies the impact of in silico disruption of one instance 

of a predictive motif on the contribution scores of a co-occurring predictive instance 

of a different motif25. The second approach compares the sum of the marginal effects 

of in silico disruption of each motif instance to the effect size of jointly disrupting 

both motif instances on predicted chromatin accessibility (Fig. 4a). The models predict 

chromatin accessibility signal as the depth of normalized read coverage on a log scale. 

Hence, additive effects on the log scale represent multiplicative effects on normalized 

read coverage. Motif pairs with joint effects larger than the sum of their marginal effects 

represent supermultiplicative interactions. Motif pairs whose joint effects are smaller than 

the sum of their marginal effects represent submultiplicative motif combinations that 

potentially act through independent, additive effects (Fig. 4b and Extended Data Fig. 

6a). We restricted heterotypic motif interaction analysis to motif pairs with enriched co-

occurrence of predictive motif instances in the dynamic CREs (Fig. 4c). Co-occurrence 

statistics using only predictive motif instances instead of all motif instances showed more 

specific and less promiscuous motif pairs (Extended Data Fig. 6b,c). For each heterotypic 

pair of motifs, we estimated in silico interaction effects for all dynamic CRE sequences 
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containing predictive instances of both motifs. Most of the enriched co-occurring motif pairs 

exhibited multiplicative (log-additive) and supermultiplicative effects (Fig. 4d), indicating 

extensive cooperativity between co-binding TFs through heterotypic motif syntax.

We also computed in silico interaction effects for motif pairs after embedding them in 

synthetic scrambled background sequences to avoid cryptic cooperative effects induced 

by other predictive motifs in the endogenous context (Fig. 4e). We observed more 

submultiplicative motif interactions in these synthetic backgrounds as compared to 

endogenous sequence context. These differences indicate that the native genomic context 

probably encodes higher-order cooperative interactions between the tested motif pairs and 

further motif partners. To winnow down the motif pairs to those with probable functional 

roles, we computed enrichments of functional terms using proximal gene sets associated 

with all CREs harboring predictive instances of each motif pair (Extended Data Fig. 7) and 

restricted to those that were enriched for skin-related functional terms (Fig. 4f). We thus 

obtained a core lexicon comprising 80 heterotypic pairs of significantly co-occurring TF 

motifs linked to distinct processes at different stages of epidermal differentiation.

This combinatorial lexicon implicates known and new cooperative partners (Extended Data 

Fig. 7). The ZNF750 motif was found to interact strongly with motifs for the CEBP 

family members CEBPA and CEBPD, both of which are known to be important in KRT10 

regulation51. The ATF1 motif is present in stem cell maintenance rules, such as ATF1 

with GLI1, as well as late differentiation rules, such as ATF1 with TP63. Notably, of the 

TFs that can bind to the ATF1 motif, CREB1 is most expressed at the beginning and 

end of differentiation while ATF1 increases in expression. NFKB/REL motifs are present 

only in stem cell maintenance rules, supporting a role for NFKB/REL motifs in progenitor 

state maintenance52. Notably, of the TFs that bind to the NFKB/REL motifs, RELB and 

NFKB2 decrease in expression while REL and RELA increase in expression. These rules, 

in conjunction with matched TF expression dynamics, demonstrate that precise targeting of 

gene modules and coordination of activation and deactivation relies on combinatorial motif 

syntax and expression of specific TF family members.

Regulatory activity in the combinatorial motif lexicon.

Next, we validated the temporal dynamics and the quantitative effects of the combinatorial 

motif lexicon on intrinsic regulatory potential using MPRA experiments at several 

timepoints of in vitro differentiation. We used the predictive motif annotations of all 

dynamic CREs to design libraries for the MPRA experiments. We designed 160-bp 

constructs for 19 randomly selected native human genomic CRE sequence examples from 

each of the 80 heterotypic motif pairs, mutants with combinatorially scrambled motif 

instances (individually and jointly) as well as corresponding positive and negative controls 

for the MPRA library—a total of 77,090 sequences (Fig. 5a, Extended Data Fig. 8a,b and 

Supplementary Table 12). The MPRA library was integrated with lentivirus into progenitor 

keratinocytes, then cells were induced to differentiate and harvested at appropriate 

timepoints. MPRA readouts for the entire library were obtained on days 0 (progenitor 

state), 3 (early differentiation) and 6 (late differentiation) of the differentiation timecourse 

(Extended Data Fig. 8c-e). Sample clustering and PCA demonstrated high reproducibility 
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and clear separation between the progenitor state at day 0 and the differentiated state at days 

3 and 6 (Extended Data Fig. 8f).

First, we compared the MPRA-measured expression for the wild-type genomic regulatory 

sequences in our library to their corresponding measured and predicted ATAC-seq signal 

as well as H3K27ac signal in matched timepoints. We observed low correlation between 

MPRA expression and observed ATAC-seq signal (Pearson ρ = 0.097), predicted ATAC-

seq signal (Pearson ρ = 0.088) and observed H3K27ac signal (Pearson ρ = 0.061) 

(Extended Data Fig. 8g), indicating fundamental differences between the MPRA-derived 

intrinsic measures of regulatory potential and endogenous chromatin state of regulatory 

sequences. However, we found that simple linear models that used the nonlinear sequence 

representation encoded in the final layer of the ATAC-seq CNN models as inputs were able 

to fit the MPRA expression levels with improved correlation (Pearson ρ = 0.344). These 

results indicate that the combinatorial sequence features that are predictive of ATAC-seq 

signal are also predictive of MPRA activity after a simple linear transformation. Hence, we 

postulated that the MPRAs could be used to validate the different combinatorial rules of 

cis-regulatory motif logic inferred from the models trained on the ATAC-seq data.

Since we observed concordance between chromatin dynamics and expression dynamics 

of associated putative target genes, we considered a heterotypic pair temporally valid if 

it produced a concordant effect in reporter expression compared with the measured and 

predicted chromatin accessibility dynamics of the CREs containing the pair. For example, 

for tested sequences containing the HOXA1–ETV5 motif pair, reporter activity decreased 

during differentiation, synchronous with the accessibility dynamics of the CREs containing 

this pair (Fig. 5b and Extended Data Fig. 8h). Using this criterion, 55 of the 80 heterotypic 

motif pairs (68%) were validated for temporal dynamics. Of these, 43 of the pairs (78%) 

showed significant differential activity relative to the mutated constructs in which both 

motifs were scrambled, indicating that these motif pairs are key drivers of regulatory 

potential for these CREs. Next, we used the combinatorially scrambled mutant sequences 

to determine whether the heterotypic motif pairs had multiplicative, supermultiplicative 

or submultiplicative effects on reporter expression. Of the 55 temporally valid motif 

pairs, we found that 18 pairs had supermultiplicative effects, 37 rules had multiplicative 

(log-additive effects) and none of the rules exhibited submultiplicative effects on reporter 

expression (Figs. 5c and 6a). Hence, the MPRA experiments support the multiplicative and 

supermultiplicative cooperative effects of motif pairs on chromatin accessibility as predicted 

by the model.

We performed further complementary experiments characterizing a few genomic instances 

of specific combinatorial motif rules validated by the MPRA experiments. First, we 

measured luciferase and green fluorescent protein (GFP) reporter expression for the genomic 

sequences of two CREs encoding the CEBPD–ZNF750 rule and two CREs encoding 

the ZNF750–KLF4 rule across three timepoints (Fig. 5d, Extended Data Fig. 9a,b and 

Supplementary Table 13), which demonstrated the predicted dynamic expression patterns. 

To determine whether these rules demonstrate expected TF occupancy, we analyzed 

representative genomic examples of the CREB1–ETV5 rule and the CEBPD–ZNF750 

rule, which demonstrated co-occupancy of the expected TFs by sequential ChIP (ChIP–
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ReChIP) experiments (Fig. 5e and Supplementary Tables 13 and 14). To determine whether 

this occupancy was the driver of dynamic expression, we performed ZNF750 knockout 

followed by reporter luciferase assay on examples from two combinatorial rules containing 

ZNF750 (Extended Data Fig. 9c), which demonstrated the predicted decrease in expression 

due to ZNF750 loss. To determine whether these rules were also functional in intact, 

normally differentiating human epidermis, two examples of the CEBPD–ZNF750 rule were 

engineered into regenerated human epidermal organoid tissue. GFP reporter expression 

driven by this rule was observed in the outer epidermal layers, consistent with predicted 

action of this rule in late-stage differentiation (Fig. 5f). These analyses thus validate a 

combinatorial interaction between CEBPD and ZNF750 in keratinocyte differentiation. 

In summary, we find that these combinatorial rules are bound by TFs that modulate 

downstream activity and act with fidelity and stage specificity in human tissue models.

Disease-associated genetic variation in the motif lexicon.

Using imputed genome-wide association study (GWAS) data from the UK Biobank database 

(http://www.nealelab.is/uk-biobank/), we observed that 493 genome-wide significant 

variants for a curated set of skin phenotypes were found in 295 CREs (from 2,092 total 

genome-wide significant variants across the phenotypes). These phenotypes included a 

variety of human skin diseases characterized by dysregulated epidermal differentiation, 

such as premalignant actinic keratosis, dermatitis, psoriasis, rosacea and acne vulgaris. 

To test whether the combinatorial motif lexicon was enriched for noncoding variants 

associated with these complex skin phenotypes, we used linkage disequilibrium (LD)-score 

regression53,54 in conjunction with the curated UK Biobank phenotypes and GWAS studies 

with summary statistics55,56. Genetic variants associated with skin-related diseases and 

traits were enriched in CREs containing specific motif rules with distinct temporal activity 

(Extended Data Fig. 10a), indicating that disruption of cooperative TF interactions that 

regulate epidermal differentiation may mediate disease risk in a manner consistent with 

pathological features of the corresponding skin disease. For example, motif pairs that 

influence the late stages of differentiation were enriched for heritability associated with 

acne, which is linked pathologically to abnormal terminal follicular keratinization. We 

further identified disease-specific networks of dysregulated TF lexicons by integrating 

all motif pairs enriched for disease-associated variation (Extended Data Fig. 10b). For 

example, the gene AHR has a known role in psoriasis as an immunomodulatory TF in 

keratinocytes57 and is highlighted in our analysis as a potential hub TF. In dermatitis, 

our analysis highlights the known prodifferentiation TFs ZNF750 and VDR58,59 and 

indicates roles for RUNX1, CREB1 and ATF1. Our results indicate that common noncoding 

genetic variants disrupting combinatorial cis-regulatory motif lexicons may pathologically 

dysregulate epidermal differentiation in polygenic skin disorders.

Discussion

Here, we present a resource for deciphering the cis-regulatory code of epidermal 

differentiation. Dense longitudinal profiling of the transcriptome and epigenome throughout 

the differentiation process enabled the identification of distinct dynamic trajectories of 

40,103 dynamic CREs driving synchronous changes in gene expression of linked target 
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genes. The depth and breadth of the data allowed training of deep-learning models to infer 

the combinatorial lexicon of cooperative TF binding sites encoded in the dynamic CREs 

at single-base resolution. MPRA experiments validated predicted temporal dynamics and 

cis-regulatory logic involving cooperative TF interactions explaining regulation of 9,726 

dynamic CREs (24.2% of all dynamic CREs) linked to 1,004 dynamic transcripts (32.7% 

of the dynamic transcriptome) across the differentiation timecourse. The homotypic motif 

clusters explain another 5,426 more dynamic CREs (13.5% of all dynamic CREs) and 515 

more dynamic transcripts (14.2% of the dynamic transcriptome).

This integrative resource serves as a repository of hypotheses about combinatorial cis-

regulatory control of several key processes in epidermal differentiation (Fig. 6b). We find 

a progenitor maintenance lexicon including RELB, NFKB2, ETS1, SMAD3 and RUNX1 

motifs that jointly orchestrate deactivation and disassembly of hemidesmosomes, which are 

structural proteins that anchor keratinocytes to the basement membrane. The associated 

TFs decrease in expression quickly, within the first 12 h of initiating differentiation. We 

also identified intricate interplay of motifs in an early differentiation lexicon involving 

ATF4, ATF6, GRHL2, MTF1 and NR2C1 motifs that associates with induction of early 

differentiation genes. In late differentiation, we discovered a lexicon comprising HSF2, 

CEBPD, ZFX, CEBPA and ZNF750 motifs that regulate a module of genes involved in 

fatty acid metabolism, an essential process for cornification and maintenance of skin barrier 

function. ZNF750 is one of the last TFs to sharply increase in expression around day 5.5, 

consistent with the observed essential role of ZNF750 in orchestrating terminal skin barrier 

formation18,58. We also found repressive motifs of CEPBPA and KLF4 in CREs marked 

by decreasing chromatin accessibility, indicating a role in decommissioning the progenitor 

maintenance program. Finally, the enrichment of skin disease-associated variants in specific 

rules of the cis-regulatory lexicon indicates that this approach could prove useful in future 

efforts aimed at fine mapping causal variants and genes as well as providing mechanistic 

insights into how these variants might disrupt key pathways in skin differentiation.

The cis-regulatory code is more than the sum of its parts. The interpretable, deep-learning 

framework presented here (https://github.com/kundajelab/tronn) provides a generalizable 

approach to move beyond static catalogs of cis-regulatory ‘parts lists’ (refs. 6,38,60-66) 

to predictive, quantitative models of higher-order cis-regulatory logic. Previous advances 

in deep-learning model interpretation methods have focused largely on discovering motif 

representations, active motif instances and their co-occurrence patterns20-22,67-70. The 

current in silico combinatorial perturbation framework extends this to enable discovery 

of quantitative rules of homotypic and heterotypic cis-regulatory logic such as the 

multiplicative and supermultiplicative effects of frequently co-occurring motif combinations 

on chromatin accessibility. Unlike previous studies that have investigated the critical 

regulatory role of cooperative TF binding in limited contexts, this approach allows 

comprehensive, genome-wide explanation of these effects, at the resolution of individual 

CREs, in dynamic processes such as cellular differentiation.

The present analyses also reconcile the influence of cis-regulatory logic on endogenous 

chromatin state and intrinsic regulatory potential. MPRAs offer a powerful experimental 

platform to test the effects of motif combinations on reporter gene expression activity71,72. 
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However, interpretation of MPRAs designed to test endogenous properties of regulatory 

DNA is challenging since the sequences are tested outside their native genomic context. 

We found that chromatin accessibility and histone modification levels are poor predictors 

of absolute regulatory potential at each timepoint across CREs encoding different 

combinatorial rules. However, relative changes of these measures of chromatin state of 

CREs encoding specific combinatorial rules are highly consistent with relative changes 

in their regulatory potential across timepoints. The sequence features learned by the 

deep-learning models of chromatin accessibility are also predictive of MPRA activity, 

indicating a shared cis-regulatory sequence code underlying intrinsic regulatory potential 

and chromatin state. Consistent with this hypothesis, the cooperative cis-regulatory logic of 

combinatorial motif rules inferred from chromatin accessibility was strongly validated by 

the MPRA experiments. These observations indicate that the intrinsic regulatory potential 

and chromatin state of CRE sequences are both determined by the same underlying cis-

regulatory motif syntax mediating cooperative TF binding despite the significant differences 

in transformations of different syntactical rules into quantitative readouts of regulatory 

activity measured by the different assays.

Methods

Experiments and data processing.

Primary human keratinocytes were isolated from fresh surgically discarded neonatal foreskin 

and cultured in Keratinocyte-SFM (Life Technologies, catalog no. 17005-142) and Medium 

154 (Life Technologies, catalog no. M-154-500). Keratinocytes were induced to differentiate 

by addition of 1.2 mM calcium (added 12 h after seeding at confluence) for 6 days in 

full confluence. Cells were harvested every 12 h for a total of 13 timepoints and banked 

into cell pellets, viable batches (10% dimethylsulfoxide in media), or cross-linked with 

1% formaldehyde and frozen at −80 °C. We performed ATAC-seq on all timepoints. We 

performed ChIP–seq for H3K27ac, H3K4me1 and H3K27me3 on three timepoints (days 

0, 3 and 6). We performed PAS-seq on all timepoints. We performed HiChIP on three 

timepoints (days 0, 3 and 6). Further experimental details and data processing details can be 

found in the Supplementary Methods.

Epigenomic and transcriptomic landscapes.

To determine the landscape of accessible regulatory elements across keratinocyte 

differentiation, we took the union set of the ATAC-seq peaks across all timepoints to 

determine an atlas of CREs. We generated a signal coverage matrix using counts of 

corrected transposase cut sites in the sequencing reads, and we used DESeq2 on all pairs 

of timepoints to get all CREs that have differential signal between any pair of timepoints, 

using an FDR of 0.0005 to give us a postanalysis Bonferroni-corrected FDR of 0.05 across 

all tests. To group the dynamically accessible CREs into defined trajectories across time, 

we used Dirichlet process-Gaussian process (DP-GP) timeseries clustering with replicate 

reproducibility. This analysis framework extends DP-GP time series clustering30 to consider 

replicates and to determine which clusters are reproducible across replicates (Supplementary 

Methods).
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To determine the landscape of transcripts across keratinocyte differentiation, we first 

determined the set of expressed genes at each timepoint. We did this by first normalizing 

the full matrix of protein-coding transcripts across timepoints using the rlog function from 

DESeq2 (ref. 29), and then setting an empirical threshold on the basis of the best separation 

of a Gaussian mixture model on the rlog normalized values (threshold = 4.0). We then 

took the union of all expressed genes across timepoints to determine the transcriptomic 

atlas. We then used DESeq2 on all pairs of timepoints to get all genes that have differential 

signal between any pair of timepoints, using an FDR of 0.0005 to give us a postanalysis 

Bonferroni-corrected FDR of 0.05 across all tests. To group the dynamic genes into defined 

trajectories across time, the same framework used for the dynamic CREs was also used for 

the dynamic genes.

Deep learning.

Convolutional neural networks.—We trained multitask CNNs to map 1-kb DNA 

sequence regions accurately across the genome to quantitative read outs of chromatin 

accessibility and several histone marks in each timepoint of keratinocyte differentiation. 

CNNs can learn complex sequence patterns that are predictive of genome-wide chromatin 

accessibility and histone mark profiles. We use a multistage, transfer learning training 

regimen to maximize prediction performance and model stability by leveraging large 

compendia of chromatin accessibility data across 100 s of diverse tissues.

Architecture, training and evaluation.—We used the previously optimized multitask 

Basset CNN architecture for predicting genome-wide chromatin accessibility from DNA 

sequence across several samples20. Full architecture parameters can be found in the 

Supplementary Methods. The inputs to the model are 1-kb long DNA sequences that are 

one-hot encoded. The final layer mapped to several outputs (multitask output) spanning the 

timepoints and each of the different types of molecular read out (chromatin accessibility 

or histone marks). We use binary or continuous output labels and associated loss functions 

in the multistage training. When training on binary labels, we use the binary cross-entropy 

loss function with logistic outputs. When training on continuous, quantitative measures of 

accessibility or histone marks, we use the mean squared error loss function with linear 

outputs. The multitask loss is the sum of the loss over all tasks.

We binned the genome into 1-kb windows with a stride of 50 bp. Each bin can serve as an 

example in a training, validation/tuning or test set. We divide chromosomes into ten folds. 

We use a cross-validation set up where we use eight folds for training, one for validation/

tuning and one for testing. Further details on training, evaluation and calibration can be 

found in the Supplementary Methods.

Inference of predictive motif instances.

Overview.—The multitask CNNs map every candidate regulatory DNA sequence to 

quantitative measures of chromatin accessibility at each timepoint in the differentiation 

timecourse. We developed an interpretation framework to interrogate the model and decipher 

motif instances in each candidate element that are predictive of chromatin accessibility at 

each timepoint. First, we used gradient-based feature attribution methods to decompose the 
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predicted output (at each timepoint) for an input sequence in terms of contribution scores 

of each nucleotide in the sequence. We developed methods to stabilize and normalize the 

scores. We developed stringent null models to identify statistically significant contribution 

scores. We then used a large compendium of precompiled TF motifs to scan and score the 

sequences as well as the contribution score profiles. We developed stringent null models 

to infer predictive motif instances that have statistically significant contribution scores and 

sequence match scores. Full details can be found in the Supplementary Methods, and key 

methods are briefly described here.

Contribution scores.—For each input sequence, we computed input-gated gradient score 

profiles from dinucleotide shuffled versions of the sequence. We used these scores to 

construct an empirical null distribution of contribution scores for that sequence. We used 

that empirical null distribution to derive empirical statistical significance of the observed 

contribution scores. We used a threshold of P < 0.01 to call statistically significant scores. 

The scores of all positions that did not pass the significance threshold were set to 0.

Dynamic predictive motif instances.

We identified dynamic predictive motif instances in each input sequence across timepoints, 

for each of the known motifs in the motif compendium, by scanning and scoring the 

sequence as well as the dynamic the contribution score profiles derived from the model. 

Full details can be found in Supplementary Methods. First, for each position weight 

matrix (PWM) motif, we computed sequence match scores at every position in each 

sequence. The scanning and scoring can be implemented as a convolution operation. Hence, 

we used the deep-learning framework to implement a single convolutional layer with 

filters corresponding to each of the PWMs in the deep-learning framework. We used the 

convolutional layer to scan and score all PWMs across the forward and reverse complement 

of each one-hot encoded sequence. We also used the same operation to scan and score 

dinucleotide shuffled versions of each of the genomic sequences. We thus obtained an 

empirical null distribution of match scores for each PWM for each sequence. We identified 

positions with significant sequence match scores as those that pass P < 0.05 on the basis 

of the empirical distributions. For any sequence, the significant positions on the basis of 

sequence match scores will be identical across all timepoints. Next, we used the PWMs to 

scan and score the dynamic contribution score profiles for each sequence in each timepoint. 

Essentially, we repeated the same convolution operation using PWM filters but using the 

contribution score profiles to weight the one-hot encoded sequences. Hence, we obtained 

contribution-weighted match scores to the PWMs. Our final set of predictive motif instances 

for each sequence in each timepoint corresponded to positions that have significant sequence 

match scores and significant contribution-weighted match scores. Since the contribution 

score profiles for each sequence can change across timepoints, the predictive motif instances 

were dynamic across timepoints.

Motif pair interactions.

Co-occurring pairs of predictive motifs in a regulatory sequence can have different types 

of quantitative joint effect on chromatin accessibility (depth-normalized ATAC-seq read 

coverage). We explore three types of joint effect. Lack of motif interactions would manifest 
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as independent, additive effects on coverage. Interactions between motifs learned by the 

model would manifest as multiplicative (additive in log space) or supermultiplicative effects 

(multiplicative in log space) on coverage. For all pairs of functionally enriched pairs of 

co-occurring motifs, we identified all the sequences containing predictive instances of the 

pair. We then used two complementary approaches to test each instance of a pair of motifs 

for epistatic interactions.

First, we used the Deep Feature Interaction Map method25 to score epistatic interactions 

between pairs of candidate predictive motif instances (say A and B) in a sequence. 

Briefly, we inferred the positions in the sequence that exhibit statistically significant delta 

contribution scores due to in silico mutations to motif A. If motif instance B overlaps any 

positions with significant delta contribution scores then it is estimated to have an interaction 

effect with motif A on ATAC-seq read coverage.

Next, we corroborated the Deep Feature Interaction Map scores, with an explicit 

combinatorial in silico motif mutagenesis approach using both the ‘scramble’ and ‘point 

mutation’ approach (Supplementary Methods). Assume we have two motif instances A and 

B in a sequence that we would like to test for epistatic interactions using the model. We 

record the model’s output with both motif instances intact in the sequence = o. We record 

the output after ‘mutating’ only motif A, which is the sequence that contains only an intact 

motif B = b. We record the output after mutating only motif B, which is the sequence that 

contains an intact motif A = a. Finally, we record the output after mutating both motifs A 

and B, which is a baseline = n. We computed the marginal effect size of adding motif A 

relative to a null sequence that does not contain either of the motifs = (a − n). We computed 

the marginal effect size of adding motif B relative to a null sequence that does not contain 

either of the motifs = (b − n). We computed the joint effect of adding motif A and B relative 

to the sequence that does not contain either of the motifs = (o − n).

We then compared the joint effect size (o − n) to the sum of the marginal effect sizes (a 
− n) + (b − n) = (a + b − 2n). We ran a Wilcoxon signed rank test on the paired values 

(joint versus sum of marginals) across all instances of a motif pair to determine whether the 

joint effects on the motif pair instances is significantly greater or less than the sum of the 

marginal effects.

Since the output predictions are in units of log depth-normalized coverage, additivity in log 

units translates to multiplicative effects in units of coverage. If the joint effect is significantly 

larger than the sum of the marginal effects, motifs A and B have supermultiplicative effect 

on coverage. If the joint effect is significantly lower than the sum of the joint effects, 

motifs A and B exhibit a submultiplicative effect on coverage. A nonsignificant difference 

between the joint and sum of marginals indicates a multiplicative effect of motif A and B on 

coverage.

MPRA design.

We designed MPRA constructs guided by the combinatorial motif sets that have positive 

motif interaction scores using the motif perturbations. For each rule of interacting motif 

pairs, we randomly selected 19 genomic subsequences of length 160 bp within accessible 
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peaks, containing predictive instances of both motifs in the rule and exhibiting positive 

interaction scores. We tested the wild-type (genomic) sequence and all versions of the 

sequences in which the motifs are mutated combinatorially.

This sampling design allow us to test the following hypotheses. (1) Trajectory: does the 

motif combination produce a reporter activation pattern across timepoints (days 0, 3 and 6 in 

the in vitro model) that was predicted by the trajectory it was derived from? (2) Interactions: 

do the motif pairs exhibit multiplicative or supermultiplicative interaction effects on intrinsic 

reporter activity?

We included the following positive and negative controls. As positive controls, we used 

316 TSSs of the highest expressed genes. As negative controls, we generated dinucleotide 

shuffled versions of 50 randomly selected genomic test sequences selected above. We also 

selected 50 negative controls from the genome that are not found in the master list of 

accessible regions across keratinocyte differentiation.

Library cloning, cell culture and sequencing.

The MPRA oligonucleotide library was synthesized using Agilent’s oligonucleotide library 

synthesis platform. Full details can be found in Supplementary Methods. Briefly, the 

oligonucleotide library was cloned into plasmids containing pGreenFire1 lentivector 

backbone and amplified by transformation in Takara Stellar competent cells. The final 

plasmid library pool was sequenced on an Illumina MiSeq to ensure an oligonucleotide 

library coverage greater than 90%.

Lentivirus was made with the plasmid library pool and transduced into keratinocytes 

(Supplementary Methods), which were seeded for days 0, 3 and 6 timepoints of 

differentiation. At each timepoint, total RNA was isolated using an RNeasy Plus kit (Qiagen, 

catalog no. 74134) and then used to generate MPRA sequencing libraries (Supplementary 

Methods). We performed deep sequencing on an Illumina NovaSeq 6000.

MPRA analysis.

The DNA plasmid library was sequenced to capture the baseline fractions of each sequence 

in the library. The MPRA library reads were sequenced and analyzed in the same fashion 

as the DNA plasmid library. The counts were then renormalized using the plasmid fractions 

by multiplying the MPRA counts by the plasmid fractions, converting to fractions, and 

multiplying by the total count across the MPRA library. These counts were then run through 

regularized log transform from DESeq2 to get a normalized signal matrix. This normalized 

matrix was then used in downstream analyses.

To test trajectory patterns, the normalized MPRA signal for all sequences belonging to the 

pattern were collected for days 0, 3 and 6. Day 3 and 6 readouts were then compared 

with day 0 by a Wilcoxon signed rank test (P < 0.05) to determine differential signal 

between timepoints. If the measurements show differential signal for either of these days, the 

trajectory is considered to have dynamic activity across the timecourse. Thee mean (across 

all sequences) pattern of the MPRA signal across the three timepoints was then compared 
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with the corresponding average ATAC trajectory to determine a correlative match (Spearman 

rank correlation P < 0.05) in terms of the dynamics.

To estimate interaction scores for motif pairs tested in the MPRAs, we compared the 

distribution of normalized MPRA signal (log scale) of wild-type sequences containing 

both motifs to the expected log-additive effect of each individual motif. When motif a is 

scrambled, we noted the MPRA signal = a. When motif b is scrambled, we noted the MPRA 

signal = b. When both motifs a and b are scrambled, we noted the MPRA signal = n. Then, 

the expected log-additive signal for the wild-type sequence containing both motifs = (a − 
n) + (b − n). We then used the Wilcoxon signed rank test (P < 0.10) to determine whether 

there is a significant difference between the observed wild-type signal and the log-additive 

expected signal. A significantly positive score indicates a supermultiplicative effect of the 

motif pair. A nonsignificant score indicates a multiplicative (log-additive) effect of the motif 

pair. A significant negative score indicates a submultiplicative effect of the motif pair.

Biochemical characterization of combinatorial rules.

To confirm MPRA reporter activity on an individual basis, a lentiviral reporter construct was 

designed that contains a minimal promoter driving the expression of destabilized copGFP 

(GFP 2 from the copepod Pontellina plumata) and luciferase separated by a T2A (self-

cleaving peptide from thosea asigna virus 2A) sequence. Genomic sequences synthesized by 

IDT were inserted upstream of the minimal promoter. Lentivirus was made and transduced 

into primary keratinocytes, and cells were then seeded for days 0, 3 and 6. Luciferase assays 

were performed using a Tecan Infinite M1000 plate reader. Further details can be found in 

Supplementary Methods.

For ChIP, human keratinocytes were cross-linked with 1% formaldehyde and chromatin was 

sonicated to an average fragment length of 150–500 bp. Chromatin was immunoprecipitated 

overnight at 4 °C. Following cross-link reversal, samples were treated with RNase A and 

the DNA was purified using a ChIP DNA Purification Kit (Zymo Research, catalog no. 

D5205). The following antibodies were used: CREB1 (Millipore, catalog no. 06-863, 2 μg 

per 40 μg chromatin), ETV5 (Proteintech, catalog no. 13011-1-AP, 1 μg), KLF4 (Sigma, 

catalog no. SAB2701975, 2 μg per 40 μg chromatin), ZNF750 (Sigma HPA023012, 1 μg), 

CEBPD (Thermo Fisher PA5-30262, 2 μg per 40 μg chromatin). For ReChIP, samples were 

eluted in ChIP elution buffer (1% SDS, 50 mM NaHCO3) then diluted tenfold in modified 

RIPA buffer without SDS (1% NP-40, 1% sodium deoxycholate, 1 mM EDTA in PBS) for 

immunoprecipitation with second antibody.

For organoid modeling, primary human keratinocytes were isolated from fresh surgically 

discarded skin and cultured in Keratinocyte-SFM (Life Technologies, catalog no. 

17005-142) and Medium 154 (Life Technologies, catalog no. M-154-500). We performed 

organotypic regeneration of human epidermis as previously described3. Briefly, cells were 

first transduced with lentivirus containing pGreenfire reporter constructs and selected with 

puromycin for 2 days posttransduction. After selection, 500,000 cells were seeded onto 

devitalized dermis, cultured for 7 days and harvested. Biologic replicates were performed in 

all cases.
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For immunofluorescence staining, tissue sections (7 μm thick) were fixed using 4% 

paraformaldehyde. Primary antibodies GFP (Thermo Fisher, catalog no. A-11122) and 

filaggrin (Abcam, catalog no. 81468) were incubated overnight at 4 °C and secondary 

antibodies (Alexa Fluor 488 or 555, Thermo Fisher) were incubated at room temperature 

for 1 h. Tissue samples were mounted with Duolink In Situ mounting media with 4,6-

diamidino-2-phenylindole (Sigma). Images were taken using a Zeiss Axio Observer Z1 

fluorescence microscope and Zeiss Axiovision software.

Statistics.

Unless otherwise specified or tested, data distributions were assumed to be normal.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 ∣. Data quality and other characteristics of the regulatory landscape.
(a) Morphology schematic of normal human epidermis. (b) Selected biomarker gene panel 

from PAS-seq, demonstrating proper differentiation across time in vitro. (c) Principal 

component analysis (PCA) of other datasets (signal type used for analysis in parenthesis): 

PAS-seq (log2 of counts), H3K27ac ChIP–seq (log2 of counts), H3K4me1 ChIP–seq (log2 

of counts), H3K27me3 ChIP–seq (log2 of counts), HiChIP (normalized fragment counts). 

(d) Global statistics on ATAC-seq. Top plot shows the number of reproducible peaks across 

the timepoints. Bottom plot shows the number of up and down regulated differential peaks 

across time, using day 0 as the baseline. (e) Global statistics on PAS-seq. Top plot shows the 

number of expressed genes (> approximately 1TPM) at each timepoint. Bottom plot shows 

the number of up and down regulated differential genes across time, using day 0 as the 

baseline. (f) Comparison of bulk ATAC-seq in keratinocyte differentiation to scATAC-seq. 

Each of the bulk ATAC-seq samples was projected into a 2D UMAP of related scATAC-seq 

data.
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Extended Data Fig. 2 ∣. Extended analysis of the keratinocyte epigenome.
(a) Analysis of regions with stable (invariant) accessibility and dynamic chromatin 

modifications surrounding them (28,973 regions). The regions are clustered according to 

their dynamic chromatin mark patterns and marked with enriched GO terms accordingly. (b) 

Analysis of regions with stable (invariant) accessibility and stable chromatin modifications 

(84,678 regions). The regions are clustered according to combinatorial chromatin states 

and marked with enriched GO terms accordingly. (c) Comparison of accessibility at 

TSSs, separated into TSSs of dynamic genes, stable genes, and nonexpressed genes, and 

additionally compared to distal regions. (d) Profile heatmaps for TSSs of dynamic genes. 

(e) Chromatin states around TSSs of stable genes. (f) Chromatin states around TSSs of 

nonexpressed genes.
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Extended Data Fig. 3 ∣. Extended analysis of deep neural net models.
(a) Schematic describing transfer learning. From left to right: first, models are trained 

on a large compendium of DNase-seq datasets from ENCODE and Roadmap; these 

weights are used to initialize training for a keratinocyte specific classification model; 

finally, these weights are used to initialize training for a regression model. (b) Model 

performance metrics. Left: area under the precision-recall curve (AUPRC) for the ENCODE/

Roadmap pre-training classification tasks across 10 folds. Right: AUPRC for accessibility in 

keratinocyte timepoints across 10 folds, considering transfer learning or fresh initialization 

(random seeded weights). Box-and-whisker plots show all points, minimum to maximum, 

with 25th to 75th interquartile range. (c) Precision-recall curves for the classification 

stage. Top: Precision-recall for prediction of accessible peaks. Bottom: Precision-recall 

for prediction of strong enhancer state (presence of ATAC-seq, H3K27ac ChIP–seq, and 

H3K4me1 ChIP–seq). (d) Heatmaps of observed ATAC signal vs neural net predicted 

ATAC signal across dynamically accessible regions. (e) Validation of contribution scores 

by comparing to SNPs exhibiting significant allelic imbalance of ATAC-seq signal. Top: 

Comparison of effect sizes of allelic imbalance of ATAC-seq signal, between SNPs 

overlapping nonsignificant contribution scores and those overlapping significant contribution 

scores. Bottom: comparison of model-derived allelic effect predictions (reference allele - 
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alternate allele) on SNPs overlapping significant contribution scores, separated by whether 

the SNP was considered allele-sensitive (FDR < 0.10) or not allele-sensitive. Box-and-

whisker plots show all points, minimum to maximum, with 25th to 75th interquartile 

range box. (f) Comparison of neural network derived predictive motifs versus enriched 

motifs derived by HOMER motif discovery. (g) Predictive, active motif instances of 

KLF4 show higher ChIP–seq signal relative to inactive motifs in CREs. (h) Evaluation 

of motif instances identified by sequence-only position weight matrix motif match scores 

against contribution-weighted sequence motif match scores. (i) Predictive motifs show 

dynamic footprinting. DLX3 motif is shown. (j) Heatmap showing predictive motifs 

enriched in CREs corresponding to ATAC-seq trajectories. (k) Heatmap showing TFs whose 

expression was correlated (r > 0.8) with activity of their matched predictive motifs in CREs 

corresponding to ATAC-seq trajectories.

Extended Data Fig. 4 ∣. Repressive motifs in CREs exhibiting decreasing accessibility across 
keratinocyte differentiation.
(a) Top: dynamics of negative contribution scores of predictive motif instances of CEPBA 

and KLF4 across time averaged over all CREs exhibiting decreasing accessibility across 

the timecourse. Bottom: dynamic expression patterns of CEBP and KLF family TFs 

that exhibit strong anticorrelation with motif activity dynamics across the timecourse. 

(b) A closing CRE (chr10:60192514-60203992) shows progressively increasing negative 

contributions of nucleotides in CEBPA motif across the timecourse in concordance with an 

increasing negative effect on accessibility. Assay ranges are ATAC-seq: 0-500; H3K27ac: 

0-20; H3K4me1: 0–50. (c) Functional enrichments for gene sets linked to CREs containing 

predictive instances of CEBPA and KLF4 motifs with strong negative contribution scores. 

Left: enrichments linked to closing CREs with negative CEBPA motif scores. Right: 

enrichments linked to closing CREs with negative KLF4 motif scores.
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Extended Data Fig. 5 ∣. Analysis of homotypic motif clusters within the keratinocyte epigenome.
(a) Analysis of motif counts on chromatin accessibility using synthetic sequences. Synthetic 

scrambled background sequences were embedded with varying number of instances of each 

predictive motif. The neural network was used to predict chromatin accessibility for each 

synthetic sequence. Left: Each curve summarizes the predicted accessibility with increasing 

motif density for each motif averaged over 100 random synthetic backgrounds. Middle/right: 

Predicted chromatin accessibility for increasing density of FOSB, and CEBPD motifs. Each 

black curve represents a specific random synthetic background sequence, while the red curve 

is the average pattern across all backgrounds. (b) Relationship between motif affinity and 

motif density in CREs containing predictive motif instances. Motif affinity is estimated as 

the average motif PWM match log-odds scores of all predictive instances in a CRE. Motif 

density is the number of predictive motif instances in each CRE. We observe a striking 

tradeoff between motif density and the upper limit of average motif affinity. Right: CEBPD 

motif instances. Left: GRHL motif instances. (c) Motif PWM match scores as a function 

of distance from the ATAC-seq summit. Left: motif PWM match scores from all motif 

instances for CEBPD and GRHL motifs. Right: motif PWM match scores for predictive 

motif instances for CEBPD and GRHL motifs. (d) Proposed principles of cell-type specific 

homotypic motif clusters. As number of motif instances increases or as motif affinities in 

a region increase, accessibility increases. The suboptimization of motif sites, particularly 

when there are more motif instances within a region, acts as an upper limit to prevent ectopic 

accessibility. Motif affinities are strongest near the accessibility summit.
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Extended Data Fig. 6 ∣. Examples of interacting pairs of predictive motifs and motif co-
occurrence statistics.
(a) Example regions demonstrating interacting motifs. Top row: putative enhancer 

affecting LAMC2 gene expression with an interacting NFKB2 motif and RUNX1 motif 

(chr1:183147408-183170430). Assay ranges are ATAC-seq: 0–600; H3K27ac: 0-300; 

H3K4me1: 0–50. The highlighted region in the signal tracks (left) demonstrates correctly 

predicted ATAC signal by the neural net (top middle heatmap). Base-resolution contribution 

score tracks are shown for the wild-type (genomic) sequence and sequences with 

marginal and joint perturbation of both motifs (middle tracks). The model predicts a 

super-multiplicative effects of the motif pair on chromatin accessibility (right plot). Bottom 

row: Analogous plots for a putative enhancer affecting MUC15 gene expression with an 

interacting GRHL2 motif and ATF4 motif (chr11:26590539-26610606). Assay ranges are 

ATAC-seq: 0–800; H3K27ac: 0–150; H3K4me1: 0-70. (b) Co-occurrence statistics (size of 

circle represents number of instances) for motif pairs based on all motif instances identified 

solely using sequence match scores (left) and motif pairs based on predictive, active motif 

instances based on contribution-weighted sequence match scores (right). Predictive motif 

instances highlight less promiscuous, more specific co-occurrence statistics. (c) Analogous 

co-occurrence statistics for motif pairs using all motif instances (left) and predictive motif 
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instances (right) after filtering for pairs that show significant GO term enrichments for 

associated target genes. Once again, more specific co-occurrence patterns are observed for 

the predictive motif instances.

Extended Data Fig. 7 ∣. Mapping co-occurring motif pairs to enriched Gene Ontology terms.
Map of combinatorial rules derived from in silico motif interaction analyses. Each row 

across plots represents a predicted interacting motif pair. From left to right: the motif 

presence plot demonstrates which motifs are part of the combinatorial rule; the ATAC 

heatmap demonstrates the average accessibility pattern over CREs containing each motif 

pair across all time points; the RNA heatmap displays the average gene expression over 

genes associated with CREs containing each motif pair across the time points; Gene 

Ontology terms are significantly enriched in the gene sets associated with CREs containing 

each motif pair.
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Extended Data Fig. 8 ∣. MPRA data quality and comparisons to epigenomic landscapes.
(a) Distribution of barcodes in plasmid library, demonstrating the skew of barcode 

representation. (b) Number of barcodes per fragment in plasmid library, demonstrating 

on average 10 barcodes per fragment tested. (c) Number of reads per MPRA sample. (d) 

Number of barcodes per fragment in MPRA RNA reads, demonstrating on average 10 

barcodes per fragment tested. (e) Average MPRA signal compared to controls, showing 

ATAC regions on average have activity in between negative controls (genomic negatives 

and shuffled sequences) and positive controls (promoter sequences). (f) MPRA replicate 

consistency. Left: Consistency by Pearson R across replicates and timepoints tested. Right: 

Consistency of MPRA replicate signal for two example replicates in timepoint day 0. (g) 

Correlation of MPRA signal to various genomic and/or modeling signals: ATAC signal, 

NN predictions of ATAC signal, H3K27ac, and regression predictions from linear model 

utilizing NN final layer activations as model inputs (results shown on held-out test data). (h) 

ATAC signal across timepoints day 0,3, and 6 for sequences containing HOXA1 motif and 

ETV5 motif. Box-and-whisker plots show all points, minimum to maximum, with 25th to 

75th interquartile range.
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Extended Data Fig. 9 ∣. Additional experimental validation of representative MPRA fragments.
(a) GFP expression of reporters drawn from MPRA fragments (endogenous examples of 

combinatorial rules) from day 0 to day 7. R4 and R5 are instances of CEBPD/ZNF750 rule. 

R11 and R12 are instances of KLF4/ZNF750 rule. Scr is a scrambled control fragment. 

Yellow and black scale bars are 20um. (b) GFP expression from the experiment in (A) 

quantified. (c) ZNF750 knockout followed by luciferase reporter timecourse expression, 

demonstrating ZNF750 influence on instances of rules involving ZNF750. Data summarizes 

three independent experiments and is represented as mean ± s.e.m. One-sided T test was 

used for comparisons, *P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 10 ∣. Combinatorial motif pairs are enriched for genetic variants associated 
with skin phenotypes.
(a) LD score regression analysis showing differential heritability enrichment of various skin-

related diseases and traits in different sets of CRE. The skin phenotypes include: psoriasis, 

dermatitis, acne, actinic keratosis and rosacea. The sets of CREs include: ‘Progenitor’ rules 

are CREs containing motif pairs that demonstrate decreasing accessibility and activity across 

the epidermal differentiation timecourse. ‘Early differentiation’ rules are CREs containing 

motif pairs those that demonstrate maximal accessibility and activity in the middle of 

the epidermal differentiation timecourse. ‘Late differentiation’ rules are CREs contained 

motif pairs that demonstrate maximal accessibility and activity at the end of the epidermal 

differentiation timecourse. ‘Union DHS’ is the union of DNase peaks across all ENCODE 

DNase datasets. ‘HepG2’ are DNase peaks in the HepG2 liver carcinoma cell line. ‘Union 

ATAC’ is the union of CREs across all time points of the differentiation timecourse. 

‘ATAC timepoints’ are the CREs that are accessible in each time point of the epidermal 

differentiation timecourse. ‘Dynamic trajectories’ are clusters of CREs that display 

specific concordant patterns of dynamic accessibility across the epidermal differentiation 

timecourse. Plots show LDSC score enrichment coefficients with confidence intervals. (b) 

Predicted dysregulated TF motif lexicon networks by phenotype. Combinatorial rules were 

overlaid onto the predicted TF network of combinatorial motif interactions to demonstrate 
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dysregulated TF subnetworks. Node size is the sum of the LD score regression coefficients 

for the significant combinatorial rules involving that node TF motif. Edges and nodes in 

black represent significantly enriched combinatorial rules, edges and nodes in gray did not 

pass statistical significance. Edge thickness represents the validated interaction effect of the 

rule (supermultiplicative, multiplicative, submultiplicative).
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Fig. 1 ∣. A high-resolution integrated multiomic data resource in primary keratinocyte 
differentiation.
a, Schematic of the integrative framework for discovery of a dynamic, combinatorial 

cis-regulatory lexicon. CNNs are trained to predict quantitative ATAC-seq signal from 

DNA sequence across a timecourse, augmented with prediction tasks for active chromatin 

marks. After model training, base-resolution contribution scores are inferred for all 

sequences using backpropagation-based interpretation methods, followed by motif scanning 

to identify predictive motif instances. In silico combinatorial perturbation analyses are 

used to identify interaction effects between co-enriched combinatorial motif rules. Gene 

expression (PAS-seq) across the timecourse enables identification of TFs that may bind 

motif rules and downstream target gene modules. MPRAs validate predicted effects of 

combinatorial cis-regulatory logic. b, Schematic of multiomic data collected across the 

epidermal differentiation timecourse. c, PCA of ATAC-seq data highlight time as the 

primary axis of variation. PC, principal component. d, Gene set enrichments validate 

veridical activation of keratinocyte differentiation in the gene expression data. GSEA, 

gene set enrichment analysis. e, Representative loci around the ITGB4 (chr17:73690537–

73721129), KRT78 (chr12:53237434–53276997) and CEBPA (chr19:33777249–33796123) 

genes exhibit different trajectories of chromatin and expression dynamics. Dynamic ranges 

across loci are as follows: ATAC-seq, 0–800; H3K27ac ChIP–seq, 0–200; H3K4me1 ChIP–

seq, 0–100; H3K27me3 ChIP–seq, 0–150 (units, −log10 P value).
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Fig. 2 ∣. Epigenomic and transcriptomic landscapes in epidermal differentiation.
a, Segmentation of the epigenome into chromatin states by accessibility (ATAC-seq), 

assayed marks (H3K27ac, H3K4me1 and H3K27me3 ChIP–seq) and transcription start sites 

(TSSs) or distal regions. Accessibility is divided into dynamically accessible (dark blue) 

and stably accessible (light blue) regions. TSSs are divided into TSSs of dynamic (dark 

purple), stable (light purple) and nonexpressed (gray) genes. b, ATAC-seq and ChIP–seq 

(H3K27ac and H3K4me1) heatmaps of 40,103 dynamic cis-regulatory elements, ordered by 

15 trajectories of dynamic accessibility; gene set enrichments of proximal genes of CREs in 

each trajectory (right). ATAC-seq signals are relative to day 0. c, Eleven trajectories of 3,609 

dynamically expressed genes; gene set enrichments for each trajectory (right). RNA signals 

are relative to day 0. d, Accessibility trajectories mapped to gene expression trajectories 

on the basis of activity correlation across the timecourse. Correlation of mean activity of 

accessibility trajectories (rows) to mean activity of gene expression trajectories (columns). 

e, Normalized enrichment of CREs from each accessibility trajectory (rows) relative to 

CREs associated with each gene expression trajectory (columns) on the basis of proximity. 

f, Chromatin state (average ATAC-seq, H3K27ac, H3K27me3 and H3K4me1 profiles) in 

10-kb windows around ATAC-seq peak summits of distal CREs exhibiting dynamically 

increasing chromatin accessibility. g, Chromatin state (average ATAC-seq, H3K27ac, 
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H3K27me3 and H3K4me1 profiles) in 10-kb windows around ATAC-seq peak summits 

of distal CREs exhibiting dynamically decreasing chromatin accessibility. h, Chromatin 

state (average ATAC-seq, H3K27ac, H3K27me3 and H3K4me1 profiles) in 10-kb windows 

around TSSs of genes with dynamically increasing expression. i, MAFB (chr20:39306135–

39321639) and OVOL1 (chr11:65551663–65562811) as examples of genes with release of 

repression at the TSS in terminal differentiation. Dynamic ranges of assays are as follows: 

ATAC-seq, 0–800; H3K27ac, 0–200; H3K4me1, 0–100; H3K27me3, 0–150 (units, −log10 

P value). j, Chromatin states (average ATAC-seq, H3K27ac, H3K27me3 and H3K4me1 

profiles) in 10-kb windows around TSSs showing release of repression in terminal 

differentiation.
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Fig. 3 ∣. Deep-learning models of chromatin accessibility show dynamic predictive motif instances 
across the differentiation timecourse.
a, Left, schematic of a multitask CNN that maps 1-kb DNA sequences across the genome to 

quantitative chromatin accessibility signal across timepoints. Right, Pearson correlation (R) 

between predicted and observed accessibility across CREs of each timepoint for ten folds of 

held-out test set chromosomes for randomly initialized (Fresh init.) and pretrained (transfer) 

models. Box-and-whisker plots show all points, minimum to maximum, with 25th to 75th 

interquartile range. b, Scatter plots of predicted versus observed accessibility signal (units of 

log depth-normalized coverage) across CREs in test set chromosomes for three timepoints: 

(left to right) ATAC-seq at days 0, 3 and 6. c, Left, schematic of inference of base-resolution 

contribution scores for a sequence with respect to predicted output at specific timepoints 

using efficient backpropagation methods. Right, a CRE linked via H3K27ac HiChIP to the 

promoter of the KRT77 gene (chr12:53090924–53099998) shows progressively increasing 

contributions of nucleotides in CEBPA and TP63 motifs across the timecourse together 

with increasing accessibility. Assay ranges are as follows: ATAC-seq, 0–100; H3K27ac, 

0–200; H3K4me1, 0–100 (units, −log10 P value). NN, neural network. d, Schematic for 

identification of predictive motif instances by scanning sequence weighted by contribution 

scores with known motifs. e, Dynamics of predictive contribution-weighted match scores of 
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motifs across the timecourse averaged over all dynamic CREs. f, Comparison of correlation 

of TF expression across the timecourse to average contribution-weighted motif match 

scores of all predictive instances of 59 predictive motifs (y axis) versus correlation of TF 

expression to average ATAC-seq signal of CREs overlapping motif instances of the same 59 

motifs identified solely on the basis of motif sequence match scores (x axis). g, Predictive 

motif instances of TP63 and ZNF750 motifs exhibit higher ChIP–seq signal than predicted 

inactive motif instances in CREs. h, ATAC-seq footprints are stronger at predictive motif 

instances of HOXA1 and CEBPD motifs relative to footprints at predicted inactive motif 

instances. i, Expression patterns of TFs with correlated dynamics of matched predictive 

motifs across the differentiation timecourse.
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Fig. 4 ∣. Combinatorial in silico perturbation analysis to infer heterotypic cis-regulatory logic.
a, Schematic for combinatorial in silico perturbation analysis. All genomic instances of 

CREs containing significantly co-occurring motif pairs were evaluated. Motif pairs were 

also embedded in synthetic background sequences for orthogonal evaluation. For each 

candidate sequence containing a motif pair, the NN is used to predict changes in chromatin 

accessibility due to marginal perturbation of each motif and joint perturbation of both 

motifs. The joint effects are compared with the sum of the marginal effects (log additivity) 

to test for supermultiplicative, multiplicative (log-additive) or submultiplicative joint effects. 

b, Example locus (chr15:101080467–101108623) where a CRE that loops to the CERS3 
promoter contains active instances of CEBPA and GRHL2 motifs. Assay ranges are as 

follows: ATAC-seq, 0–600; H3K27ac, 0–50; H3K4me1, 0–50 (units, −log10 P value). The 

contribution score tracks from top to bottom are the wild-type (genomic) sequence, the 

sequence with the GRHL motif scrambled, the sequence with the CEBPA motif scrambled 

and the sequence with both motifs scrambled (double scramble). The right plot shows the 

predicted accessibility for the wild-type sequence, sequences with marginal perturbations 

of individual motifs and the sequence with joint perturbations (as the baseline). The motifs 

exhibit a multiplicative (log-additive) joint effect. FC, fold change; scr, scramble. c, Number 

of CREs supporting significantly co-occurring predictive pairs of motifs. d, Scatter plot 
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comparing the difference between the joint effect on predicted accessibility and the sum 

of the predicted marginal effects (y axis: NN-predicted joint effect minus the sum of the 

marginal effects) to the sum of the marginal effects (x axis) of motif perturbations for all 

significantly co-occurring motif pairs using genomic sequences. Supermultiplicative pairs 

(pink) fall above the dashed line, multiplicative pairs (yellow) fall near and on the dashed 

line, and submultiplicative pairs (green) fall below the dashed line. e, Scatter plot comparing 

the difference between the joint effect on predicted accessibility and the sum of the predicted 

marginal effects (y axis) to the sum of the marginal effects (x axis) of motif perturbations 

for all significantly co-occurring motif pairs using synthetic sequences. f, Comparison of 

interaction effects of all significantly co-occurring motif pairs that exhibit skin-related 

functional enrichments using genomic sequences (below diagonal) and synthetic sequences 

(above diagonal).
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Fig. 5 ∣. Validation of combinatorial motif pairs using MPRAs.
a, MPRA design. For each of the derived combinatorial rules, genomic instances of 

each rule were selected randomly and the motif pair in the instance was scrambled 

combinatorially. All combinatorial versions of the sequence were added to the MPRA 

library, which was inserted lentivirally into primary keratinocytes. These cells were induced 

to differentiate, and reporter RNA was collected at days 0, 3 and 6. b, Examples of 

three combinatorial rules: the HOXA1–ETV5 motif pair (progenitors), the ZFX–CEBPD 

motif pair (early differentiation) and the FOXO1–CEBPA motif pair (late differentiation). 

Left column, plots showing observed expression across time for the wild-type (genomic) 

sequences as well as the sequences with both motifs mutated (double scramble), normalized 

to day 0. Right column, combinatorial dynamics of genomic instances of each rule, 

relative to joint motif-scrambled mutants. Box-and-whisker plots show all points, minimum 

to maximum, with 25th to 75th interquartile range. c, Summary of the combinatorial 
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interaction effects of all temporally valid motif pairs. The scatter plot compares the joint 

effect (log fold change of reporter expression) of each motif pair (y axis) relative to the 

sum (log additivity) of the marginal effects of each motif (x axis). d, Luciferase reporter 

expression on combinatorial rule instances taken from the genome. R4 and R5 are instances 

of the CEBPD–ZNF750 rule, and R11 and R12 are instances of the KLF4–ZNF750 rule. 

Data shown summarize three independent experiments and are represented as mean ± s.e.m. 

RLU, relative luminescence units. e, ChIP–ReChIP experiments show TF occupancy on 

representative instances of combinatorial rules. Left, an instance of the CREB1–ETV5 rule 

on day 0. Right, an instance of the CEBPD–ZNF750 rule on day 6. Data shown summarize 

two independent experiments per reporter and are represented as mean ± s.e.m. f, GFP 

reporter expression (green) in representative human skin organoids with reporter expression 

engineered to be driven by R4 and R5 native genomic instances of the CEBPD–ZNF750 

rule; note GFP reporter in outer epidermal layers that correspond to late differentiation. 

DAPI, 4',6-diamidino-2-phenylindole. Scale bar, 20 μm. This experiment was repeated three 

times with similar results.
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Fig. 6 ∣. A combinatorial motif lexicon in keratinocyte differentiation.
a, Summary of the validated combinatorial lexicon of motif pairs. Left to right, heatmap of 

ATAC-seq dynamics averaged over all CREs containing predictive motif instances of each 

motif pair; motif pairs (each row is a distinct motif pair); average expression dynamics 

over all putative downstream target genes associated with CREs containing predictive 

motif instances of each motif pair; type of interaction (pink, supermultiplicative; yellow, 

multiplicative), expected sum of marginal effects compared with joint effects in the MPRA; 

and enriched functional terms for downstream target gene sets associated with CREs 

containing predictive instances of each motif pair. b, Predicted cooperative TF interactions 

mediated by predictive motif pairs across the epidermal differentiation timecourse. Each 

node is a TF (or several TFs) matched to predictive motifs. The color of the node represents 

the timepoint at which the TF shows the highest expression across the timecourse. Each 

edge is a predicted cooperative interaction between a pair of TF motifs validated by MPRA 

experiments. Each edge is colored by the timepoint at which CREs containing predictive 

motif instances of the motif pair have the highest average accessibility. The thickness of the 

edges represents the type of cooperative logic for the motif pair: supermultiplicative (thick), 

multiplicative (thin) or submultiplicative (dashed).
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