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Abstract

Recent technological advances have enabled massively parallel chromatin profiling with single-

cell Assay for Transposase Accessible Chromatin by sequencing (scATAC-seq) in thousands 

of individual cells. Here, we extend these approaches and present ATAC with Select Antigen 

Profiling by sequencing, ASAP-seq, a tool to simultaneously profile accessible chromatin and 

protein levels. Our approach pairs sparse scATAC-seq data with robust detection of hundreds 

of cell surface and intracellular protein markers and optional capture of mitochondrial DNA 

(mtDNA) for clonal tracking, thus concomitantly capturing three distinct modalities in single cells. 

Importantly, ASAP-seq uses a novel bridging approach that repurposes antibody:oligo conjugates 

designed for existing technologies that pair protein measurements with single cell RNA-seq. 

Together with DOGMA-seq, a novel adaptation of our existing CITE-seq method for measuring 

gene activity across the central dogma of gene regulation, we demonstrate the utility of systematic 

multi-omic profiling by revealing coordinated and distinct changes in chromatin, RNA, and 

surface proteins during native hematopoietic differentiation, peripheral blood mononuclear cell 

stimulation, and as a combinatorial decoder and reporter of multiplexed perturbations in primary T 

cells.

INTRODUCTION

The recent explosion of technologies allowing detailed phenotypic measurements of single 

cells in high-throughput has made the dissection of cell types and states in complex tissues 

accessible to most researchers. While measurement of single modalities has been highly 

informative for phenotyping, new techniques that allow detection of multiple modalities of 

information from single cells continue to be developed1–4.

Multi-modal approaches couple sparse comprehensive measurements with more robust 

directed measurements that report on known cell types or states. For example, CITE-seq5,6 

and REAP-seq7 couple scRNA-seq with detection of surface proteins. In these methods, 

oligo-labeled antibodies detect highly abundant and well-characterized surface protein 

markers, which complement the relatively sparse scRNA-seq signal and enable more robust 

cell type discrimination, relating different levels of gene regulation and connecting to a rich 

body of work on phenotypes at the protein level. However, while mRNA and protein are the 

products of gene expression, their detection (or lack thereof) at a snapshot in time do not 

suffice to decipher the underlying regulatory mechanisms at their respective genomic loci.
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The chromatin architecture of a cell is an early phenotypic readout that highlights regulatory 

mechanisms that control some of the earliest steps in gene expression, in instances 

allowing detection of the earliest cellular responses to stimuli or developmental decisions, 

and identification of poised states8. In particular, the Assay for Transposase-Accessible 

Chromatin by sequencing applied to single cells (scATAC-seq) is a recent but widely-used 

method to obtain a genome wide snapshot of chromatin accessibility, signatures of active 

transcription and even transcription factor binding9,10. Several methods have recently 

been developed for the capture of mRNA together with chromatin accessibility in single 

cells and help correlate chromatin accessibility with gene expression, as well as layer 

mRNA expression data on top of sparse ATAC-seq data8,11–13. While having transcript and 

chromatin accessibility data from the same single cells is valuable, the ultimate step of gene 

expression, in most cases, is regulation of protein levels, and much of our understanding 

of cell function is associated with such changes. Moreover, changes to protein levels and 

modifications can happen in ways that are not coupled to transcription and operate at 

fast time scales, thus preceding changes to regulatory mechanisms, such as chromatin 

accessibility. Motivated by the recent demonstration that fixed and permeabilized whole 

cells yield scATAC profiles of comparable quality to traditional fresh nuclear preparations14, 

we sought to combine protein detection with scATAC-seq.

Here, we report ATAC with Select Antigen Profiling by sequencing (ASAP-seq), a 

method that enables robust detection of cell surface and intracellular proteins using oligo-

labeled antibodies together with high-throughput scATAC-seq. ASAP-seq takes advantage 

of existing oligo-labeled antibody reagents used for CITE-seq, Cell Hashing, and related 

technologies, circumventing the need for additional specialized components. Importantly, 

unlike co-assays of RNA and chromatin, where there is a tradeoff between enzymatic steps 

with vastly different requirements, we leverage an approach (as in CITE-seq5,6) that utilizes 

the enzymatic steps of the parent assay to detect multiple modalities, to ensure high quality 

across both. Moreover, ASAP-seq is compatible with recent methods designed to detect 

mtDNA genotypes for lineage tracing and study of mitochondrial diseases14,15 and with the 

quantification of intracellular proteins. To demonstrate the utility of ASAP-seq, we applied 

it to the study of human hematopoiesis, where the combination of single cell chromatin 

accessibility, hundreds of surface marker profiles, and mtDNA-based lineage tracing allowed 

us to resolve bone marrow heterogeneity and composition. Separately, in a model of 

immune cell stimulation, we combined ASAP-seq with CITE-seq to reveal the distinct 

layers of regulation of protein, mRNA levels, and chromatin accessibility–We further apply 

ASAP-seq in a multiplexed perturbation assay in primary T cells, to disentangle chromatin 

and protein phenotypes associated with specific signaling pathways. Finally, we introduce 

DOGMA-seq, a new variant on our existing CITE-seq assay, allowing co-measurement of 

chromatin accessibility, gene expression, and protein from the same cells.

RESULTS

Development and validation of ASAP-seq

To develop ASAP-seq, we built on mtscATAC-seq14, a droplet-based scATAC-seq method 

that jointly profiles chromatin accessibility and mtDNA with high coverage in thousands 

Mimitou et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of single cells. In mtscATAC-seq, the retention of mitochondria in fixed whole cells allows 

their genomes to be tagmented and subsequently sequenced. We reasoned that the fixation 

and permeabilization before Tn5 transposition would also result in the retention of cell 

surface markers, enabling their detection with oligo-conjugated antibodies, as demonstrated 

with CITE-seq and related technologies (Fig. 1a)5–7. To test whether surface marker 

detection is compatible with the mtscATAC-seq workflow, we stained peripheral blood 

mononuclear cells (PBMCs) with fluorophore-labeled antibodies against CD19, CD11c, and 

CD4, and performed flow cytometry to measure fluorophore intensity at subsequent steps 

of the protocol (Extended Data Fig. 1a). As a control for effects of the process on the 

stability of the fluorophore, we concomitantly measured beads with the same antibodies 

immobilized. While permeabilization of fixed cells had a minimal impact on signal intensity, 

the additional 1 hr incubation at 37°C to mimic the transposition step led to a minor 

loss of intensity that was consistent between beads and cells. However, the separation to 

background remained distinct on both cells with high (CD4 T cells) and moderate (CD4 

on monocytes) levels of target proteins, suggesting the workflow to be compatible with 

antibody-based protein detection over a range of protein abundances.

We next devised an approach for protein detection that leverages existing validated reagents 

in broad use. The most parsimonious approach to incorporating protein detection into 

scATAC-seq would be to design antibody:oligo conjugates with sequences complementary 

to the oligos that append cell barcodes to tagmented fragments. However, the large 

existing catalog of commercial antibody:oligo conjugated products designed for scRNA-

seq applications (TotalSeq™ products by BioLegend) motivated us to devise a molecular 

bridging approach, wherein a short oligo added to the reaction mix bridges the interaction 

between the antibody tag and the barcoding bead oligo in droplets (Fig. 1b and Extended 

Data Fig. 1b). The 3’ blocked bridge oligo serves solely as a template for extension of 

the antibody tag during the initial amplification cycles. The extended product acquires the 

sequence necessary to anneal to the bead-derived barcoded oligo and is linearly amplified 

during the subsequent cycles along with accessible chromatin fragments. To allow tag 

molecule counting when TotalSeq™-A (TSA) products are used, we introduced a Unique 

Bridging Identifier (UBI) sequence via the Bridge Oligo for TotalSeq™-A (BOA) (Extended 

Data Fig. 1b). As each antibody-derived oligo can only be bridged once, the UBI serves 

as a proxy for a Unique Molecular Identifier (UMI) and allows individual molecules to be 

counted. Alternate TotalSeq™ formats (e.g., TotalSeq™-B (TSB) that already contain UMI 

sequences16) do not require UBIs in their bridge oligos (Extended Data Fig. 2a).

To benchmark ASAP-seq, we stained a 50:50 mix of human (HEK-293T) and mouse 

(NIH-3T3) cells with TSA human and mouse-specific anti-CD29 antibodies (Supplementary 

Table 1, tab ‘mixed species’), followed by fixation, permeabilization, and transposition 

prior to barcoding in droplets in the presence of 0.5 μmoles of BOA in the reaction mix 

(Methods). Assigning single cells as mouse, human, or multiplet by the number of reads 

mapping to the respective genomes or by tag identity yielded consistent results (Methods), 

demonstrating the specificity of protein detection in this assay (Fig. 1c and Extended Data 

Fig. 1c). In this experiment, two identical barcoding reactions were run in two separate lanes 

to further test tag library preparation with alternate approaches; ‘Pre-SPRI’, where the input 
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for tag indexing is 10% of the purified fragments after emulsion breakage or ‘Post-SPRI’, 

where the input is prepared from the supernatant fraction from the SPRI purification step 

(Methods). In both instances, we observed substantial changes in ATAC fragment or protein 

tag complexity, suggesting that either fraction (or a combination of both) can be used 

to prepare the tag libraries (Extended Data Fig. 1d,e). Nevertheless, despite not seeing 

substantial differences between the two approaches, we opted for the post-SPRI approach 

for all subsequent assays to retain as many molecules as possible in the fraction used for the 

generation of ATAC-seq libraries.

To identify differentially expressed proteins and perform additional technical benchmarking 

and optimization, we applied ASAP-seq to PBMCs stained with a TBNK panel (BioLegend, 

Supplementary Table 1, tab ‘TBNK’) that assesses surface expression of 9 major immune 

cell markers. Concomitantly, we ran a matched unstained sample to assess the impact 

of antibody tags on scATAC-seq data quality. The TSS score and chromatin fragment 

complexity were virtually identical between the two runs, confirming that the staining and 

barcoding of protein tags did not impact scATAC quality (Fig. 1d and Extended Data Fig. 

1f). Reassuringly, projection of antibody tag counts on cell types resolved and annotated by 

their chromatin accessibility profiles shows expected patterns of expression of canonical cell 

type markers, including mutual exclusivity of CD4 and CD8 expression in T cells, CD16 

in NK cells and a subset of monocytes, and CD14 in a non-overlapping set of monocytes 

(Fig. 1e and Extended Data Fig. 1h). Notably, in most cases the cluster specificity of 

antibody tag counts aligns with the chromatin activity score of the corresponding gene locus, 

with markedly increased sensitivity (Fig. 1e and Extended Data Fig. 1h,i,j). As fixation 

and mild permeabilization prior to droplet-based scATAC-seq retain mitochondria14, we 

further recover 31% mitochondrial reads in this experiment, allowing us to profile mtDNA 

mutations jointly with protein levels and chromatin accessibility in single cells (Fig. 1f).

Finally, we further expand the utility of ASAP-seq by incorporating Cell Hashing17,18. In 

Cell Hashing17,18 and related methods19–22, sample multiplexing is enabled by barcoded 

oligo tags (hashtags) that are attached by a variety of means to all cells of a specific sample. 

Joint barcoding of hashtags with the cell’s transcriptome, reveals both the sample of origin 

for individual cells and the presence of cross-sample multiplets (with >1 hashtag above 

threshold). TSA hashing reagents are compatible with the ASAP-seq bridging strategy, and 

are barcoded in droplets together with protein tags and accessible chromatin fragments, 

before recovery using a separate PCR indexing strategy (Methods). To demonstrate 

sample multiplexing and doublet detection (enabling overloading and thus more efficient 

experiments), we stained PBMCs with 4 TSA hashing antibodies (Supplementary Table 1, 

tab ‘Hashing’) and recovered 13,772 cells that were successfully demultiplexed in 4 distinct 

populations, with 1,396 detected doublets, consistent with the expected number of doublets 

of 1,138 derived from a Poisson-based model (Extended Data Fig. 1g).

ASAP-seq is a modular toolkit that enables sensitive protein capture irrespective of 
antibody conjugate or lysis conditions used

We next determined if UBIs, used in TSA family antibody:oligo conjugates, perform 

comparably to UMIs (in TSB products). UBIs are copied off of the bridge oligos to acquire a 
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near-unique sequence string for counting purposes. We designed 10 nt UBIs with complexity 

approaching or exceeding the UMI complexity commonly used in scRNA-seq23,24, but 

note that the length and complexity of UBIs can be altered for different applications. To 

formally compare UMI vs. UBI quantification of protein tags, we simultaneously co-stained 

PBMCs with a 1:1 ratio of TSA (UBI-based) and TSB (UMI-based) TBNK panel (Fig. 

2a, Supplementary Table 1, tab ‘TBNK’). During the barcoding step, both bridge oligos 

(BOA and BOB) were added to the reaction mix in equal concentrations to bridge their 

corresponding tags (bridging schemes shown in Extended Data Fig. 1b and Extended Data 

Fig. 2a). UBI-collapsed TSA counts show good correlation with UMI-collapsed TSB counts 

across all 9 antibodies (Pearson’s r=0.44-0.93, depending on antibody), suggesting that the 

UBI can provide a reliable proxy for a UMI (Fig. 2b).

While ASAP-seq directly extends mtscATAC-seq, yielding comparable retention of mtDNA 

reads, we asked whether protein abundance and accessible chromatin could be robustly 

measured without concomitant mtDNA enrichment, which may be preferred in specific 

tissue types or experimental settings. To this end, we compared the original OMNI-ATAC-

seq lysis protocol previously shown to deplete mtDNA25, and currently recommended for 

the 10x Genomics scATAC-seq assay (Methods), to the effects of lysis conditions for 

mtscATAC-seq14 . We fixed PBMCs stained with the TBNK panel (Fig. 2a), split them in 

two aliquots, and lysed with the mild mtscATAC-seq conditions described thus far (referred 

to as low loss lysis, LLL) or with the stronger OMNI conditions including digitonin and 

Tween-20 in the lysis buffer. While the lysis detergent composition had a dramatic effect 

on mtDNA retention (~18x drop in median mtDNA fragments per cell; Fig. 2c), it had 

little to no effect on the distribution of UBI or UMI tag counts (Fig. 2d and Extended 

Data Fig. 2c). Moreover, the correlations between UBI- and UMI-collapsed tag counts under 

stronger permeabilization are comparable to those in milder lysis conditions (Extended 

Data Fig. 2b, Pearson’s r=0.38-0.96), albeit with slight improvement for most antibodies. 

Overall, we conclude that the cell surface marker retention in the ASAP-seq workflow 

allows reliable measurement, irrespective of antibody:oligo reagent type or lysis conditions 

used, and without compromising ATAC-seq data (Extended Data Fig. 2d,e,f).

ASAP-seq reveals cell state and cell lineage in human bone marrow

The multimodal readout of ASAP-seq uniquely enables profiling of epigenomic, proteomic, 

and clonal features (through mtDNA) of cells from native human tissue in a high-throughput 

manner. We applied ASAP-seq to profile bone marrow mononuclear cells from a healthy 

24-year old donor, using a TSA antibody panel (n=242 markers, Supplementary Table 1, 

tab ‘BM’) and 6 hashing antibodies to increase cell throughput. We permeabilized cells 

under LLL conditions to retain mtDNA fragments and barcoded in parallel with accessible 

chromatin fragments and protein tags (Fig. 3a). We retained 10,928 high-quality cells based 

on a combination of protein and chromatin-based quality control metrics (Fig. 3a; Methods). 

Dimensionality reduction and clustering based on single-cell chromatin accessibility 

profiles partitioned the cells into 21 distinct clusters spanning the major hematopoietic 

lineages, including progenitor and more differentiated lymphoid and myeloid cells (Fig. 3b; 

Supplementary Table 2). Notably, we did not remove predicted cell doublets as defined 

based on cellular markers, because these were enriched for monocytic progenitors, a cell 
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state/type which was present in the donor’s bone marrow at the expected frequencies 

(Extended Data Fig. 3a,b; Methods) and because there was no support to remove them from 

hashtag collisions. This result reinforces the utilization of orthogonal technologies to detect 

cell doublets, such as hashtag antibodies shown here, to limit erroneous inferences about 

real or synthetic cell populations in complex tissue types, while simultaneously increasing 

throughput.

To identify protein markers associated with chromatin accessibility-derived cell subsets, 

we utilized and interpreted a Random Forest model trained on cell cluster labels using 

the scaled antibody tag abundances as previously implemented in CiteFuse26 (Methods). 

The model automatically rediscovered many widely-used surface markers for discriminating 

cell types in hematopoietic lineages, confirming its validity, including CD3, CD4, and 

CD8 in lymphoid cells, CD371 (CLEC12A) and CD2 in myeloid cells, CD71 (TFRC) 

in erythroid cells, and CD38 in more mature progenitor cells (Fig. 3c,d; Extended Data 

Fig. 3c). Similarly, transcription factor activities correlate with surface marker abundance 

as expected by cell type, for example, GATA1 in erythroid cells and CEBPA in myeloid 

progenitors and monocytes (Extended Data Fig. 3d). To further utilize the protein data, we 

mapped the ASAP-seq bone marrow cells to a CITE-seq bone marrow reference built using 

~30K cells stained with a 25-antibody panel27. After transferring labels, we compared the 

cell populations defined by ATAC-seq data only and projected protein data only, revealing 

that certain cell types poorly resolved in accessible chromatin space benefit from the 

additional protein readout (Extended Data Fig. 3e). Collectively, these analyses confirm 

that the addition of protein information to chromatin accessibility in ASAP-seq aids in 

delineating cell types in complex tissue.

Next, we used the concomitant measurement of mtDNA genotypes for the clonal tracing 

of native hematopoietic cells14,28,29 within the human bone marrow compartment. Using 

mgatk14 we detected 99 heteroplasmic mtDNA mutations, which were enriched for classes 

of nucleotide substitutions consistent with previous reports14 (Extended Data Fig. 3d). 

Hypothesizing that some somatic mutations may be clonally associated with a specific 

lineage, we utilized cell subset annotations to examine for such putative (lineage) bias, 

thereby revealing insights into the functional heterogeneity of hematopoietic clones during 

blood production (Fig. 3e; Methods). Interestingly, somatic mutations such as 13069G>A 

and 13711G>A were relatively depleted in cells from the erythroid lineage (Fig. 3e,f and 

Extended Data Fig. 3e,f). Functional annotation of these mutations showed no predicted 

loss or gain of function, suggesting these somatic mtDNA mutations may mark lineage-

restricted clones. Furthermore, one highly heteroplasmic variant, 16260C>T, was present at 

~40% heteroplasmy in the population, more than tenfold greater than any other detected 

somatic mutation, and yet was evenly distributed across the different hematopoietic lineages 

(Fig. 3e,f). Analysis of the donor mitochondrial haplotype suggested that this mutation 

indeed arose somatically, potentially presenting an early event during developmental 

hematopoiesis30 or alternatively, representing a population that clonally expanded during 

adulthood. While further studies will be needed to identify the molecular drivers underlying 

these dynamics, our observations support the utility of ASAP-seq to uncover somatic 

mtDNA variants and putative functional features of human hematopoiesis at single cell 

resolution.
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Dynamics of surface proteins during differentiation

While distinct single cell genomic measurements have revealed the continuous nature 

of hematopoietic differentiation31,32, we hypothesized that the integration of accessible 

chromatin and protein tags via ASAP-seq could highlight an additional and distinct layer of 

surface protein marker dynamics during lineage commitment and differentiation, a process 

that has been traditionally characterized using a more limited set of markers. Utilizing 

a semi-supervised pseudotime approach, we charted trajectories from CD34+CD38− 

multipotential hematopoietic stem and progenitor cells (HSPCs) to differentiated monocytes 

(Fig. 3g) and erythroblasts (Extended Data Fig. 3g). While the protein expression of 

markers associated with multi-potent and other lineage progenitor cells, such as CD34 and 

CD49d (ITGA4), was down-regulated early in the trajectory, monocyte markers such as 

CD64 (FCGR1A) and CD31 (PECAM1) were quickly upregulated and persisted throughout 

differentiation (Fig. 3h; Supplementary Table 3). Conversely, markers such as CD11c 

(ITGAX) and CD371 (CLEC12A) were only upregulated toward the end of the trajectory. 

Though limited by cell number, we observed similar patterns of dynamic surface marker 

expression throughout erythroid differentiation (Extended Data Fig. 3h). These results 

demonstrate that ASAP-seq, as a multimodal assay with a large number of measured 

markers, can provide a substantially deeper profile of cell marker diversity in complex 

tissues than conventional flow and mass cytometry approaches33.

As ASAP-seq concomitantly measured accessible chromatin for these cells, including 

at the promoters of genes encoding these surface markers, we sought to examine how 

these modalities may be intertwined during differentiation. Among the proteins that were 

gained after commitment from the progenitor cluster, in the vast majority of cases, the 

increase in expression during monocyte differentiation was preceded by a gain of accessible 

chromatin at associated loci (Fig. 3i and Extended Data Fig. 3i; Methods). A similar 

pattern was observed, albeit with fewer markers, in erythroid differentiation (Extended 

Data Fig. 3h,j). This result is consistent with a model where chromatin accessibility is 

the ‘first mover’ during differentiation and the resultant changes in transcription prime 

cells for differentiation8. Ultimately, we note that the disparity between binary chromatin 

accessibility versus accumulation of protein for single cells requires careful consideration 

of these modalities for understanding regulatory models. Taken together, our analyses 

showcase the versatility of ASAP-seq to measure multiple modalities of cell state alongside 

cell lineage, enabling an additional and distinct tool in the study of complex human tissues.

ASAP-seq and CITE-seq reveal three levels of genetic regulation following stimulation

ASAP-seq and CITE-seq are companion assays that profile the epigenomic or transcriptional 

landscapes of single cells, respectively, together with the same highly multiplexed protein 

measurements. We reasoned that the shared protein features can help connect scRNA-

seq and scATAC-seq datasets. We thus applied both ASAP-seq and CITE-seq to profile 

epigenomic, transcriptomic, and proteomic changes following T cell stimulation. We split a 

single PBMC sample into two aliquots, one stimulated with tetrameric anti-CD3/CD28 in 

the presence of IL-2 for 16 hrs, while the other was cultured in the absence of stimulation 

(control) (Methods), followed by staining with a TSA antibody panel of n=227 antibodies 

(Supplementary Table 1, tab ‘PBMC’). Each of the samples was then split to run ASAP-seq 
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and CITE-seq in parallel (Fig. 4a). We combined both the RNA and ATAC profiles from the 

control and stimulated cells, primarily revealing stimulation-dependent changes within the T 

cell population (Fig. 4b,c; Methods).

As protein abundances were determined in the same population of cells, we directly 

compared surface protein measurements inferred by CITE-seq and ASAP-seq. As expected, 

we observed a decrease (~1.7-2x) in the tag molecule complexity in ASAP-seq compared 

to CITE-seq, likely due to the additional processing necessary in ASAP-seq and consistent 

with our initial flow cytometry tests of ASAP-seq conditions (Extended Data Fig. 4a, 1a; 

Methods). However, the two methods were highly concordant in the mean signal detected 

for variable proteins within each cluster (Extended Data Fig. 4a, lower panels), as well 

as the change in antibody signal stimulation across the panel (Pearson’s r=0.95, Fig. 

4d). Importantly, we did not observe specific loss of any markers in ASAP-seq relative 

to CITE-seq, indicating that the cell processing-induced loss of sensitivity is a general 

phenomenon that does not specifically affect a subset of markers. Notably, both assays 

detected substantial upregulation of canonical T cell activation marks, such as CD69, 

CD25, CD71 (TFRC), and CD278 (ICOS)34–36, at both the pseudobulk (Fig. 4d) and 

single-cell (Extended Data Fig. 4b,c) level. Conversely, CD3 (CD3E; protein log2FC=−3.5 

and −4.5; p<2.2x10−16, Wilcoxon rank sum test for ASAP-seq protein abundance), CD28 

(log2FC=−2.5 p<2.2x10−16), and TCR α/β (log2FC=−2.9; p<2.2x10−16) antibody counts 

were noticeably reduced upon stimulation (Fig. 4d), likely due to internalization of the 

engaged and non-engaged receptors upon triggering of the TCR complex37. An antibody 

prioritization approach utilizing the Random Forest model26 for ASAP-seq data (Methods) 

verified that these markers were most associated with the stimulation at single cell resolution 

(Extended Data Fig. 4d). Notably, other canonical lineage markers, such as CD4 and CD56 

(NCAM1), were prioritized in distinguishing cell states inferred by chromatin accessibility 

clustering irrespective of stimulation. Finally, embedding cells by protein abundance profiles 

intermixed cells profiled by the two assays, albeit with reduced separation of the activated 

T cell state, likely due to the relatively modest number of dynamically responding proteins 

compared to accessibility peaks or transcripts (Fig. 4e and Extended Data Fig. 4e–g). Taken 

together, these analyses and results indicate that despite a lower tag complexity, ASAP-seq 

is similarly capable of capturing protein abundance associated with cell state and dynamic 

changes as measured with CITE-seq.

To characterize the overall cellular response to stimulation, we examined the dynamic 

changes in accessible chromatin, gene expression, and protein abundance in stimulated 

vs. control T cells. At consistent magnitude and statistical significance thresholds, we 

detected 8,326 differential peaks, 943 differentially expressed genes, and 71 differentially 

expressed surface proteins, consistent with previous unimodal analyses largely from bulk 

experiments38,39 (Fig. 4e; Methods). Of the 84 cases where all three modalities were 

detected in T cells, we observed heterogeneous responses in gene expression, chromatin 

accessibility, and surface protein abundance (Fig. 4f; Supplementary Table 4), with 

chromatin and protein changes being the least concordant (Fig. 4g). Specifically, CD3 

(CD3E) and CD28 downregulation along with CD69 upregulation are striking on the protein 

level, evident transcriptomically only for CD3E and CD69, but barely detectable at the 

chromatin accessibility level (Fig. 4h,i and Extended Data Fig. 4h). This can be due to true 
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invariance in chromatin accessibility, such that gene expression is temporarily repressed 

without loss of accessibility, or to technical challenges, for example given the higher 

sensitivity in capturing a modality with higher copy number (protein), as exemplified by 

CD4 and CD279 (PDCD1 or PD-1) (Fig. 4j and Extended Data Fig. 4i). On the other hand, 

we observed RNA-specific changes in CD52 where chromatin accessibility and protein 

abundance were relatively constant pre/post stimulation (Extended Data Fig. 4j). Together, 

these analyses and anecdotes highlight the utility of combining ASAP-seq and CITE-seq to 

distinguish changes at three levels of gene regulation.

Because we activated T cells in a multicellular PBMC culture, we next leveraged the 

single-cell nature of our data to identify secondary effects in other cell subsets. In particular, 

we examined corresponding changes across the three modalities in B cells, focusing on a set 

of 103 well-expressed proteins (Extended Data Fig. 4k). While many changes mirrored those 

of T cells (likely due to low-frequency doublets in our annotated B cell clusters; Methods), 

we highlight two markers, CD25 (IL2RA) and CD184 (CXCR4), where RNA and protein, 

but less notably chromatin accessibility, were affected, either in direct response to IL-2 or 

as a secondary response to T cell stimulation (Extended Data Fig. 4l,m). Notably, CD25+ B 

cells have been reported to possess enhanced antigen presentation capabilities, which may 

in turn facilitate enhanced T cell responses40. Furthermore, prior work has indicated that 

IL-21 (produced by activated T cells) accelerates CXCR4 internalization in B cells, which 

may be important for the regulation of B cell homeostasis41,42. As the loss of CXCR4 

expression has traditionally been observed in germinal centers41,42, our inclusive antibody 

panels enable the observation of such changes across a multitude of cell states.

Taken together, our CD3/CD28 stimulation system directly highlights how the single-cell, 

three-tier characterization by ASAP-seq and CITE-seq can dissect correlated and discordant 

changes in complex tissue settings.

DOGMA-seq enables lineage-aware measurements of chromatin accessibility, RNA and 
protein.

While this work was under review, 10x Genomics released the new “Multiome” product, a 

kit designed to concomitantly capture both the transcriptome and chromatin accessibility 

from the same cells. In the Multiome product, the capture of mRNA molecules and 

accessible chromatin fragments is mediated by two independent sets of barcoded oligos. 

We recognized that the mechanism of protein barcode detection used in our previously-

described CITE-seq method5, via the barcoded poly-T primer, would be compatible with 

the Multiome product, and that our efforts to preserve cell surface antigens and mtDNA 

described for ASAP-seq would be transferable to this kit. The ability to capture readouts of 

gene activity from chromatin accessibility, to mRNA expression, to protein levels spans the 

central dogma of gene regulation, leading us to refer to this new method as DOGMA-seq 

(Methods). To benchmark the method we repeated the PBMC stimulation experiment, as 

described in Fig. 4, wherein cells stained with a TotalSeqA panel (n=210) were subsequently 

processed under two permeabilization conditions. The first is based on the mtDNA-retaining 

LLL preparation as performed in ASAP-seq with reduced amount of fixative, and the 

second is based on a recently pre-printed condition using digitonin (DIG) permeabilization 
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to allow detection of surface proteins alongside chromatin accessibility43 (Fig. 5a). Using 

either preparation, we observed similar quality control metrics for TSS enrichment and 

genes detected compared to the standalone Multiome kit (Fig. 5b,e and Extended Data Fig. 

5a,d), with the co-detection of mtDNA reads and protein tags being uniquely enabled by 

DOGMA-seq (Fig. 5d,f and Extended Data Fig. 5c,e). While LLL and digitonin treatment 

led to similar reduced accessible chromatin library complexity (Fig. 5c and Extended 

Data Fig. 5b), the overall complexity was comparable to what we had observed for 

mtscATAC-seq and ASAP-seq (Extended Data Fig. 1f). We emphasize that the digitonin 

and LLL treatments display differences with respect to mtDNA yield in ATAC libraries 

and complexity in protein tag libraries, which we attribute to the milder permeabilization 

properties of digitonin, not lysing mitochondria44 and improving preservation of the surface 

membrane and associated proteins (Fig. 5d,f and Extended Data Fig. 5c,e). As mitochondria 

in digitonin-treated cells are ultimately lysed after droplet generation, we also observe a 

higher fraction of mtRNA, which are otherwise already lost following LLL treatment and 

washes (Extended Data Fig. 5f). This is further supported by the mitochondria-dependent 

increase in fraction of UMIs mapping to exons when using the digitonin preparation 

(Extended Data Fig. 5g,h).

Having established the robust co-detection of these modalities in single cells, we sought to 

chart the biological variation in single-cells across the three main modalities. To achieve 

this, we extended the recently described Weighted Nearest Neighbor (WNN) approach27 to 

handle three or more assays (Methods). Focusing on the LLL-DOGMA data, we performed 

three modality WNN (3WNN), yielding 25 clusters, including activated T cell clusters that 

were corroborated by a healthy PBMC reference projection (Fig. 5g, h). To chart the relative 

contributions of each modality on the dimension reduction and clustering, we visualized 

the relative modality contribution weight from the 3WNN clustering (Fig. 5i), observing 

a strong contribution from the chromatin accessibility component in a subpopulation of 

naive CD4 and CD8 T cells. We further observed a protein marker driven T-cell cluster 

(cluster 17) that was delineated by CD138 (Extended Data Fig. 5i), which may mark 

an underappreciated yet functional population of peripheral T-cells45 uncovered by our 

multimodal approach. Further analyses indicated that DOGMA-seq showed sensitivity in 

detecting the molecular changes in all three modalities during the stimulation, both at 

specific loci (Extended Data Fig. 5j) and globally via module scores (Fig. 5j) derived from 

our previous experiment (Fig. 4; Methods). As another specific example, our experiment 

verified the distinct isoforms of CD45 that can only be delimited via our additional surface 

protein readout (Fig. 5k). Furthermore, we compared three variations of WNN by holding 

out each of the accessible chromatin, transcriptome, and surface protein measurements 

(Extended Data Fig. 5k), nothing that the CD138+ T cell cluster (cluster 17) was not 

recovered in the absence of protein information. Overall, these analyses demonstrate the 

utility of all three modalities in delineating cell states in our experiment.

We next sought to characterize a fourth modality from the DOGMA-seq derived mtDNA 

genotypes captured with the LLL condition. Our results verified an approximately uniform 

coverage across the mitochondrial genome from this assay and a slight elevation of 

mean coverage in the stimulated cells (Extended Data Fig. 5l), consistent with increased 

mitochondrial biogenesis during T cell activation46. Application of mgatk14 revealed 106 
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heteroplasmic mutations from these cells (Fig. 5l), including an enrichment of specific 

nucleotide substitutions (Extended Data Fig. 5m) as previously observed from our bone-

marrow ASAP-seq experiment (Fig. 3). Of note, we observed 13 variants with evidence of 

clonal lineage bias (Kruskal Wallis adjusted p-value < 0.01), including m.10761T>C that 

was present in a putative sub-clone of largely gamma/delta (γ/δ) and mucosal-associated 

invariant T (MAIT) cells (Fig. 5m). We note that any overall changes in mutational 

heteroplasmy between the stimulation and control did not significantly deviate from random 

chance (Kolmogorov–Smirnov Test p = 0.83), consistent with the short culture time limiting 

any significant clonal expansion (Extended Data Fig. 5n).

Finally, application of 3WNN to DIG-DOGMA and LLL-DOGMA together verified 

that the two approaches could be analyzed concomitantly with a clear preservation of 

biological signal (Extended Data Fig. 5o). Thus, while our DOGMA-seq approach yields 

an unprecedented breadth of measurements from single cells at scalable throughput, new 

computational innovations, such as 3WNN, will be needed to appreciate the full biological 

complexity from these types of rich multimodal data. For example, current methods of 

determining peak to gene linkages revealed largely concordant associations between either 

the transcriptome or the surface protein modality at loci where both were confidently 

measured (Extended Data Fig. 5p; see Methods). Taken together, our results show that our 

strategy of extending the number of distinct measurements from the Multiome kit facilitates 

the interrogation of biological systems with greater nuance and provides a diversity of 

readouts that may be tweaked by small adjustments to the experimental workflow.

Multiplexed CRISPR perturbations in primary T cells

As the benchmarking of our new approaches revealed distinct chromatin and protein changes 

underlying normal T cell activation, we sought to refine some of the potential underlying 

mechanisms by targeted perturbations via an arrayed CRISPR/Cas9 screening strategy in 

primary human cells. To this end, we purified naive human CD4+ T cells from peripheral 

blood of three healthy donors, pooled and stimulated them with anti-CD3/CD28 beads for 

72 hours. After four days of resting, we transfected cells by electroporation with Cas9 

protein individually complexed with gRNAs targeting CD4, ZAP70, NFKB2 (2 gRNAs 

per gene), CD3E, CD3E+CD4 (dKO), or one of two non-targeting controls (NTCs; Fig. 

6a)47,48. Following electroporation, cells were rested for an additional 7 days in the presence 

of IL-2 before re-stimulation with anti-CD3/CD28 beads for another 72 hours (Extended 

Data Fig. 6a). We multiplexed each of the ten perturbation conditions post-stimulation 

using a unique combination of two TSA hashing antibodies as a surrogate for gRNA 

identities and then stained the cells with an antibody panel (n = 37) before downstream 

processing by the ASAP-seq workflow (Supplementary Table 1, tabs ‘hashing’ and 
‘perturbation’; Supplementary Table 5). Demultiplexing by hashtag reads from perturbed 

cells enabled high-confidence identification of 5,825 single perturbed cells approximately 

evenly distributed across all perturbation conditions with a median yield of 1.47 × 104 

fragments mapping to the nuclear genome (Extended Data Fig. 6b).

Cells perturbed by gRNAs targeting critical regulators of TCR signal transduction (CD3E 
and ZAP70) had similar chromatin accessibility profiles and clustered together (Fig. 6b). 
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Moreover, these cells largely expressed protein markers characteristic of a resting state, such 

as CD197 (CCR7) and CD62L (SELL), indicating a profound defect in TCR stimulation 

response (Fig. 6c and Extended Data Fig. 6d). In contrast, cells with non-targeting (NTC) 

gRNAs or with gRNAs targeting CD4 and NFKB2 clustered together and displayed high 

levels of surface protein expression for classical T cell activation markers such as CD25, 

CD69, CD137 (TNFRSF9) and CD279 (PDCD1 or PD-1), indicating active TCR signaling. 

Importantly, only cells with gRNAs targeting CD4 exhibited substantial reduction in CD4 

surface protein expression, further validating the robustness of the workflow and reliability 

of the assay (Fig. 6c and Extended Data Fig. 6c).

Next, we refined our findings from our PBMC stimulation experiments by assessing 

protein expression impacted by each gRNA perturbation upon re-stimulation. In line with 

our expectations, (Fig. 5d,h), ZAP70-deficient cells exhibited increased expression of 

TCRα/β and CD3E (Fig. 6c), demonstrating that downstream TCR signaling is necessary 

to mediate downregulation of these molecules. TCRα/β expression was similarly absent 

in CD3E-perturbed cells, in agreement with its reliance on the CD3 complex for proper 

surface localization49. By contrast, CD28 expression was only marginally detected across all 

perturbations, suggesting that CD28 signaling alone is sufficient for its internalization from 

the surface. Consistent with its known role as an inducible co-stimulatory molecule50,51, 

we also found that CD278 (ICOS) expression could be promoted and sustained with 

intact CD28 signaling, independent of effective CD3E stimulation (Fig. 6c). Together, these 

analyses verify the utility of ASAP-seq in revealing how targeted gene manipulation affects 

protein expression changes in activated cell states.

We next inferred changes in gRNA-dependent transcription factor activities by quantifying 

accessible transcription factor motif deviations using chromVAR52. We found that gRNAs 

targeting the same gene had similar predicted effects, despite varying targeting efficiencies 

(revealed by discrepancies between hashtag-defined perturbation identities and cellular 

phenotypes, consistent with variable guide editing efficiencies as quantified by next-

generation sequencing) and donor origin (Fig. 6d–f and Extended Data Fig. 6e–g). As 

expected, in comparison to NTC cells, depletion of CD3E resulted in a defective response 

to TCR re-stimulation and significantly decreased accessibility in regions containing motifs 

of Activator Protein-1 (AP-1) transcription factor family proteins such as c-JUN and BATF 

(median chromVAR accessibility loss, 10.24; FDR < 0.0001; chromVAR accessibility loss 

6.96; FDR < 0.0001, respectively). Similarly, gRNAs targeting ZAP70, an immediate kinase 

effector of TCR signaling, displayed a modest decrease in AP-1 family motif accessibility, 

but the effect was more bimodal possibly due to a delayed effect or less efficient editing in 

some cells. Additional altered transcription factor motifs in CD3E- and ZAP70-targeted cells 

included NFAT family transcription factors, consistent with their crucial roles in chromatin 

remodeling and transcriptional regulation following TCR activation53,54. Interestingly, 

disruption of NFKB2 led to an increase of accessibility for NFKB family motifs, which 

could be reflective of competitive dimerization of p50 and p52 for common binding 

partners RELA and RELB (Fig. 6d and Extended Data Fig. 6f)55. These results demonstrate 

that the multi-modal ASAP-seq readouts can successfully resolve stimulation-responsive 

transcription factor-chromatin interactions in the context of genetic perturbations.
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While an existing method that also pairs measurements of perturbations and ATAC-seq 

profiles in single cells has enabled the dissection of molecular machinery governing cell 

state56, this existing approach yields low cell numbers that limits observations. Conversely, 

our approach uniquely allows queries of how specific chromatin changes may relate to 

changes in protein expression. To examine this, we first compared accessible chromatin 

scores with concomitant surface protein profiling across each perturbation condition for 

22 individual gene loci ([Supplementary Table 5). Overall, perturbation-induced changes 

in surface protein expression were correlated with changes in chromatin status (r = 0.57 

in surface proteins not targeted by a perturbation and r = 0.70 when further excluding 

CD69; Fig. 6g,h). For example, many stimulation-responsive genes such as CD25, CD134 

(TNFRSF4), and CD279 (PDCD1 or PD-1) were downregulated in both protein expression 

and chromatin accessibility in CD3E- and ZAP70-targeted cells (when compared to NTC 

cells). In contrast, CD69 gene accessibility was slightly increased with a significant decrease 

in surface protein levels. Overall, these dynamic changes in our perturbation system 

mirrored our results in our previous stimulation system (Fig. 4,5). Interestingly, we observed 

a more pronounced coordination between changes in protein expression and gene activity for 

CD357 (TNFRSF18) and CD366 (HAVCR2; CLR-normalized mean protein tag difference 

of 0.84 and 0.66, respectively, between CD3E-targeted cells and NTC; Extended Data Fig. 

6h). This was not evident in our ASAP-seq PBMC stimulation experiment, where changes 

in CD357 and CD366 protein levels were only modest, despite increased accessibility at 

associated stimulation-responsive enhancers (CLR-normalized mean protein tag difference 

of 0.18 and 0.17, respectively, between CD4 T cell stimulation and control), likely due to the 

shorter, 16-hour stimulation period.

Finally, as recent efforts in fine-mapping cis-regulatory elements by CRISPR screening have 

enhanced the capacity to uncover functional regulatory elements in different contexts57–60, 

we reasoned that our perturbation screening approach coupled with ASAP-seq could 

offer similar biological insights in identifying stimulation-responsive accessible chromatin 

regions. Examining pseudo-bulk gRNA-associated ATAC signal tracks at the IL2RA 
locus, we found strong depletion of chromatin accessibility in a number of regions with 

a concomitant decrease in the expression of CD25 (IL2RA) protein for cells targeted 

by gRNAs against CD3E and ZAP70, suggesting a prerequisite of TCR stimulation in 

the activation of these putative enhancers (Fig. 6i). These impacted enhancers largely 

overlapped the IL2RA CRISPRa-responsive elements (CaREs) that have been previously 

characterized by functional screening59. In particular, we observed marked accessibility 

changes overlapping CaRE4, which has been validated as a TCR stimulation-responsive 

enhancer for IL2RA. Conversely, CaRE3, which has recently been labeled as a Treg-specific 

enhancer, was indeed relatively static in our system61. Moreover, we observed a decrease 

in CD25 expression in cells perturbed by gRNAs targeting NFKB2, despite relatively 

unchanged chromatin accessibility and the presence of compatible NFKB2 DNA binding 

motifs within regulatory regions. These results suggest that while NFKB2 does not actively 

regulate local chromatin accessibility at this locus, it may still play a role in coordinating and 

maintaining CD25 expression in activated T cells. Taken together, our integrated approach 

enabled by the multimodal readouts of ASAP-seq allows for unbiased discovery of context-

dependent coding and non-coding gene regulation modules.
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ASAP-seq enables the detection of intracellular proteins

We hypothesized that the fixation and permeabilization steps inherent in the ASAP-seq 

workflow would provide an opportunity to also detect intracellular epitopes, which have 

been previously inaccessible in high-throughput methods combining protein detection with 

scRNA-seq5–7. To examine this, we stained PBMCs in two steps, for which we used 

different conjugate families for extracellular and intracellular markers to allow independent 

amplification of the two tag libraries and tuning of sequencing depth for the two classes of 

proteins in the event of differences in tag recovery. We labeled cells with the TSA TBNK 

panel comprising extracellular surface markers, followed by fixation, permeabilization 

and staining with three TSB antibodies directed against intracellular epitopes, ZAP70, 

Perforin (PRF1), and Granzyme B (GZMB), before transposition and barcoding (Fig. 7a, 

Supplementary Table 1, tab ‘intracellular’). Accessible chromatin profile-based clustering 

(Fig. 7b) and distribution of protein tags for extracellular markers within these clusters 

(Fig. 7c) was consistent with previous experiments and corresponding gene activity scores 

(Extended Data Fig. 1i,j and Extended Data Fig. 7a,b), verifying that the detection of these 

modalities remains robust to the additional intracellular staining step.

Examining the distribution of protein tags for the intracellular proteins, we observed 

consistent expression as expected in the corresponding cell populations, with ZAP70 present 

in activated NK and T cells (CD4 and CD8), and Perforin and Granzyme B most prominent 

in natural killer (NK) cells and a subset of cytotoxic CD8+ T cells (Fig. 7c,d). Our observed 

intracellular abundances were indeed cell-type specific and further correlated with gene 

activity scores, ultimately validating the on-target activity for all three tested intracellular 

markers (Fig. 7c,d and Extended Data Fig. 7a,b).

To further assess the specificity of the intracellular staining in ASAP-seq, we leveraged 

our multiplexed perturbation platform to provide validation by targeted gene knockouts 

in primary human CD4 T cells. We generated targeted perturbations for CD4, CD3E, 
ZAP70, CD28, MKI67, CTLA4, CD69, CD45, PDCD1, IFNG (2 gRNAs per gene) with 

two non-targeting and two non-stimulated controls (Extended Data Fig. 7c,d). We stained 

cells with perturbation encoding combinations of hashing reagents and subsequently, after 

pooling, with a TSA antibody panel (n = 53) directed against surface epitopes. We then fixed 

and permeabilized the cells and performed a second staining with TSB antibodies including 

intracellular CD152 (CTLA4) and nuclear Ki-67 (MKI67), both known to be upregulated 

upon successful TCR activation (Supplementary Table 1, tabs ‘hashing’, ‘perturbation’ 
and ‘intracellular’)62,63. After demultiplexing using hashtag reads, we identified six 

scATAC-seq clusters using the Louvain modularity method and visualized 15,395 single-cell 

profiles with UMAP (Fig. 7e).

Consistent with its well-established role as a marker for cellular proliferation, Ki-67 protein 

expression was highly upregulated in stimulated cells (Fig. 7f)63. This was not observed 

in cells with perturbed TCR signaling (containing gRNAs directed against CD3E) and 

non-stimulated control cells. Separate measurements of CD152 (CTLA4) pre-and post 

permeabilization revealed substantial upregulation of intracellular CD152 in TCR signaling-

competent cells (Fig. 7f). For cell surface-localized CD152, we observed a sparse signal 
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that lacked the dynamic range observed in its intracellular staining counterpart, consistent 

with previous reports on CD152 trafficking and localization (Fig. 7f,g)63,64. Importantly, 

CTLA4- and MKI67-perturbed cells exhibited marked reduction in protein expression of 

CD152 and Ki-67, respectively, highlighting the specificity of intracellular epitope detection 

in ASAP-seq in both the cytoplasm and nucleus.

Among cells that were activated through their TCR, (Louvain clusters 3-6), we observed 

variation in Ki-67 levels, most notably with low expression in clusters 5 and 6 (Fig. 

7e,g). Cells in Cluster 6 exhibited high protein levels of T cell activation markers such as 

CD69, Granzyme B and CD223 (LAG3), consistent with an effector memory phenotype 

(Fig. 7h)65,66. We did not observe overrepresentation of MKI67-targeted cells in this 

population, suggesting that the effect is biological and not due to perturbation. At the level 

of chromatin, we found increased accessibility at loci such as IFNG and GZMB in cluster 

6, consistent with an activated effector phenotype (Extended Data Fig. 7e). Taken together, 

these data demonstrate that intracellular protein detection enabled by ASAP-seq enables 

nuanced annotation of biologically relevant immune phenotypes, enabling new possibilities 

in defining cell states in single-cell genomics assays.

DISCUSSION

Here, we present ASAP-seq, a unique approach that enables the concomitant detection of 

protein abundance alongside transposase-accessible chromatin and mtDNA in thousands of 

single cells. Our method is enabled by recent modifications to droplet-based scATAC-seq, 

notably the retention of the cellular membrane following pooled permeabilization, which 

further enables the simultaneous, efficient sequencing of mtDNA14,15. As the majority of 

cell atlases to date have characterized the distinct transcriptomes of single cells in complex 

tissue, ASAP-seq provides a complementary multi-omic approach to map regulatory 

elements, protein abundances, and clonal relationships.

The ASAP-seq workflow is directly compatible with related multimodal assays that 

simultaneously measure protein and RNA, namely CITE-seq5,6, by utilizing oligo:antibody 

conjugates to infer protein abundances in complex cell mixtures (Fig. 4). Importantly, our 

approach introduces a bridge oligo (Fig. 1) that enables the utilization of existing antibody 

conjugates, yielding an accessible and user-friendly protocol. As the multimodal toolkit 

continues to evolve, our bridge oligo innovation will provide important flexibility to append 

protein quantification to other assays, most immediately, transposon-based methods such as 

CUT&Tag67.

As a complement to our ASAP-seq assay, we describe a modification of our CITE-seq 

method of protein tag capture to enable compatibility with the recently released 10x 

Genomics Multiome product. The resulting trimodal assay that we term DOGMA-seq 

enables measurement of chromatin accessibility, gene expression, and protein levels in 

single cells, with optional detection of mtDNA genotypes for inferring clonal relationships. 

We expect future development of this method to mirror efforts to expand the functionality 

of ASAP-seq with respect to intracellular protein detection, localized transposition (e.g. 

CUT&Tag68,69) and detection of engineered perturbations70. We note that while this work 
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was under revision, a similar strategy sharing several of the features of DOGMA-seq, 

referred to as TEA-seq, was posted as a pre-print71.

By examining our multimodal readouts in native and perturbed hematopoietic tissue, our 

analyses reveal distinct cellular programming occurring in chromatin, transcriptional, and 

post-translational regulation. In particular, we observe chromatin-based priming during a 

monocyte developmental trajectory in the native bone marrow (Fig. 3). Conversely, during 

T cell activation, we observe a more heterogeneous response where changes in chromatin, 

RNA, and protein abundances become more uncoupled (Fig. 4 & 5). By further utilizing 

CRISPR-based perturbations (Fig. 6), we disentangle downstream signalling contributions 

of the TCR and CD28, providing a blueprint for the scalable study of combined cellular 

chromatin and protein expression dynamics in human cells. Furthermore, our analyses in the 

IL2RA locus reveal how ASAP-seq can enable the fine-mapping of regulatory elements in 

various cell states that directly impact protein expression. Future extensions of ASAP-seq 

that incorporate direct detection of guide sequences6,70,72, or encoded guide barcodes73–75 

will further enable pooled screens at a substantially increased scale.

Furthermore, we show that our ASAP-seq protocol is compatible with the direct detection 

and quantification of cytoplasmic and nuclear intracellular markers (Fig. 7). While other 

protocols have achieved concomitant quantification of intracellular protein abundance 

and gene expression with plate-based methods that also require specialized fixation 

conditions76 or combining FACS-based enrichment of cells with scRNA-seq77, ASAP-seq 

provides a more parsimonious approach to concomitant estimation of both surface and 

intracellular markers on a widely-used, high-throughput commercial platform. Moreover, 

protein detection and quantification remain paired with the chromatin accessibility profile 

of each cell, thereby reflecting the full dynamic range of protein expression. Thus, the 

combination of detecting extracellular and intracellular protein abundances, which we show 

can be encoded by different capture sequences, enables a distinct mechanism to chart 

cell states and their underlying regulatory elements. We anticipate the demonstration of 

intracellular protein detection by ASAP-seq will spur the development of large panels of 

oligo labeled antibodies targeting intracellular epitopes ranging from signaling molecules, 

specific phospho-epitopes, and to transcription factors.

Extension of ASAP-seq and DOGMA-seq to cells derived from solid tissues will require 

careful protocol optimization to ensure sufficient surface protein signal remains following 

dissociation steps, such as enzymatic treatment. Although such optimizations are necessary 

for any single cell measurement following dissociation, and though partial loss of signal 

is expected, the additional modalities obtained in these methods will supplement surface 

protein measurements and greatly aid in cell phenotyping. We anticipate that ASAP-seq and 

DOGMA-seq, when coupled with large antibody panels which exceed the antigen diversity 

measurable by current mass cytometry approaches33 (as demonstrated in this study), 

may facilitate the discovery of deregulated surface markers on (pre-)malignant/leukemic 

(stem) cell populations that could be further exploited for diagnostics or antibody-mediated 

therapies78,79. Further, as showcased by the sensitivity of our measurement of PD-1 in 

activated T cells (Fig. 4,6), ASAP-seq should provide a powerful molecular approach to 

identify and study the epigenetic dysfunction in distinct states of adaptive immune cells in 
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tumors, infectious diseases, and other malignancies. In total, our methodological approach 

and analyses indicate that ASAP-seq provides a modular, powerful toolkit for understanding 

the behavior of single cells in complex settings.

ONLINE METHODS

See Protocol Exchange (doi pending) or CITE-seq.com/protocols for step-by-step ASAP-seq 

and DOGMA-seq protocols.

Cells

Cryopreserved healthy donor peripheral blood mononuclear cells (PBMCs) and bone 

marrow cells (BM) were obtained from AllCells (USA) or Cellular Technology Limited 

(CTL) and processed immediately after thawing. NIH-3T3 and HEK293FT cells were 

maintained according to standard procedures in Dulbecco’s Modified Eagle’s Medium 

(Thermo Fisher, USA) supplemented with 10% fetal bovine serum (Thermo Fisher, USA), at 

37°C with 5% CO2.

Cell staining with barcoded antibodies

TSA and TSB conjugated antibodies and panels were obtained from Biolegend, see 

Supplementary Table 1 for a list of antibodies, clones and barcodes used for ASAP-seq. 

Cells were stained with barcoded (and fluorophore-conjugated where indicated) antibodies 

as previously described for CITE-seq5,6. Briefly, approximately 1.5-2 million cells per 

sample were resuspended in 1× CITE-seq staining buffer (2% BSA, 0.01% Tween in PBS) 

and incubated for 10 min with Fc receptor block (TruStain FcX, BioLegend, USA) to block 

FC receptor-mediated binding. Subsequently, cells were incubated with indicated antibodies 

or panels for 30 min at 4°C, as recommended by the manufacturer (BioLegend, USA). After 

staining, cells were washed 3× by resuspension in 1× CITE-seq staining buffer followed by 

centrifugation (300 g, 5 min at 4°C) and supernatant exchange. After the final wash, cells 

were resuspended in PBS and subjected to fixation and permeabilization as described in the 

section Cell fixation and permeabilization.

Intracellular staining was performed in fixed and permeabilized cells that were resuspended 

in Intracellular Staining Buffer (Biolegend, custom part number 900002577), with the 

addition of TruStain FcX and True Stain Monocyte blocker as recommended by the 

manufacturer (BioLegend).

Cell fixation and permeabilization for ASAP-seq

Cells were fixed in 1% formaldehyde (FA; ThermoFisher, no.28906) in PBS for 10 min 

at room temperature, quenched with glycine solution to a final concentration of 0.125 

M followed by washing twice in PBS via centrifugation at 400 g, 5 min, 4°C. Cells 

were subsequently treated with the appropriate lysis buffer depending on downstream 

application. If mtDNA retention was desired, permeabilization was performed as described 

in mtscATAC-seq14 with 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% 

NP40, 1% BSA (referred to as low loss lysis conditions or LLL). When mtDNA depletion 

was desired, cells were lysed in 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
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0.1% NP40, 0.1% Tween20, 0.01% Digitonin, 1% BSA (referred to as OMNI conditions). 

Permeabilization was performed on ice, 3 min for primary cells and 5 min for cell lines, 

followed by adding 1 ml of chilled wash buffer (10 mM Tris-HCl pH 7.4, 10 mM 

NaCl, 3 mM MgCl2, 1% BSA) and inversion before centrifugation at 500 g, 5 min, 4°C. 

The supernatant was discarded and cells were diluted in 1× Diluted Nuclei buffer (10x 

Genomics) and filtered through a 40 μm Flowmi cell strainer before counting using Trypan 

Blue and a Countess II FL Automated Cell Counter.

Transposition and barcoding for ASAP-seq

Cell were subsequently processed according to the Chromium Single Cell ATAC Solution 

user guide (Versions CG000168 Rev D for v1 and CG000209 Rev D for v1.1, 10x 

Genomics) with the following modifications:

1. During the barcoding reaction (step 2.1), 0.5 μl of 1 μM bridge oligo was added 

to the barcoding mix. The sequences of the bridge oligos are: BOA (bridge oligo 

for TotalSeq™-A): 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNNVTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT/3InvdT/ and BOB (bridge oligo for 

TotalSeq™-B): 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGCTAGGACCGGCC

TTAAAGC/3InvdT/

2. To facilitate bridge oligo annealing during GEM incubation (step 2.5), a 5 min 

incubation at 40°C was added at the beginning of the amplification protocol 

(40°C 5 min, 72°C 5 min, 98°C 30 sec, 12 cycles of 98°C 10 sec, 59°C 30sec, 

72°C 1 min, ending with hold at 15°C). This extra annealing step was not 

essential when using TSA products, but increased efficiency in TSB tag capture.

3. During silane bead elution (step 3.1o), beads were eluted in 43.5 μl of Elution 

Solution I and 3 μl were kept aside to use as input in the tag library PCR, while 

the remaining 40 μl were used to proceed with SPRI clean up as the protocol 

describes. We reasoned that some tag fragments could stay in the bound fraction 

during the 1.2× SPRI separation, so to maximize tag capture we recommend to 

include a small portion (up to 10%) of the silane bead elution as input in the tag 

indexing reaction.

During SPRI cleanup (step 3.2d), the supernatant was saved and an additional 0.8× reaction 

volume of SPRI beads (32 μl) was added to bring the ratio up to 2.0×. Beads were washed 

twice with 80% ethanol and eluted in EB. This fraction can be combined with the few μl left 

aside after the silane purification to be used as input in the protein tag indexing reaction, or 

either source can be used alone with minimal impact on tag complexity (see Extended Data 

Fig. 1). PCR reactions were set up to generate the protein-tag library (P5 and RPI-x primers 

for TSA conjugates, P5 and D7xx_s for TSB conjugates) and the hashtag library (P5 and 

D7xx_s) with the program: 95°C 3min, 14-16 cycles of 95°C 20sec, 60°C 30sec, 72°C 

20sec, followed by 72°C for 5min and ending with hold at 4°C. Example of an RPI-x primer 

(TruSeq Small RNA handle, present in TSA tags. “x” nucleotides present a are user-defined 

sample index): 
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CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAGTTCCTTGGCACCCGA

GAATTCCA. Example of an D7xx_s primer (TruSeq DNA handle, present in TSB tags or 

TSA hashing): 

CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAGTTCAGACGTGTGC. 

The final libraries were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a 

High Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).

Note: Both v1 and v1.1 versions of the scATAC kit were successfully used throughout this 

study, with no discernible differences with respect to protein tag detection.

Cell permeabilization for DOGMA-seq

After staining cells with the antibody panel as described above, cells were washed twice 

with CITE-seq buffer and FACS sorted to remove dead cells/debris and CD66b+ cells. 

Sorted cells were harvested and permeabilized under two conditions; one that includes 

fixation and preserves mtDNA in the ATAC-seq libraries (termed LLL, similarly to 

mtscATAC-seq14 and ASAP-seq) and one that omits fixation and treats cells with 0.01% 

digitonin, as described in ICICLE-seq43 (termed DIG).

For LLL permeabilization, cells were first fixed with 0.1% formaldehyde (FA; 

ThermoFisher, no.28906) in PBS/RI (PBS supplemented with 0.1% BSA, 0.2 U/μl RNAse 

inhibitor) for 5 min at room temperature, quenched with glycine solution to a final 

concentration of 0.125 M, followed by washing twice in PBS/RI via centrifugation at 400 g, 

5 min, 4°C. Fixed cells were subsequently treated with LLL lysis buffer (10 mM Tris-HCl 

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40, 1% BSA, 1 mM DTT, 2 U/μl RNAse 

inhibitor), for 3 min on ice, followed by adding 1 ml of chilled LLL wash buffer (10 

mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 1 mM DTT, 1 U/μl RNAse 

inhibitor) and inversion before centrifugation at 500 g, 5 min, 4°C. The supernatant was 

discarded and cells were diluted in 1× Diluted Nuclei buffer, supplemented with 1 mM DTT 

and 1 U/μl RNAse inhibitor (as described by 10× Genomics), followed by counting using 

Trypan Blue and a Countess II FL Automated Cell Counter.

For DIG permeabilization, cells were treated with DIG lysis buffer (20 mM Tris-HCl pH 

7.4, 150 mM NaCl, 3 mM MgCl2, 0.01% Digitonin, 2 U/μl RNase inhibitor) for 5 min on 

ice, followed by adding 1 ml of chilled DIG wash buffer (20 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 3 mM MgCl2, 1 U/μl RNAse inhibitor) and inversion before centrifugation at 500 g, 

5 min, 4°C. The supernatant was discarded and cells were resuspended in DIG wash buffer, 

followed by counting using Trypan Blue and a Countess II FL Automated Cell Counter.

Transposition and barcoding for DOGMA-seq

Cell were processed according to the Chromium Next GEM Single Cell Multiome ATAC + 

Gene Expression user guide (Version CG000338 Rev A, 10× Genomics) with the following 

modifications:

1. During preamplification PCR (step 4.1), 1 μl of 0.2 μM ADT additive primer 

(CCTTGGCACCCGAGAATT*C*C) was spiked in the reaction mix.
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2. After the preamplification PCR and SPRI clean-up (step 4.3.k), the beads were 

eluted in 100 μl Buffer EB. 25% of the pre-amplified sample was used as 

input for the ATAC library indexing, and 35% was used as input in the cDNA 

amplification reaction.

3. To amplify and index protein tags, 35% of the pre-amplified sample was used in 

PCR reactions with SI-PCR 

(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCT

C) and RPI-x primers, with the program: 95°C 3min, 10 cycles of 95°C 20sec, 

60°C 30sec, 72°C 20sec, followed by 72°C for 5min and ending with hold at 

4°C. Example of an RPI-x primer (TruSeq Small RNA handle, present in TSA 

tags, “x” nucleotides present a user-defined sample index): 

CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAGTTCCTTGG

CACCCGAGAATTCCA. The final libraries were quantified using a Qubit 

dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a 

Bioanalyzer 2100 system (Agilent).

Flow cytometry

For flow cytometry analysis, PBMCs were washed in FACS buffer (2% FBS in PBS) 

before antibody staining using BV421-conjugated CD19 (HIB19, 302233, Biolegend), CD3 

(UCHT1, 300433, Biolegend), CD4 (RPA-T4, 300531, Biolegend) and CD11c (Bu15, 

337225, Biolegend), each at a 1:100 dilution. After washing, fixation and permeabilization 

were conducted as described in the section Cell fixation and permeabilization above, before 

cells were resuspended in nuclei dilution and ATAC buffer and incubated at 1h, 37°C 

in a thermocycler to mimic the Tn5 transposition step during (mt)scATAC-seq. Aliquots 

for flow cytometry analysis were processed at indicated stages as schematically depicted 

in Extended Data Fig. 1a. Bead staining was similarly performed using BD CompBeads 

(552843, BD Bioscience) at a 1:100 antibody dilution. Analysis was conducted on a BD 

Bioscience FACSAriaIII system. Data was analyzed using FlowJo software v10.4.2. Briefly, 

lymphocytes and monocytes were separated using forward versus side scattering gating, 

followed by sub-gating on the fluorophore-positive fraction (for stained cells/beads) or 

fluorophore-negative fraction (for unstained cells/beads). Fluorescence intensity histograms 

were produced from these gated fractions using the ‘Histogram’ function.

PBMC stimulation

Cryopreserved PBMCs were thawed and washed in complete medium (RPMI Glutamax, 

supplemented with 10% FCS and 50 IU/ml IL-2). Cells were allowed to rest in complete 

medium for 30 min at 37°C, before filtering through a 70 μm cell strainer to remove 

aggregates. PBMC aliquots were split in half and resuspended to a final density of 1×106/ml 

in either complete medium (unstimulated control) or complete medium supplemented with 

ImmunoCult Human CD3/CD28 T cell Activator (stimulated sample) according to the 

manufacturer (StemCell Technologies). 200 μl cell suspension aliquots were deposited in 

a 96-well round bottom plate and placed in a humidified 5% CO2 incubator at 37°C, for 

16 hrs. Cells from respective wells were pooled, harvested, washed 2x with media and 

resuspended in 1 ml media, before filtering through 70 μm to remove cell aggregates. About 
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1×106 cells of each condition were then harvested and resuspended in 100 μl CITE-seq 

staining buffer in preparation for staining. We note that these stimulation conditions result in 

a depletion of monocytes due to their adherence to the plastic80.

Arrayed Cas9 Ribonucleotide Protein (RNP) preparation and electroporation

Lyophilized crRNAs and tracrRNAs (IDT) were reconstituted to a concentration of 400 

μM and stored in −80°C until use. crRNAs and tracrRNAs were mixed at a 1:1 v/v ratio, 

transferred into a 96-well plate and heated at 95°C for 5 min, followed by incubation at 

room temperature for 15 minutes to complex the gRNAs. 30 μg Cas9 protein (TakaraBio, 

Cat# Z2640N) was added to each well and mixed by gentle pipetting, followed by 

incubation at room temperature for 15 minutes. Complexed RNPs were then dispensed 

in a 96-well V-bottom plate at 12.7 μL per well. Cells were resuspended in Lonza P2 

primary nucleofection buffer at 1×106 cells per 20 μL and added to the RNP-containing 

V-bottom plate. The mixture was gently mixed by pipetting and then transferred into a 

16-well electroporation cuvette plate (Lonza, Cat# V4XP-2032) and pulsed with the EH100 

program. Immediately following electroporation, 100 μL pre-warmed T cell culture medium 

was gently added to each well and cells were incubated at 37°C for 10 minutes. Cells were 

then transferred into 96-well U-bottom plates for culture at 1×106 cells/ml, supplemented 

with 500 IU/ml IL-2. A list of all crRNAs used in this study can be found in Supplementary 

Table 5.

Multiplexed perturbation workflow

Primary human CD4+ T cells were enriched by magnetic negative selection using the human 

CD4+ T cell Isolation Kit (Miltenyi, Cat# 130-096-533) as per manufacturer’s instructions. 

Cells were then stained and naïve CD4 T cells were sorted on a BD FACSAria-SORP 

system (Becton Dickinson) on the basis of CD4 and CD45RA expression. After isolation, 

cells were cultured in T cell culture medium consisting of RPMI with 10% Fetal Bovine 

Serum, 10 mM HEPES, 2 mM GlutaMax (Gibco, Cat# 35050-061), 1× MEM Non-Essential 

Amino Acids (Gibco, Cat# 11140-050), 1 mM Sodium pyruvate, 55 μM 2-mercaptoethanol 

and 100 IU/ml IL-2 at a density of 1×106 cells/ml, and stimulated with anti-human CD3/

CD28 Dynabeads (ThermoFisher, Cat#11131D) at a 1:1 cells-to-beads ratio. 72 hours after 

stimulation (Day 3), beads were removed and cells were rested in media containing IL-2 

for expansion, while maintaining at a density of 1×106 cells/ml. On Day 7, cells were 

electroporated with Cas9 ribonucleoprotein (RNP) complexes. Following electroporation, 

cells were cultured in media with 500 IU/ml IL-2 and split regularly to maintain a density of 

1×106 cells/ml. On day 15, cells we re-stimulated with anti-human CD3/CD28 Dynabeads 

(ThermoFisher, Cat# 11132D), supplemented with 100 IU/ml IL-2. 72 hours later, beads 

were removed and cells for each condition were stained and washed as described above with 

a combination of two specific TotalSeq-A hashtag antibodies (0.25-0.5 μg per antibody). 

Live cells were enriched and pooled by cell sorting on a BD FACSAria-SORP (Becton 

Dickinson) and then processed as per the ASAP-seq protocol described above using OMNI 

lysis conditions.
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Next-generation sequencing of DNA amplicons

Next-generation sequencing of gDNA was performed essentially as previously described81. 

Cells transfected with Cas9 were harvested eight days post-electroporation, enriched for live 

cells by cell sorting on a BD FACSAria-SORP (Becton Dickinson) and then processed for 

gDNA extraction using the DNeasy Blood & Tissue Kit (Qiagen, Cat# 69504) following 

the manufacturer’s instructions. Genomic sites of interest were first amplified by PCR 

with Phusion high-fidelity DNA polymerase (NEB) using gene-specific primers (primer 

sequences are listed in Supplementary Table 5). A second round of PCR was performed 

using 1 μl product of the first PCR reaction to barcode the samples for next-generation 

sequencing. PCR products of the barcoded reaction were verified by running on agarose 

gel and then extracted using the MinElute Gel Extraction Kit (Qiagen, Cat# 28604) as 

per manufacturer’s recommendations with a final elution volume of 30 μl in EB buffer. 

Amplicon libraries were sequenced single-ended (SE) 1× 150 bp on the Illumina NextSeq 

machine. After demultiplexing, FASTQs were analyzed using CRISPResso282.

Sequencing data pre-processing

Raw sequencing data for both scATAC-seq and antibody tag libraries were demultiplexed 

using CellRanger-ATAC mkfastq. For the ATAC data, sequencing reads for all libraries were 

aligned to the hg38 or hg38/mm10 reference genomes using CellRanger-ATAC count. To 

eliminate barcode multiplets83, all libraries were processed with CellRanger-ATAC v1.2 

which utilizes shared Tn5 transposition events to identify and remove barcodes with low 

tag abundance. Protein tag abundances were estimated using the kallisto, bustools, and kite 

frameworks84,85. To make the protein tag reads compatible with the kallisto framework 

processing, we developed an accessory script, ASAP_to_kite.py, that converts fastq files 

into a format similar to the 10x scRNA-seq format, enabling tag abundance quantification. 

For CITE-seq data, raw sequencing reads were aligned using CellRanger v3 to the hg38 

reference genome. For DOGMA-seq analyses, raw sequencing reads were processed using 

CellRanger-Arc (v1.0) for ATAC and RNA using a modified reference genome with 

mtDNA-mapping regions masked14. Tag abundances for all experiments were computed 

directly using the kallisto, bustools, and kite frameworks84,85.

Analysis of species mixing experiment

Cells that passed the CellRanger-ATAC knee call were assigned as putative human cells 

when at least 100 fragments overlapped accessibility peaks in the human reference genome 

and putative mouse for at least 100 fragments in peaks in the murine reference genome. 

Similarly, cells were annotated as putative mouse or human cells based on protein abundance 

based on a minimum count of 100 for human CD29 and 50 for mouse CD29. Doublets 

were assigned for cells that consisted of less than 95% (ATAC; fragments in peaks) or 90% 

(protein; CD29 abundance) of the corresponding molecule. All thresholds were determined 

after evaluation of empirical densities of these measurements. The percent agreement 

between the multimodal assays was determined using cells that had corresponding labels 

(mouse, human doublet), which was 97.4% for the pre-SPRI and 97.1% for the post-SPRI 

experiment. For each experiment, only one cell was observed that was annotated as mouse 
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in one modality and human in the other; the rest of the discrepancies were due to edge cases 

associated with doublet assignments.

Complexity analyses

For both protein tag and chromatin complexity estimations, we used the number of unique 

and duplicate fragments as part of the CellRanger-ATAC (chromatin) and bustools (tag) 

output as inputs into the Lander–Waterman equation86, which estimates the total number 

of unique molecules present given these two measurements. For chromatin, we used the 

‘total” and “passed_filters” columns from the singlecell.csv file. For the tag libraries, we 

converted the corrected bustools file into a tsv file to manually assign and deduplicate reads 

based on error-corrected barcode, UMI/UBI, and feature assignments. For species mixing 

experiments, comparisons were performed by selecting the top 1,000 cells ranked by library 

complexity per condition per species to minimize differences due to variable cell yield 

(Extended Data Fig. 1d,e).

Resting PBMC analyses

For all analyses in Fig. 1–3, gene activity scores, cell clusters, and reduced dimension 

representations were computed using ArchR87 with the default workflow. Visualizations 

of gene activity scores and protein tag abundances were performed using unsmoothed 

values after CLR-normalization for the protein tags. From the cell hashing experiment 

(Extended Data Fig. 1g), we assigned putative cell doublet identities using HTODemux17 

for all barcodes passing the CellRanger-ATAC knee call. Heteroplasmic mtDNA mutations 

were determined using the mgatk pipeline and variant calling parameters as previously 

described14. The two mutations shown in Fig. 1f were selected as they had the highest mean 

allele frequency among high-confidence heteroplasmic mutations. Violin plots depicting the 

proportion of mtDNA fragments (Fig. 2c) and tag abundances (Fig. 2d and Extended Data 

Fig. 2c) were plotted after removing the top 1% of barcodes from the CellRanger-ATAC 

knee called for each value to minimize the visual impact of artifacts such as cell doublets.

Bone marrow mononuclear cell analyses

We identified high-quality cells that satisfy three criteria: 1) minimum of a TSS score >4 and 

1000 fragments from ArchR87, 2) are not doublets based on hashtag oligos / HTODemux17, 

and 3) have less than 10,000 total tags or 50 tags in rat antibodies (cutoffs inferred 

from density distributions). These steps resulted in 10,928 cells. We then performed LSI, 

UMAP, and clustering with ArchR using default settings, which includes calls to the Seurat 

FindClusters function for Louvain cluster determination on the Shared Nearest Neighbors 

graph87. Annotations of cellular protein tags were performed using CLR-normalized counts 

among these barcodes. Tag importance was determined after fitting a Random Forest model 

using the chromatin-derived cluster labels as outcomes and scaled, CLR-normalized protein 

tag abundances as input features, an approach inspired by the CiteFuse workflow26.

Monocytic and erythroid pseudotime was determined using the semi-supervised 

functionality in ArchR87. Protein tag/pseudotime heatmaps were computed by dividing cells 

into 100 bins, computing means, and then performing a rolling average over 11 consecutive 

bins as implemented in ArchR87. The subset of proteins shown for each lineage were 
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selected such that a) the mean scaled protein tag value exceeded 1 across cells in the 

trajectory and b) the ratio of means between cells included and excluded in the trajectory 

exceeded 1. These filtering steps for included proteins were incorporated to minimize the 

contribution of factors not specifically expressed in these differentiation trajectories. The 

paired gene score heatmaps were computed using the same procedure but utilizing the 

single-cell, unsmoothed gene activity scores. Finally, we further restricted the set of genes 

for the comparison of max protein tag and max gene activity score (Fig. 3i) to genes where 

the protein peaked after 0.25 in the pseudotime directory to eliminate factors associated with 

multipotent or erythroid-biased progenitors.

Among the cells passing accessible chromatin and protein quality control, 6,797 had 

a minimum 10x mtDNA coverage, which were considered for downstream mutation 

analysis. Heteroplasmic mtDNA mutations were determined using the mgatk pipeline and 

variant calling parameters as previously described14. Putative lineage-biased variants were 

identified using a per-mutation Kruskal Wallis test of association between heteroplasmy 

and cell lineage, which were assigned to individual cells based on chromatin clusters (see 

Supplementary Table 2).

Analysis of PBMC stimulation experiments

Control and stimulated CITE-seq cells were filtered using the following criteria: predicted 

singlets using Scrublet88, maximum 10% mitochondrial RNA reads, minimum 500 genes 

detected, and minimum 1,000 total UMIs observed. Cells were further filtered out if they 

had excess abundance of total protein tags (>25,000 or 30,000 in control and stimulated 

conditions, respectively) or tags measured from the rat isotype controls (>55 or 65 in 

the control and stim, respectively). Similarly, we identified high-quality cells from the 

ASAP-seq dataset such that each cell had a TSS score exceeding 4 and a minimum of 1,000 

fragments. Cells were further filtered out if they had excess abundance of total protein tags 

(>25,000 in either condition) or tags measured from the rat isotype controls (>75 in either 

condition). All thresholds for both the ASAP-seq and CITE-seq filtering were determined by 

evaluating the per-cell empirical density.

We performed two-stage data integration for the ASAP-seq and CITE-seq datasets to 

preserve the biological effect of the stimulation and residualize differences between the 

RNA and ATAC assays. First, we created a union of variable genes from the CITE-seq 

stimulated and control datasets along with genes whose proteins were measured as part of 

the antibody panel. Using these ~2,700 genes, we performed canonical correlation analysis 

(CCA) between the stimulated ASAP-seq (gene scores computed from Signac89) and CITE-

seq (RNA abundance) datasets and a second round of CCA between the control ASAP-seq 

and CITE-seq datasets90. For both datasets, we imputed RNA expression for the ASAP-seq 

objects using transfer anchors as described in Seurat V391. In RNA space for these two 

merged objects, we performed principal component analysis (PCA), before using Harmony 

to integrate the stimulated and control integrated datasets92. A final dimensionality reduction 

and clustering using Harmony components was performed to summarize both modalities 

(ASAP-seq and CITE-seq) and both biological conditions (stimulated and control) in one 

setting. Finally, the embedding and clustering of ASAP-seq and CITE-seq based on protein 
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tag abundances was performed using the 100 most variable features across the merged 

ASAP-seq and CITE-seq datasets as inputs to PCA and then Harmony92 to account for the 

technology and stimulation status as two group variables.

In determining the relative changes between chromatin accessibility, RNA, and protein 

abundance between the stimulated and unstimulated conditions, we generated counts-per-

million normalized pseudobulk abundances, which were used to determine the log2 fold 

changes. While these measures were computed for both the B cell and T cell clusters 

separately, we note that many changes in the B cell population mirrored that of the T 

cells, which we attributed to low-frequency cell doublets that persisted even after our 

computational filtering. This inference was based on the presence of markers such as CD4 

and CD8 appearing in the B cell clusters, which are markers restricted to T cells and largely 

unchanged in the stimulation.

Separately, the number of differential peaks, genes, and proteins were computed using a 

per-peak permutation test9, the edgeRQLFDetRate for differential gene expression93, and a 

Mann-Whitney test for the CLR protein abundances. The number of significant differential 

features (Fig. 4) was determined using consistent thresholds of a Benjamini-Hochberg 

adjusted p-value of 0.01 and a minimum magnitude of log2 change exceeding 0.5. The 

proportion of differential features was computed out of 52,551 peaks, 10,533 genes, and 227 

proteins. For accessibility peaks and genes, the universe of those tested were selected based 

on a mean count per million exceeding 2 across the stimulated and control samples. For the 

proteins, none of the 71 differentially expressed markers using these criteria were the rat 

isotype antibodies (known negative controls).

Tag importance (Extended Data Fig. 4d) for either the stimulation and cluster identities 

was determined by fitting two Random Forest models to 1) the cluster labels and 2) the 

experimental control/stimulation conditions. Again, the scaled, CLR-normalized protein tag 

abundances were used as input features, an approach inspired by the CiteFuse workflows26.

UMAPs showcasing changes in chromatin accessibility, RNA, and protein abundance were 

consistently displayed using the 2nd and 98th percentiles as minimum and maximum values 

on the color scale. Cells depicted were displayed in random order. Further, only cells 

where the modality was directly measured (i.e. chromatin accessibility: ASAP-seq; RNA: 

CITE-seq; protein: ASAP-seq and CITE-seq) were displayed. Further, no gene smoothing 

was applied in any display.

For the DOGMA-seq analyses, we first performed cell filtering on each modality, requiring 

cells to have high-quality measurements for all modalities (see Online Code). To perform 

3WNN dimensionality reduction, we first ran Harmony92 on the linear components for 

each reduction with the stimulation/control status as the covariate. Next, we used the 

FindMultiModalNeighbors function in Seurat v427 using the first 30 Harmony-adjusted 

components for all three modalities (though excluding the first scATAC component due to 

correlation with sequencing depth). To examine the effect of each modality, we computed 

the adjusted Rand Index per pair of modalities (Extended Data Fig. 5k) on clusters 

defined from the default FindClusters execution of the FindMultiModalNeighbors function 
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for two modalities. To determine a per-cell, per-modality activation score, we used the 

AddModuleScore and AddChromatinModule functions for the top features upregulated 

in the stimulation from the Fig. 4 ASAP-seq/CITE-seq experiment (top 2,000 peaks; 

top 1,000 genes; top 20 proteins). Heteroplasmic and homoplasmic mtDNA mutations 

were determined using the mgatk pipeline and variant calling parameters as previously 

described14. Putative lineage-biased variants were again identified using a per-mutation 

Kruskal Wallis test of association.

Multiplexed perturbation analyses

From the hashtag count matrix, we assigned perturbation identity using HTODemux17. 

Donor ID per cell was further inferred using popscle, which extends the demuxlet toolkit94. 

High quality cells were determined based on quality-control criteria using the Signac89 

workflow, focusing on high-quality cells to maximize the inference of the CRISPR 

perturbations. Subsequently, these quality controlled cells were used in generating LSI 

dimensions and the UMAP embedding using ArchR with default settings87. Transcription 

factor accessibility deviation scores were computed using chromVAR with default settings 

for known human transcription factor motifs, including the inference of the top 100 

most variable52. Downstream analyses of protein tag abundances were performed on 

CLR-normalized tag abundances. NFKB-compatible motifs were discovered in chromatin 

accessibility peaks using the motifmatchr framework as part of the chromVAR52 suite of 

tools. Pseudobulk genomic loci tracks were generated by first subsetting gRNA-specific cell 

barcode reads using sinto (https://github.com/timoast/sinto), followed by processing with 

MACS295 under the options -B --no model, --extsize 150, --shift 75, --SPMR.
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Extended Data

Extended Data Figure 1. Additional technical and computational validation of ASAP-seq 
workflows.
a. PBMCs and compensation beads were stained with fluorophore-conjugated antibodies 

and subjected to the ASAP-seq workflow with samples withdrawn at the indicated steps 

and assessed for fluorophore intensity by flow cytometry. CD19 (staining B cells), CD11c 

(dendritic cells) and CD4 (lymphocytes and monocytes) signal on fixed cells is hardly 

affected by permeabilization alone, but after the 37°C incubation for 1h to mimic the Tn5 
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transposition reaction, some signal reduction is observed. b. Barcoding scheme of TSA tags 

using the bridge oligo for TotalSeq™-A (BOA). TSA tags do not contain UMIs, so to allow 

molecule counting, UBIs (N9V) are incorporated via the bridge oligo. c. Species mixing 

experiment as in Fig. 1c, using the Post-SPRI approach for tag recovery. Points are colored 

based on species classification using ATAC fragments. d. ATAC library complexity and TSS 

enrichment for fragments from each species under the two protein-tag library approaches. 

e. Comparison of protein tag complexity between libraries prepared using the pre- and 

post-SPRI approach. f. Comparison of ATAC library complexity between mtscATAC-seq 

and ASAP-seq. g. Two-dimensional embedding of the PBMC hashing data using t-SNE. 

The four major clusters (black) correspond to the four hashing antibodies used to stain 

the PBMCs. 13,772 cells were recovered and1,396 doublets (red) were detected. h. UMAP 

embedding resolving PBMC cell types based on chromatin accessibility for cells processed 

by mtscATAC-seq and ASAP-seq. Data for the two different samples were processed 

together using cell ranger-atac aggr before dimensionality reduction. i,j. Selected protein 

markers (i) and corresponding gene score activities (j) superimposed on the ATAC-clustered 

PBMCs (for the ASAP-seq sample) as in (h).
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Extended Data Figure 2. Additional validation and comparison of modular ASAP-seq 
workflows.
a. Barcoding scheme of TSB tags using the bridge oligo for TotalSeqB (BOB). TSB tags 

contain UMIs (encompassing the antibody barcode), negating the requirement for a UBI 

on the bridge oligo. b. Pairwise comparison of centered log-ratio (CLR) normalized TSA 

and TSB counts under OMNI lysis conditions (n=5,236 cells). Counts were collapsed for 

unique molecules using UBIs (TSA panel) or UMIs (TSB panel). c. Comparison of CLR 

normalised TSB counts under the two lysis conditions. Statistical comparisons are Wilcoxon 
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rank sum test with Bonferroni adjusted p-values (ns = not significant; *padj < 0.05; ** padj < 

0.01; *** padj < 0.001). d. UMAP embedding and cluster annotation of the LLL (n=5,236) 

and OMNI (n=4,748) processed cells. Data for the two different samples were processed 

together using cell ranger-atac aggr before dimensionality reduction. e. TSA and TSB CLR 

counts projected on the LLL embeddings. f. TSA and TSB CLR counts projected on the 

OMNI embeddings.

Extended Data Figure 3. Supporting information for ASAP-seq bone marrow analyses.
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a. Annotation of reduced dimension space with the Doublet Enrichment score from ArchR. 

Arrow indicates the monocytic progenitor population. b. Histogram of scores from panel 

(a). c. Feature plots for six additional antibody tags in the reduced dimension space. 

d. Correlation heatmap between 25 most variable TF activities and surface markers. e. 
Percent of cells in each ArchR cluster (y axis) mapping to the indicated Seurat cluster 

(x axis) after label transferring using the protein tags only f. Substitution rate (observed 

over expected) of mgatk-identified heteroplasmic mutations (y axis) in each class of 

mononucleotide and trinucleotide change resolved by the heavy (H) and light (L) strands 

of the mitochondrial genome. g. Projection of 13711G>A in single cells; threshold for 

+ was 5% heteroplasmy. h. Distribution of observed mtDNA mutations in cells among 

major cell lineages. i. Association of antibody tag abundance to cell clones determined by 

mtDNA genotypes, highlighting the erythroid marker CD71. j. Developmental trajectory of 

erythroid differentiation using semi-supervised pseudotime analysis. k. Expression of select 

cell surface markers along the erythroid developmental trajectory highlighted in (j). Rows 

are min-max normalized. l. Expression of chromatin activity scores along the monocytic 

developmental trajectory for genes encoding proteins shown in Fig. 3h. m. Expression of 

chromatin activity scores along the erythroid developmental trajectory for genes encoding 

proteins shown in (j).
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Extended Data Figure 4. Supporting information for combined ASAP-seq and CITE-seq 
readouts.
a. Antibody tag complexity per condition and technology. Median tag complexity is 1.7-2x 

higher in CITE-seq compared to ASAP-seq and 1.3-1.6x higher in stimulation compared 

to control sample. The lower panels show the per-cluster mean tag abundance for the 50 

most variable antibodies and corresponding Pearson correlations. b,c. Cellular distribution 

of protein tags measured by ASAP-seq (left) and CITE-seq (right) for control (top) and 

stimulated conditions (bottom) for, (b) CD278 (ICOS) and (c) CD71 (TFRC). d. Protein 
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tag measurement importance in predicting cell cluster and stimulation from two different 

Random Forest models. Negative controls (rat epitopes) are shown in red. e-g. ASAP-seq 

and CITE-seq data co-embedding utilizing protein abundances. Cells are highlighted by (e) 

chromatin/RNA cluster identity, (f) stimulation condition and (g) technology assayed. h-j. 
UMAPs of chromatin accessibility, mRNA expression, and surface protein levels for (h) 

CD28, (i) CD4, and (j) CD52. k. Summary of changes in chromatin accessibility, gene 

expression and surface protein abundance for 103 expressed genes in B cells following T 

cell stimulation. l,m. UMAPs of chromatin accessibility, mRNA expression, and surface 

protein levels for genes with differential expression in B cells, including (l) CD184 

(CXCR4) and (m) CD25 (IL2RA).
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Extended Data Figure 5. Supporting information for DOGMA-seq.
a-e. QC metrics of indicated modalities captured by DOGMA-seq applied on the stimulated 

PBMC sample. (a) TSS score, (b) ATAC fragment complexity, (c) % mtDNA content, (d) 

number of genes/cell and (e) protein tag complexity in the two different cell preparations 

compare similarly to the control PBMC sample in Fig. 5b–f. f. Percent of UMIs detected 

in the GEX library that map to mtRNA is higher in the digitonin-treated cells. g-h. 

Percent of UMIs mapping to exons is higher in the digitonin-treated (DIG) compared to 

LLL-treated cells (g), but similar when mitochondrial transcripts are excluded (h). i. CD138 
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tag counts projected on the three modality WNN stimulation clusters. j. Gene activity scores, 

transcript and protein tag counts projected for the indicated markers on the control and 

stimulated 3WNN clusters. k. Heatmaps showing percent overlap between clusters detected 

by 3WNN compared to 2WNN variations applied on the control PBMC dataset. l. Mean 

coverage along the mtDNA genome in control and stimulated PBMCs. m. Substitution rate 

(observed over expected) of mgatk-identified heteroplasmic mutations (y axis) in each class 

of mononucleotide and trinucleotide change resolved by the heavy (H) and light (L) strands 

of the mitochondrial genome for all cells in the PBMC-LLL condition. n. Observed (red) 

and permuted (gray) log2 heteroplasmy changes across the 106 identified variants. Statistical 

test: Kolmogorov–Smirnov Test. o. 3WNN UMAP embedding of control and stimulated 

PBMC samples under LLL and DIG processing. Dashed box indicates activated T-cell 

clusters. p. Comparison of peak to gene linkage for genes detected in both protein and RNA 

modalities. Each dot is a peak to gene link with the z score representing the magnitude of the 

association.
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Extended Data Figure 6. Supporting information for ASAP-seq based decoding of perturbations 
in primary T cells.
a. Schematic for CRISPR perturbation experiment in primary human T cells. CD4+ T cells 

from healthy donors were isolated and stimulated for 72 hours, followed by a resting period 

of four days to enable expansion. On Day 7, cells were electroporated with Cas9 RNPs 

and then rested for an additional 8 days before secondary stimulation. b. Heatmap of cell 

demultiplexing with hashing antibodies, indicating normalized abundance of each hashtag. 

c. Assessment of the effect of CRISPR perturbations on three indicated protein surface 
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markers. d. UMAP embedding overlaid with expression of the eight indicated surface 

protein markers. e. Allele-specific CRISPR editing outcomes for ZAP70 gRNA1 (left) and 

ZAP70 gRNA2 (right). The wildtype allele is indicated by **. f. Volcano plots showing 

transcription factor motifs with significantly changed chromatin accessibility profiles 

between NTC cells and the indicated gRNAs (FDR <= 0.05, chromVAR accessibility change 

>= 0.25). g. Correlation of chromVAR median accessibility changes or FDR (bottom right 

panel) between the indicated gRNAs. h. Genomic tracks of TNFRSF18 and HAVCR2 
loci with corresponding CLR-normalized protein abundance ridge plots. CLR-normalized 

protein abundance from the PBMC stimulation experiment is indicated by the corresponding 

boxplots. Differentially accessible regions are highlighted in blue.
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Extended Data Figure 7. Supporting information for intracellular ASAP-seq workflow.
a,b. Selected protein markers (a) and corresponding gene activity scores (b) superimposed 

on the ATAC-clustered PBMCs from the intracellular staining experiment (see Fig. 3a). c. 

Heatmap of cell demultiplexing with hashing antibodies, indicating normalized abundance 

of each hashtag for 24 different perturbation conditions. d. Violin plots showing distribution 

of CLR normalized protein counts for indicated proteins and their associated gRNA. e. 

Genomic tracks of IFNG and GZMB loci, indicating pseudo-bulk ATAC signal tracks across 
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six Louvain clusters with corresponding log-normalized gene activity score violin plots 

shown to the right. Differentially accessible regions are highlighted in blue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ASAP-seq incorporates protein detection in scATAC-seq workflows.
a. Schematic of the cell-processing steps that allow retention and profiling of cell-surface 

markers jointly with chromatin accessibility. Cells are stained with oligo-conjugated 

antibodies before fixation, permeabilization and transposition with Tn5. b. In droplets, 

bridge oligos spiked into the barcoding mix promote templated extension of the antibody 

tags during the first cycle of amplification rendering them complementary to bead-

derived barcoding oligos. Extended antibody tags are subsequently barcoded together 

with the transposed chromatin fragments. c. Species mixing experiment using the Pre-

SPRI approach; number of unique nuclear fragments (left) and protein-tag counts (right) 

associated with each cell barcode. Points are colored based on species classification using 

ATAC-derived fragments (97.4% agreement by assignment; all but 1 discrepancy was an 

errant doublet versus singlet classification) d. TSS enrichment scores of mtscATAC-seq 

without (left) or with concomitant protein tag capture (right). n indicates the number of 

cells profiled. e. UMAP showing chromatin accessibility-based clustering of PBMCs stained 

with a 9-antibody panel, with selected markers highlighted. Color bar: protein tag centered 

log-ratio (CLR) values. f. Cellular distribution of two most commonly detected mtDNA 

mutations in the population. Thresholds for + were 5% heteroplasmy based on empirical 

density.
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Figure 2. ASAP-seq enables a modular and versatile multi-omics toolkit.
a. Schematic of experimental design. PBMCs were stained with TBNK panels of the TSA 

or TSB format at a 1:1 ratio, followed by fixation and permeabilization under mild (LLL) or 

strong conditions (OMNI). b. Pairwise comparison of centered log-ratio (CLR) normalized 

TSA and TSB counts for indicated antibodies under mild lysis conditions (n=4,748 cells). 

Counts were collapsed for unique molecules using UBIs (TSA panel) or UMIs (TSB panel). 

c. Distribution of percent of mtDNA fragments retained in the library under the two lysis 

conditions. d. Comparison of CLR normalized TSA counts for indicated proteins under 

the two tested lysis conditions. Statistical comparisons are Wilcoxon rank sum test with 

Bonferroni adjusted p-values (ns = not significant; *padj < 0.05; ** Padj < 0.01; *** Padj < 

0.001).
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Figure 3. Dissection of native human hematopoiesis with multi-modal cell state inference and 
mtDNA-based lineage tracing.
a. Schematic of experimental design. Whole human bone marrow mononuclear cells 

(BMMCs) were stained with hashtag antibodies and a 242 antibody panel for ASAP-seq 

processing. b. Reduced dimension representation and cell clustering of high-quality cells 

(n=10,928) inferred using chromatin accessibility. c. Rank sorting of informative protein 

tags in distinguishing cell cluster identification. Negative controls (rat epitopes) are shown 

in red. d. Characterization of cell populations for 6 selected markers. e. Characterization 

of 99 somatic mtDNA mutations identified in the BMMCs. Selected mutations enriched 

for lineage bias (13069G>A and 13711G>A; x-axis; see Extended Data Fig. 3e) and 

highest for allele frequency (16260C>T; y-axis) are highlighted. f. Projection of highlighted 

mutations from (e) on the reduced dimension space. Thresholds for + were 50% for 

16260C>T and 5% for 13069G>A based on empirical density. g. Developmental trajectory 

of monocyte differentiation using semi-supervised pseudotime analysis. h. Expression of 

cell surface markers along the developmental trajectory highlighted in (g). Rows are min-

max normalized. i. Comparison of maximum gene activity scores (x-axis) and protein 

(y-axis) during pseudotime. Each dot is a gene/surface protein pair.
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Figure 4. ASAP-seq and CITE-seq reveal coordinated and distinct changes in chromatin, RNA, 
and protein levels.
a. Schematic of the experimental design. PBMCs were incubated with (stimulation) or 

without (control) multimeric α-CD3/CD28 for 16 hrs, followed by staining with the 

227 antibody panel. An aliquot of the cells was withdrawn and subjected to CITE-seq, 

while the remaining cells were fixed and subjected to ASAP-seq. b,c. Reduced dimension 

representations using data integration methods and UMAP for (b) ASAP-seq and (c) 

CITE-seq for both control (left) and stimulated conditions (right). d. Correlation of surface 

marker fold changes (log2) upon stimulation as detected by CITE-seq and ASAP-seq. 

Top upregulated markers are highlighted in red, and downregulated in blue. e. Schematic 

and summary of number and proportion of differential features (chromatin accessibility 

peaks, genes, and surface proteins) detected for T cells between the stimulation and 

control. f. Summary of changes in chromatin accessibility, gene expression and surface 

protein abundance for 84 expressed genes during T cell stimulation. g. Pearson correlation 

between the log2 fold changes for each modality as shown in (f). h-j. UMAPs of single-cell 

chromatin accessibility, mRNA expression, and surface protein levels for both the control 

Mimitou et al. Page 48

Nat Biotechnol. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(top) and stimulation condition (bottom) shown on the reduced dimension space for (h) 

CD3, (i) CD69 and (j) PD-1.
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Figure 5. DOGMA-seq enables a high-quality capture of multiple modalities sensitive to 
biological changes.
a. Schematic of the workflow and the modality capture enabled by DOGMA-seq. b. TSS 

enrichment scores of DOGMA-seq variations on the control PBMC data compared to a 

PBMC Multiome dataset released by 10x. c-f. Additional QC metric comparisons for 

the indicated conditions: (c) ATAC fragment complexity, (d) % mtDNA in ATAC library, 

(e) number of genes/cell detected and (f) protein tag complexity across the different cell 

preparations; median values are indicated. g. 3WNN UMAP embedding of control and 
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stimulated PBMCs under the LLL condition. Box indicates the activated T-cell clusters. 

h. Control PBMC clusters labeled after projection into the Azimuth reference. i. 3WNN 

UMAPs of stimulated PBMCs highlighting the weight of each modality. j. Stimulation 

module score for each of the three modalities quantified in stimulated T cells. Each dot 

is a single cell with the stimulation score for each modality. Per-pair Pearson correlation 

of the data shown is reported. k. 3WNN UMAPs of control and stimulated PBMCs 

highlighting chromatin accessibility, mRNA expression, and surface protein levels for CD45 

and isoforms CD45RA and CD45RO. l. Identification of high-confidence heteroplasmic 

(red; n=106) and homoplasmic (black; n=43) variants using mgatk. m. Cellular distribution 

of m.10761T>C in the 3WNN for all cells; the arrow points to a subset of gamma/delta (γ/δ) 

and MAIT cells. Threshold for + was 10% heteroplasmy based on empirical density.
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Figure 6. Multiplexed CRISPR perturbations with ASAP-seq in primary human T cells.
a. Schematic workflow for combinatorial multiplexing with ASAP-seq. CRISPR-edited cells 

are first stained with oligo-conjugated hashtag antibodies and then pooled for downstream 

processing by ASAP-seq. gRNA identities are demultiplexed using hashing antibody counts. 

b. UMAP embedding of n = 5,825 single cells and their associated gRNAs. c. Heatmap 

showing mean expression for 27 selected surface protein markers across gRNA perturbations 

in stimulated cells. d. Heatmap representation of chromVAR bias-corrected transcription 

factor motif deviation scores for the top 100 most variable transcription factors across 
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perturbation conditions. Associated gRNA and donor information are color-coded and 

indicated at the top of the plot. e. Overlay on ASAP-Seq UMAP of chromVAR transcription 

factor motif deviations. The motif for the given transcription factor is indicated at the 

top of the plot. f. Volcano plots showing transcription factor motifs with significantly 

changed chromatin accessibility profiles between NTC cells and guides targeting CD3E 
and ZAP70 (FDR <= 0.05, chromVAR accessibility change >= 0.25). g. Scatterplot of 

mean gene activity scores for 22 individual gene loci plotted against CLR-normalized mean 

protein tag counts associated with each gRNA. Values are normalized against NTC cells. 

h,i. Genomic tracks of (h) PDCD1 (gene encoding PD-1) and (i) IL2RA (gene encoding 

CD25), indicating pseudo-bulk ATAC signal tracks across gRNAs with corresponding CLR-

normalized protein abundance ridge plots. Differentially accessible regions are highlighted 

in red. Differentially accessible regions not overlapping CARE enhancers are highlighted 

in blue (i) and the TSS is highlighted in green (i). NFKB2 sequence motif matches are 

indicated by *.
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Figure 7. ASAP-seq enables detection of intracellular proteins with barcoded antibodies.
a. Schematic of the intracellular staining experimental design. PBMCs stained with the 

TSA TBNK panel directed against cell surface markers were fixed, lysed, and stained 

with TSB antibodies directed against intracellular markers, followed by transposition. b. 
Two-dimensional embedding of the PBMC chromatin accessibility data using UMAP, with 

major peripheral blood cell types highlighted. c,d. T cells and NK cells as highlighted 

in the dashed-line box from panel (b) with superimposed tag intensities for indicated (c) 

cell surface and (d) intracellular markers. Color bar: protein tag CLR values. e. UMAP 

embedding of n = 15,395 single cells targeted with distinct gRNAs. Colors indicate cluster 

identity (labeled on the bottom). The proportion of gRNA-targeted cells in each cluster 
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are shown on the right. f. Violin plots showing the distribution of CLR normalized protein 

counts for indicated proteins and their associated gRNA. g. UMAP embedding overlaid with 

expression of two surface (top) and two intracellular (bottom) protein markers. Color bar: 

protein tag CLR values. h. Violin plot showing CLR normalized protein counts for indicated 

proteins across the six Louvain clusters.
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