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Powder-based additive manufacturing (PAM) is a potential fabrication approach in advancing state-of-the-art research to produce
intricate components with high precision and accuracy in near-net form. In PAM, the raw materials are used in powder form,
deposited on the surface layer by layer, and fused to produce the final product. PAM composite fabrication for biomedical
implants, aircraft structure panels, and automotive brake rotary components is gaining popularity. In PAM composite
fabrication, the aluminium cast alloy is widely preferred as a metal matrix for its unique properties, and different
reinforcements are employed in the form of oxides, carbides, and nitrides. However, for enhancing the mechanical properties,
the carbide form is predominantly considered. This comprehensive study focuses on contemporary research and reveals the
effect of metal carbide’s (MCs) addition to the aluminium matrix processed through various PAM processes, challenges

involved, and potential scopes to advance the research.

1. Introduction

Powder-based additive manufacturing (PAM), also known
as additive fabrication, processes the metal powders in an
enclosed purged chamber and follows the layer deposition
approach [1]. The development of lightweight aluminium-
based composite and desirable properties is possible through
the PAM process [2]. Generally, PAM follows two process
routes, namely, Direct Energy Deposition (DED) with a laser
energy source and powder bed fusion (PBF) with laser and
the electron beam as an element of source [3]. For routes
mentioned above, the raw materials (aluminium alloy) are
in powder form with a spherical shape due to powder flow-
ability [4, 5], and specified particle size ranges from 20 to 63
microns in PBF and 20 to 200 microns in DED. The PBF has

the following advantages over DED: (i) excellent surface
quality, (ii) high accuracy with precision, and (iii) a low dilu-
tion rate [6]. Laser source is chosen to melt/fuse the raw
material in both routes due to its excellent optical character-
istics such as coherence and high input energy transfer to the
selective region [7]. The raw materials for PAM are manu-
factured by mechanical alloying and atomization process,
namely, centrifugal, water, and gas atomization [8, 9]. The
input parameters, such as layer or deposition height, energy
density, scanning strategy, and hatch spacing, strongly influ-
ence the printed specimen’s surface and mechanical proper-
ties [10, 11]. The most commonly used primary aluminium
alloy with desirable properties in PAM is AlSil0Mg
(hypoeutectic cast alloy), and its equilibrium diagram is
shown in Figure 1 [12]. At optimum input parameters, the
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FiGurek 1: Equilibrium diagram of Al-Si alloy [12].

AlSil0Mg specimen prepared by the PAM process exhibits
high relative density, tensile strength, stiffness, and impact
toughness compared to the A360 die-cast alloy [13-16].
The homogenization of matrix and reinforcement particles
must ensure the proper packing density [17]. Through
High-Energy Ball Milling (HEBM), the mechanical (yield
strength and ultimate strength) and surface properties
(hardness) of the aluminium-based composite are enhanced
by varying milling time (input parameter) compared to pure
samples [18], and the possibility of balling effect occurs due
to direct mixing instead of ball milling [19]. In general, the
dispersed reinforcement strengthened the matrix, and it
should not react with the matrix phase. The strength of the
composite should be maintained without distortion at high
temperatures [20]. So, ultra-high-temperature ceramic rein-
forcements or transition metal carbide are preferred [21].
Secondary operations like heat treatment, shot peening,
and Hot Isostatic Pressing (HIP) are also employed to
enhance the composite properties [22-24].

Investigations are focusing on optimizing the input
parameters for fabricating the aluminium-based metal
matrix composite (Al-MMC) with a limited choice of metal
carbides (MCs) and subsequent secondary operations. This
study is aimed at critically reviewing the effect of different
MCs with varying weight percentages (reinforcement) on
Al-Si alloy processed through PAM and describes the chal-
lenges with contemporary research scope. Therefore, various
engineering applications are foreseen further study on vari-
ous transition metal carbides (TMCs) as secondary elements.

2. Materials

2.1. Aluminium-Silicon Alloy (Al-Si) as Matrix. Aluminium-
based alloys are employed in engineering applications due to
their cost to performance ratio. They are mostly considered
a matrix element in composite fabrication due to their
enhanced mechanical properties, improved wear rate, frac-
ture toughness, and better dimensional stability. Powder-
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based additive manufacturing is a favourable technology to
process aluminium-based composite because it overcomes
the issues related to traditional methods like nonuniform
distribution, wettability issues, limited features, size, and
geometrical tolerance [25]. Moreover, the aluminium-based
composite properties are influenced mainly by the process-
ing methods like PAM processing parameters, microstruc-
ture, composition with varying percentages of
reinforcement, particle size, agglomeration tendency, and
secondary operations [26-28]. Aluminium-based matrix
composites are employed in various engineering applica-
tions such as rails, marine, automobile, and construction
materials for durability, high mileage, fuel efficiency, and
optimum strength, respectively [29]. Aluminium- (Al-) Sili-
con (Si) cast alloy is mainly preferred among aluminium-
based alloys for its fluidity and castable properties. While
increasing the Si content in Al, the mechanical properties
tend to decrease [30] with the increase in tribological charac-
teristics [31] like wear resistance and high coefficient of fric-
tion (CoF) as well as superior microhardness [32] and also,
fine pseudoeutectic structure is observed which influences
the strengthening of the specimen [33-35].

Further, the hypereutectic aluminium alloy possesses
coarse silicon particles and causes adverse effects on the
mechanical properties [36]. The hypoeutectic aluminium
alloy (<12% of Si) is commonly used in PAM due to its
high-temperature gradient, weldability and castability [37].
However, the mechanical properties of aluminium hypoeu-
tectic alloy processed through PAM are comparatively lower
than the cast route like friction stir processing [38]. A fur-
ther reduction in aluminium alloy’s silicon content leads to
hot tearing during metal-based additive manufacturing
(MAM) [39]. Besides, the eutectic composition of alumin-
ium alloys processed through PAM shows that the partial
melting leads to improper densification due to balling phe-
nomenon [40, 41]. Table 1 shows the various types of alu-
minium alloy employed as a matrix element and preferable
for composite fabrication.

The surface morphology of AlSil0Mg powder for PAM
is shown in Figure 2. The spherical shape is generally
favoured to enhance the flowability of the powders in AM
machines.

2.2. Metal Carbides (MCs) as Reinforcement. Generally,
metal carbides (MCs) are refractory materials (silicon car-
bide-IV A group and boron carbide-III A group), also
known as high-temperature structural ceramics (HTSC),
that can withstand high temperatures and extreme environ-
mental conditions while retaining mechanical, chemical, and
physical properties. MC offers exceptional thermal shock
resistance, toughness, modulus of elasticity, corrosion resis-
tance, and microhardness [48]. Besides, TMC is categorized
into three groups: IV B, V B, and VI B. The carbides of tita-
nium (Ti), zirconium (Zr), and hafnium (Hf) come under
the group of IV B [49]. Similarly, V B exhibited the carbides
of vanadium (V), niobium (Nb), and tantalum (Ta) [50, 51]
and produced through magnesiothermic combustion [52].
Besides, VI B displays that chromium (Cr), molybdenum
(Mo), and tungsten (W) in carbides form as chromium
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TaBLE 1: Various types of Al-Si alloys (matrix element).

Al alloy material (matrix) Powder production method Type of alloy Ref.
AlSil0Mg Gas atomization Hypoeutectic [37, 38] [41, 42]
AlSi20 Gas atomization Hypereutectic [30] [33, 34] [40]
AlSi30 Gas atomization Hypereutectic [35]
AlSil5 Gas atomization Hyper eutectic [31]
AlSil6 Mechanical alloying Hypereutectic [25]
AlSi50 Mechanical alloying Hypereutectic [43]
Al-303, Al-308, and A360 Mechanical alloying Hypoeutectic [39]
Al-356 and Al-357 Mechanical alloying Hypoeutectic [44-46]
A390 (18% weight of Si) Mechanical alloying Hypereutectic [36] [47]

SEM HV: 10.00kV

FIGURE 2: Surface morphology of AlSi10Mg powder.

carbide (Cr;C,), molybdenum carbide (Mo,C), and tungsten
carbide (WC), respectively [53]. These materials have an
assortment of covalent bonds, metallic bonds, and ionic
bonds with the precipitation of intermetallic carbide phases
together [54]. Typically, silicon carbide (SiC) has a high
Young modulus, stiftness, and strength [55].

Boron carbide (B,C) exhibits greater strength, impact
resistance, and chemical stability. And it can endure higher
temperature than SiC [56]. Table 2 illustrates the commonly
used metal carbides as reinforcement. Due to the formation
of a stable phase with the matrix, titanium carbide (TiC), zir-
conium carbide (ZrC), hafnium carbide (HfC), vanadium
carbide (VC), niobium carbide (NbC), and tantalum carbide
(TaC) are the most commonly used reinforcement elements
for elevated environmental conditions [57]. From Table 2,
comparing the different groups of metal carbides, it was
observed that HfC has a high melting point, WC has a high
density, and TiC has a high hardness. It is noted that each
TMC has unique characteristics, and the anticipated com-
posite properties can be achieved by adding TMC as partic-
ulate reinforcement.

Further, the mechanical as well as the physical character-
istic of the composites can be enhanced. Moreover, chro-
mium and molybdenum carbides are preferred for the
highly corrosive atmosphere. For energy storage applica-
tions, vanadium carbide is used. Furthermore, the carbides
used in the application of engineering tools are tungsten
and niobium. Moreover, chromium and molybdenum car-
bides are preferred for the highly corrosive atmosphere.
For energy storage applications, vanadium carbide is used.

Furthermore, tungsten and niobium carbides are employed
as cutting tools for machining.

It was observed that titanium carbide (TiC), silicon car-
bide (SiC), and boron carbide (B,C) have played a significant
role as a reinforcement in the MAM for processing AI-MMC
than other MCs because of their wettability characteristics,
size distribution, and good powder flowability. The mor-
phology of the carbides as mentioned above is shown in
Figures 3(a)-3(c).

Figures 4 and 5 show the illustration of MMC with uni-
form distribution of reinforcement (MC) in the ex situ route
and in situ route, respectively [67]. The properties obtained
through in situ fabrication were superior to those obtained
from ex situ fabrication in terms of improved mechanical
properties due to the formation of unique intermetallic
phases. In both cases, increased particle size and applied
energy transform the aggregation to the uniform dispersion
of reinforcements.

3. Methods

3.1. Additive Manufacturing Techniques for Composite
Fabrication. Powder-based additive manufacturing is initi-
ated from the CAD (Computer-Aided Design) model in
a digital format (Standard Tessellation Language (STL)
extension), and the extension is accessible by the PAM
equipment [38]. In PBF, the powder melted after spread-
ing on the bed platform, whereas the powder melted while
feeding through the multijet or coaxial nozzle in the DED
[68-70]. The development of aluminium alloy-based com-
posites through the powder bed fusion (PBF) process is
attractive for high strength to weight ratio applications.
In PBF, the selective laser melting (SLM) process uses a
laser as a source in which the coherent beam of laser
selectively traces and fuses the powder on the platform.
The LASER variants employed in SLM are disk and fibre
types. Optimizing input parameters of the SLM process
[71] and decreasing the powder spread layer height lead
to obtaining 100% full dense specimens with high ductility
and mechanical strength [72].

Moreover, the scanning speed plays a significant role in
densification and reducing cellular structure size [73, 74].
In laser-based powder bed fusion (L-PBF), Marangoni con-
vection and recoil pressure are confounding factors during
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TaBLE 2: Commonly used MC as a reinforcement.

MC  Density (g/cc) Melting point ('C) Hardness (HV) Morphology Property exhibits

Group IV B

TiC 4.930 3066.9 3568.879 Irregular/polygonal [58] Superior hardness

ZrC 6.730 3419 2640.971 Agglomerated [59] Thermal stability

HfC 12.20 3920 2661.364 Dendrite [60] High resistance to oxidation

Group V B

vC 5.770 2649.5 2763.332 Irregular [60] Grain growth inhibitor

NbC 7.820 3611 1998.572 Fragmented particles [61] High wear resistance

TaC 14.30 3880 1702.865 Rippled surface [60] High hardness

Group VI B

Cr,C, 6.680 1809 1835.424 Spherical [62] Low rate of oxidation

Mo,C 9.150 2519 2498.216 Irregular crystallites [62] Exceptional thermal conductivity

wC 15.63 2775 2243.296 Irregular [63] Increase the performance of
wear and abrasion-resistant

Group IV A
SiC 321 2731 2600 Irregular [64] Good strength and
high wear resistance
Group IIT A
B,C 252 2763 3299 Fine particles and Wear resistance and

some nanoneedle structure [50, 65]

high hardness, but brittle in nature

processing which cause denudation [75], spattering, and
pores [76]. Because of their potential properties, the PBF is
primarily used in the processing of composites.

DED process is classified as Direct Light Fabrication
(DLF), Laser Engineered Net Shape (LENS), and Laser Metal
Deposition (LMD) based on the OEM (Original Equipment
Manufacturer) specifications but the same working principle
in both types. So far, Al-Si-Mg alloy, AA 6061, AA 2219, and
AA 4047 are only aluminium-based materials applied in the
DED process, and they are not employed for commercial
purposes [77-84]. In the DED process, the fabrication of
Al-MMC is possible rapidly [85] via a high deposition rate
[86], and complex structures can be built, which exhibit
excellent tribological properties. However, it has drawbacks
like poor bonding between matrix and reinforcement, losing
the MMC mechanical properties after adding ceramic rein-
forcement, high surface roughness, less deposition efficiency,
less resolution in geometry, and formation of cracks due to
temperature gradient [67]. The scanning speed and the curl-
ing effect, which forms the nonuniform structure, signifi-
cantly influence the density and microhardness of the final
part [87]. Figure 6 illustrates the process of PBF and DED.
In PBE/DED, the fraction of liquid in the molten matrix pool
affects the final microstructure and densification by altering
the thermocapillary and thermokinetic nature.

4. Inferences and Discussion

The optimum conditions, surface characteristics, and rein-
forcement effect were discussed based on the previous sec-
tions of materials and methods. The optimum conditions

of process parameters such as scanning speed, laser energy,
layer thickness, bed temperature, and hatch spacing are
mentioned in Table 3. For obtaining a fine microstructure,
input parameter optimization is vital due to the ultraheating
and cooling rate in the process. Furthermore, these parame-
ters have an impact on the quality of the printed parts. It was
found that the low-power laser power affects the melting of
the matrix element, whereas the high laser power vaporizes
the matrix element owing to variation in energy density.
As a result, optimum laser power is required to melt the
powders without the balling phenomena. In addition,
increasing the scanning speed and hatch spacing reduces
the energy density needed to fuse the powders. Furthermore,
the powder deposition rate was decreased while the layer
thickness was decreased. The optimum layer thickness con-
trols the geometrical size of the depositing track on the build
plate.

According to Table 4, the relative density of AI-MMC
with varying percentages of reinforcement is greater than
95%, indicating that proper densification was achieved
through the additive manufacturing process. The formation
of new intermetallic phases increases the printed part hard-
ness in SLM and DED. In comparison to Al-Si/TiC and Al-
Si/B,C, the hardness of Al-Si/SiC was 217.4HV at 15% of
SiC in AlSil0Mg. Due to improper bonding between rein-
forcement and matrix element, the effect of B,C in hardness
AlSi10Mg was relatively small.

From Table 5, the reinforcement TiC, SiC, and B,C with
a varying percentage on the matrix of different aluminium
alloy matrices display the effect on tensile strength, percent-
age elongation, coefficient of friction, and composite wear
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FIGURE 3: Morphology of (a) TiC [58], (b) SiC [64], and (c) B,C [66].
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FiGure 5: Illustration of MMC via in situ route.

resistance. The wear resistance of the matrix was improved
due to the hardness of TiC, SiC, and B,C. At different load
conditions, the frictional force on the matrix was also low-
ered. The tensile property of the composite decreased as
the percentage of reinforcement increased due to the forma-
tion of intermetallic phases.

However, the combination of Al-Si (matrix)+WC/VC/
NbC/ZrC/Cr,C,/Mo,C/HfC/TaC (reinforcement) has not
explored extensively through metal-based additive
manufacturing. Physical, surface property, and wear studies
were typically conducted on the specific combination of
AlSil0Mg with TiC, SiC, and B,C. Furthermore, the
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TaBLE 3: Optimized conditions for aluminium-based (matrix) and MC (reinforcement) [31, 58, 66, 89-102].

ES MAM-P M-R LP (W) SS (mm/s) LT (um) HS (um) BT (°C)
Laser SLM AlSi10Mg-3% TiC 80-140 200 50 50 100
Laser SLM AlSi10Mg-5% TiC 100 100-400 50 50 —
Laser SLM AlSi15-5% TiC 360 650 20 100 —
Laser DED AlSi10Mg-5% TiC 3000 10 — 2000 —
Laser DED AlSi10Mg-30 Vol% TiC 1800 7-17 — — 100-200
Laser SLM Al9.8Si0.6MgTi- TiC 400 — — 90 —
Laser SLM AlSi10Mg-5% TiC 320 1100 30 130 —
Laser SLM AlSi10Mg-15% SiC 500 600-2100 40 60-180 —
Laser SLM AlSi10Mg-5 Vol% SiC 195 640-880 30 500 —
Laser SLM AlSi10Mg-10 Vol% SiC 195 640-880 30 500 —
Laser SLM Al-15% SiC 500 — 50 100 —
Laser Laser sintering Al-78i-0.3Mg—>5 to 12 Vol % SiC 8.6 — 100 30 80
Laser SLM AlSi10Mg-20% SiC 200 100 30 50 —
Laser SLM Al7Si-10 Vol% SiC 200 500-1750 50 100 —
Laser SLM AlSi10Mg-20% B,C 100-200 100 50 130 to 150 —

ES: energy source; MAM-P: metal-based additive manufacturing; M-R: matrix-reinforcement; LP: laser power; SS: scanning speed; LT: layer thickness; HS:

hatch spacing; BT: bed temperature.

investigation on corrosion and mechanical properties such
as tensile strength, yield strength, and ultimate strength
was not addressed extensively using the abovementioned
combinations. Table 6 consolidated the category of raw
material, processing route with scanning mode, various
MG, effect on characteristics of final specimen, and its appli-
cations. It was observed that the scanning strategy plays a
concealed role in achieving good layer bonding during the
printing process. The linear raster scan has good wettability
and reinforcement distribution in the DED process due to a
higher deposition rate [106], whereas the island and rotation
of the 67° scanning strategy in SLM offer satisfactory perfor-
mance in terms of wettability and adhesion. Compared to
other alloys, the balling effect could be controlled while pro-
cessing the eutectic aluminium-silicon alloy [77]. The energy
absorption was increased when adding TiC and SiC with
aluminium alloy except for B,C due to the formation of alu-
minjum diboride (AlB,).

Figure 7 shows the maximum relative density and hard-
ness values obtained for different Al-Si alloy reinforcements

based on the above literature. It was found that SiC has a
high hardness but a lower relative density than TiC. In both
responses, the result for B,C was lower. Figure 8 depicts the
influence of reinforcement on the coefficient of friction; it
was observed that the frictional force induced by the rein-
forcement is significant against the counter body. As a result,
the addition of reinforcement must be optimized to reduce
frictional force.

Hence, TiC is an effective reinforcement candidate for
Al-Si alloys due to its wettability, laser absorption, uniform
reinforcement distribution, and increased mechanical prop-
erties. However, the coarsen TiC (reinforcement) particles
are prone to splitting and spalling from the Al matrix during
sliding. The descending order of reinforcement in terms of
performance is as follows: TiC > SiC > B,C. Due to its brit-
tleness, B,C seemed to have the slightest influence (needle-
like structure).

4.1. Challenges and Potential Scope. The major challenge in
processing aluminium-based alloys in SLM is reflectivity,
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TaBLE 4: Relative density and microhardness of AI-MMC with MC [31, 66, 95, 97, 103-105].
MC % weight Matrix element Relative density (%) (g/cc) Hardness (HV) Intermetallic phases
3 AISi10 >96 183 Mg,Si and ALSi
5 AISi10 >98.5 160-180 Mg,Si and AlLSi
5 AlSil5 96.25 145-173 TiC
TiC 5 AlSi10 95.8 139.1 Mg,Si and ALSi
10 AlSil5 98.5 177 TiC
1:1 Al9.8Si0.6MgTi 99.7 — S1,Ti; and a-Al dendritic
5 AlSil0Mg 99.75 131 Dy,,-ALTi
15 AlSi10Mg 97.7 217.4 Mg,Si and Al,SiC,
5 AlSil0Mg 98.5 — a-Al dendritic network
10 AlSi10Mg 98 — Al 5,Siy 47
SiC 15 Pure Al 92 140 ALC,
5-15 Al78i0.3Mg 90 — ALSIC,
20 AlSi10Mg 97.5 2185 ALSIC,
10 Al-12Si 97.4 — AlC,
B,C 20 AlSi10Mg 97-99 11.2 Al,C, and AIB,
TasLE 5: Effect of MC on mechanical properties of Al-Si alloy.
MCs with % of weight/volume Matrix Wear resistance Coe. of friction Tensile property % elongation Process
TiC—30% Vol. AlSi12 ++ * * * DED
TiC—3% Wt. AlSil10Mg + - + + SLM
TiC—5% Wt. AlSil0Mg + - ++ + SLM
TiC—5% Wt. AlSil0Mg + - + DED
TiC—5% Wt. AlSil5 + - + SLM
TiC—10% Wt. AlSil5 + - - - SLM
TiC—1:1 Al9.8Si0.6MgTi * * + + SLM
TiC—5% Wt. AlSil0Mg * * ++ ++ SLM
SiC—15% Wt. AlSi10Mg + * - - SLM
SiC—5% Vol. AlSil0Mg * * * * SLM
SiC—10% Vol. AlSil0Mg * * * * SLM
SiC—15% Wt. Al + - * * SLM
SiC—5 to 15% Vol Al-7Si-0.3Mg * * * * Laser sintering
SiC—20% Wt. AlSi10Mg ++ - * * SLM
SiC—12% Vol. Al-12Si * * * * SLM
B,C—20% Wt. AlSi10Mg + - x x SLM

+, increase; ++, drastic increase; -, decrease; —, drastic decrease; *, no observation.

low melting point, and interaction with oxygen in the envi-
ronment [15, 38, 107-109]. Only 10% of the input energy
is utilized to melt the powder, and the remaining is reflected.
The preferred dimensional tolerance cannot be achieved due
to the ultrarapid cooling cycle; thereby, shrinkage may occur
[69, 110]. Moreover, the balling phenomenon occurs due to
raw materials and processing conditions [111] due to irreg-
ularity in the scan track [112]. So, optimizing process
parameters like scanning speed, hatch spacing, and layer
height will solve these adverse effects. Also, the energy den-
sity influences the part quality. The microstructure of the

SLMed part was different from the forged or cast part due
to its complex processing mechanism [113]. While process-
ing through the external addition method on SLM, the final
parts may encounter pores, coarsening of grains, oxidation
due to improper purging of inert gas in the building cham-
ber [106, 114], and crack formation due to unmelted pow-
der. Also, oxide formation cannot be eliminated while
processing aluminium-based composites through SLM
[115]. The final part distortion may happen in SLM and
DED due to residual and thermal stress [116], and it can
be sorted by process optimization [67]. In the AM process,
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TaBLE 6: Consolidation of MC effect on the aluminium-silicon alloys with applications through additive manufacturing.

Characteristics
Category MC Route Process Scanning mode Wettability Rel.nfoircer.nent Energy Purpose Ref.
distribution ~ absorption
Eutec'tl'c TiC EX SLM Islands Good Good Increased Aerospace [101]
aluminium alloy situ
E i . I . o . .
utec'tl'c Tic " SLM Rotation of 67 Good Good Increased Biomedical [102]
aluminium alloy situ
Eutec'tl'c TiC I.EX SLM  Linear raster scan Good Good Increased Microelectronics [58]
aluminium alloy situ
H i . I L .
ypereu tectic Tic SLM ,one Excellent Homogenous  Increased Automotive [91]
aluminium alloy situ bidirectional
Eutecp; TiC ¥n DED  Linear raster scan Good Good Increased Aerosp ace, auto%’notlve, [106]
aluminium alloy situ and biomedical
Automotive, military,
Eutec.tl.c SiC EX SLM Alternating x/y Good Uniform Increased aerospace, .and [95]
aluminium alloy situ raster strategy electronic
encapsulation fields
Eutec'tl'c SiC I.“:X SLM  Single-line tracks Good Uniform Increased  Specialized products  [96]
aluminium alloy situ
Pure aluminium  SiC I.SX SLM Style of str°1p Good Uniform Increased Automotive and [97]
situ hatch (17°) aerospace sectors
H i . E L . . C
ypqegtectlc sic X e Linear Agglomeration  Increased Aerospace applications [98]
aluminium alloy situ  sintering
Eutec.m.: SiC ¥n SLM Alt?maFe XY Better =~ Homogenization Increased Tanlog.lcal [99]
aluminium alloy situ directions application
H i . E . . Marine, ive,
ypereu tectic sic X SLM Series Good Uniform Increased arine, automotive [100]
aluminium alloy situ and aerospace
Eutec.tl.c B,C I.EX SLM Bidirectional Uniform Reasonable R_adlal cplhmators, [66]
aluminium alloy situ lightweight armor
240 1.0
— 220 21740 0.9-
Z 200 =
= <] 183.00 E 084
g 180 2 07
E 160 z
5 & 140 4 5.8 067 05 0.55
23120 2 £ 054 = 0.45
S 5 100 1 9975 98.5 99 S 5 044
@ 1 =]
g 801 3 034
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E 40 7
20 ] 1120 019
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[ Relative Density [ CoF

[ Hardness

FIGURE 7: Maximum values of relative density and hardness.

the reinforcement addition with varying percentages can
affect the solidification behaviour of the matrix composite
[117]. The pool size and melt shape should be controlled
to obtain good quality of the final printed specimen with
specified microstructure and good surface finish [118-120].
The final printed sample can match the service requirements

FiGURE 8: Minimum value of CoF.

based on the selection of hatch spacing, preheating of the
base plate, and contour [121]. Higher preheating tempera-
ture leads to sintering the powder particles with the base
plate [122]. So, optimum preheating provides better control
on balling effect.

Nevertheless, the solution to this effect has not been
addressed. The postprocessing like heat-treatment like



Scanning

O o
5 XIOM)
dero Mixing / Milling

~OXO00

~)
P

Powder Bed

(%6°)

MAM Process

&
>. > Characterization Study

-
Composite Fabrication

Study on mechanical and physical properties

tion, and part distortion
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annealing [123] and T6 (aging followed by solution
strengthening) [124], shot peening [125, 126], and sand-
blasting [127] on aluminjum-based composite may signifi-
cantly influence the physical as well as mechanical proper-
ties of the specimen. Typically, the particles were coarsened,
while heat treatment led to a lower hardness value [128].
Also, it consumes more time and is expensive [129].
Besides, the rejuvenating of nonconsumed powders again
may raise issues like increasing oxygen content [130],
change in morphology, and distribution of particle size
[131]. Thus, proper characterization is required before
using the nonconsumed powders [132, 133]. So, the appro-
priate process optimization and characterization reflect the
characteristics of printed parts. Furthermore, the addition
of reinforcement may decrease the reflectivity of the Al-
Alloy and ease the processability [134] and also, submicron
particles were more effective than micron size in the aspect
of laser absorptivity [135]. But, agglomeration of particles
may occur, which affects the mechanical properties of the
composite [136]. Finally, the Al-TMC composites through
MAM may create innovative changes in vital applications
that require intricate, complex structures along with desir-
able properties. Also, the geometrical and microstructural
features need to be investigated based on specimen orienta-
tion [137, 138]. Secondary reinforcements in Al-alloy may
influence the grain refinement with high strength. The
mechanical strengthening of the composites is possibly
defined by the load-bearing transfer [139], the hall-patch
effect [140], and the Orowan strengthening mechanism
[141, 142]. Moreover, the impact of remaining TMCs as
reinforcement in the aluminium matrix has not been much
addressed, and a specific combination only exists (AISiXX
alloy+X% TiC) apart from SiC and B,C. The study on com-
pressive strength, impact toughness, corrosion resistance,
the outcome of built direction, and consequences of the
subsequent heat treatment process for Al with TMC com-
posites has received little consideration. Figure 9 illustrates
the workflow of composite fabrication (AISil0Mg+TiC)
and related issues involved.

5. Conclusions

This review has discussed many observations found in the
recent research studies, such as aluminium alloys in additive
manufacturing, metal carbides, various metal-based additive
manufacturing processing techniques, the formation of
intermetallic phases, and final properties of the
aluminium-based composite by in situ and ex situ fabrica-
tion. From the review, the critical points were observed as
follows:

(1) The synthesis method of raw material, powder mor-
phology, and reinforcement effect substantially influ-
ences composite fabrication’s microstructure, surface
integrity, and final properties

(2) Overcoming the residual stress and ball effect phe-
nomenon was challenging in composite additive
manufacturing due to the ultracooling rate and inad-
equate linear energy density

(3) Compared to conventionally processed composites,
the additive manufactured composites positively
influence the environment because of the wastage
reduction and low energy consumption

(4) Through metal-based additive manufacturing, pro-
cessing all elements of TMCs is possible through
either consolidation or coating approach for differ-
ent applications

(5) The novel AI-MMC should be developed to acquire a
high-performance composite. Therefore, further
exploration is essential to evaluate the process
parameters, postprocessing, and different properties
in the future
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