Skip to main content
. 2022 Jan 17;13:342. doi: 10.1038/s41467-022-28034-z

Table 1.

Differential abundance tools compared in this study.

Tool (version) Input Norm. Trans. Distribution Covariates Random effects Hypothesis test FDR Corr. CoDa Dev. For
ALDEx2 (1.18.0) Counts None CLR Dirichlet-multinomial Yes* No Wilcoxon rank-sum Yes Yes RNA-seq, 16S, MGS
ANCOM-II (2.1) Counts None ALR Non-parametric Yes Yes Wilcoxon rank-sum Yes Yes MGS
Corncob (0.1.0) Counts None None Beta-binomial Yes No Wald (default) Yes No 16S, MGS
DESeq2 (1.26.0) Counts Modified RLE (default is RLE) None Negative binomial Yes No Wald (default) Yes No RNA-seq, 16S, MGS
edgeR (3.28.1) Counts RLE (default is TMM) None Negative binomial Yes* No Exact Yes No RNA-seq
LEFse Rarefied Counts TSS None Non-parametric Subclass factor only No Kruskal–Wallis No No 16S, MGS
MaAsLin2 (1.0.0) Counts TSS AST (default is log) Normal (default) Yes Yes Wald Yes No MGS
MaAsLin2 (rare) (1.0.0) Rarefied counts TSS AST (default is log) Normal (default) Yes Yes Wald Yes No MGS
metagenomeSeq (1.28.2) Counts CSS Log Zero-inflated (log-) Normal Yes No Moderated t Yes No 16S. MGS
limma voom (TMM) (3.42.2) Counts TMM Log; Precision weighting Normal (default) Yes Yes Moderated t Yes No RNA-seq
limma voom (TMMwsp) (3.42.2) Counts TMMwsp Log; Precision weighting Normal (default) Yes Yes Moderated t Yes No RNA-seq
t-test (rare) Rarefied Counts None None Normal No No Welch’s t-test Yes No N/A
Wilcoxon (CLR) CLR abundances None CLR Non-parametric No No Wilcoxon rank-sum Yes Yes N/A
Wilcoxon (rare) Rarefied counts None None Non-parametric No No Wilcoxon rank-sum Yes No N/A

*The tool supports additional covariates if they are provided. ANCOM-II automatically performs ANOVA in this case, ALDEx2 requires that users select the test, and edgeR requires use of a different function (glmFit or glmQLFit instead of exactTest).

ALR additive log-ratio, AST arcsine square-root transformation, CLR centered log-ratio, CoDa compositional data analysis, CSS cumulative sum scaling, FDR Corr. false-discovery rate correction, MGS metagenomic sequencing, RLE relative log expression, TMM trimmed mean of M-values, Trans. transformation, TSS total sum scaling.