Table 3.
Performance of EINMF compared with other algorithms (embedding size = 64).
| Dataset | MovieLens-100k | MovieLens-1m | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| HR@N | NDCG@N | HR@N | NDCG@N | |||||||||
| Model | N = 5 | N = 10 | N = 20 | N = 5 | N = 10 | N = 20 | N = 5 | N = 10 | N = 20 | N = 5 | N = 10 | N = 20 |
| Pop [2] | 0.2031 | 0.3712 | 0.4761 | 0.0718 | 0.0786 | 0.0863 | 0.2015 | 0.2983 | 0.4228 | 0.0718 | 0.0786 | 0.0863 |
| Item-KNN [5] | 0.3160 | 0.4730 | 0.5758 | 0.0976 | 0.1067 | 0.1185 | 0.2237 | 0.3371 | 0.4874 | 0.0677 | 0.0714 | 0.0817 |
| BPR-MF [10] | 0.2874 | 0.4380 | 0.5822 | 0.0971 | 0.1088 | 0.1277 | 0.3340 | 0.4804 | 0.6267 | 0.1135 | 0.1206 | 0.1409 |
| NCF [13] | 0.6002 | 0.7540 | 0.8367 | 0.2662 | 0.2641 | 0.2890 | 0.603 | 0.7278 | 0.8268 | 0.2608 | 0.2497 | 0.2525 |
| DMF [20] | 0.6458 | 0.7667 | 0.8738 | 0.2672 | 0.2692 | 0.2835 | 0.5892 | 0.7197 | 0.8257 | 0.2401 | 0.2354 | 0.2413 |
| EINMF | 0.6978 | 0.8038 | 0.8887 | 0.3163 | 0.3092 | 0.3179 | 0.6540 | 0.7781 | 0.8618 | 0.2880 | 0.2728 | 0.2825 |
| MI (%) | 8.05 | 4.84 | 1.71 | 18.38 | 14.86 | 10.00 | 8.46 | 6.91 | 4.23 | 7.46 | 9.25 | 11.88 |
“MI” indicates the smallest improvements of our EINMF over the corresponding baseline. The optimal value of each metric of the baseline top-N task is underlined in the table.