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Resting state fMRI connectivity is sensitive 
to laminar connectional architecture 
in the human brain
Gopikrishna Deshpande1,2,3,4,5,6,7*  , Yun Wang1,8 and Jennifer Robinson1,2,3,4 

Abstract 

Previous invasive studies indicate that human neocortical graymatter contains cytoarchitectonically distinct layers, 
with notable differences in their structural connectivity with the rest of the brain. Given recent improvements in 
the spatial resolution of anatomical and functional magnetic resonance imaging (fMRI), we hypothesize that resting 
state functional connectivity (FC) derived from fMRI is sensitive to layer-specific thalamo-cortical and cortico-cortical 
microcircuits. Using sub-millimeter resting state fMRI data obtained at 7 T, we found that: (1) FC between the entire 
thalamus and cortical layers I and VI was significantly stronger than between the thalamus and other layers. Further-
more, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) and layers IV, VI of the primary soma-
tosensory cortex were stronger than with other layers; (2) Inter-hemispheric cortico-cortical FC between homologous 
regions in superficial layers (layers I–III) was stronger compared to deep layers (layers V–VI). These findings are in 
agreement with structural connections inferred from previous invasive studies that showed that: (i) M-type neurons in 
the entire thalamus project to layer-I; (ii) Pyramidal neurons in layer-VI target all thalamic nuclei, (iii) C-type neurons in 
the VPL project to layer-IV and receive inputs from layer-VI of the primary somatosensory cortex, and (iv) 80% of col-
losal projecting neurons between homologous cortical regions connect superficial layers. Our results demonstrate for 
the first time that resting state fMRI is sensitive to structural connections between cortical layers (previously inferred 
through invasive studies), specifically in thalamo-cortical and cortico-cortical networks.
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1  Introduction
The most distinct feature of the mammalian cerebral 
cortex is its laminar structure, comprised of cortical col-
umns. A cortical column is a unit of complex information 
processing. It consists of processing chains that overlap, 
linking multiple inputs to multiple other outputs [1]. A 
single column of cerebral cortical gray matter normally 
has six layers. Different layers in the column have distinct 
distribution and types of neurons as well as separate con-
nections with other cortical and subcortical regions. Our 

knowledge about cortical laminar-specific connections is 
mostly derived from invasive studies including histology, 
anatomical tract tracing, electrophysiology, and lesion 
methods [2–7], given that non-invasive modalities, such 
as magnetic resonance imaging (MRI), both anatomical 
and functional, have typically lacked the resolution to 
resolve layer-specific differences.

However, recent developments in ultra-high field 
functional MRI (fMRI) make it feasible to examine the 
blood oxygen level dependent (BOLD) signal from cor-
tical and subcortical regions with sub-millimeter resolu-
tion. With such resolution, cortical layers can be resolved 
reasonably, although some amount of partial volum-
ing still exists. In addition, reliable methods have been 
developed to obtain cortical parcellation in the native 
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space of individual subjects [8–12]. In the recent past, 
laminar fMRI studies have investigated the spatial sen-
sitivity of high-field fMRI to the neuronal response at 
the sub-millimeter level [12–21], primarily using activa-
tion paradigms [13, 15, 18, 19, 21–23]. The sensitivity of 
laminar fMRI has enabled us to understand the colum-
nar profile of cortical activation at a finer spatial scale in 
the cerebral cortex. However, these investigations were 
only in the context of laminar fMRI activation (not rest-
ing state) within specific brain regions for specific stimuli 
(example: primary visual cortex with visual stimuli). In 
addition, previous results were most often achieved with 
partial brain coverage at ultra-high fields (7 T for humans 
and > 7  T in case of animal studies) unlike whole brain 
coverage used in conventional resting state fMRI studies.

One popular noninvasive method of analyzing corti-
cal circuits at the voxel level is functional connectivity 
based on resting state fMRI [24]. Resting state functional 
connectivity (FC) has been shown to be sensitive to 
alterations in neural circuits in various mental disorders 
[25–30] as well as correlated with behavioral perfor-
mance in healthy individuals [31–33]. Recent literature 
employing resting state fMRI based characterization 
of the human brain’s functional connectome suggests 
that resting state fMRI is grounded in underlying ana-
tomical connections [34–37]. For example, simulations 
have shown that spatially distinct functional networks 
emerge in resting state data when they are constrained 
by the structural connectome [38, 39]. The close corre-
spondence between functional and structural connec-
tivity has also been confirmed with fMRI and diffusion 
tensor imaging (DTI) data [40]. This has been further 
confirmed in case reports of deficient inter-hemispheric 
functional connectivity in subjects with complete agen-
esis of the corpus callosum [41]. However, it is note-
worthy that resting state functional connectivity can 
be sensitive to multi-synaptic interactions, and hence, 
regions that are not directly connected structurally could 
still be functionally connected. These data suggest that 
if two regions have a direct structural connection, then 
they should also be functionally connected, but the oppo-
site may not be true. Consequently, one could expect a 
strong functional connection between regions that are 
also directly connected structurally. In this work, our 
objective is to extend this concept from mesoscale con-
nections between brain regions to rather microscale 
connections between different cortical layers in these 
regions. Attempts to do so have been scarce in the litera-
ture. Below, we present previous attempts in this direc-
tion. Layer-specific connections between the primary 
visual cortex layers II/III and middle temporal area layer 
IV were detected with high-resolution resting state fMRI 
through functional connectivity analysis [20]. The default 

mode network under resting state was clearly seen across 
six layers by seed-based functional connectivity analysis 
after removing depth-dependent physiological noise [42]. 
In addition, a recent study showed the existence of tem-
poral correlation of resting state hemodynamic signals 
derived from optical imaging at sub-millimeter colum-
nar scale in the visual cortex [43]. These studies suggest 
that functional connectivity could be a potentially useful 
method to investigate the laminar connectional archi-
tecture at the functional level. However, it is yet unclear 
whether resting state functional connectivity (FC) is in 
fact stronger along structural pathways that connect dif-
ferent layers of brain regions compared to say, other pos-
sible connections between layers that do not have a direct 
structural projection between them. While this question 
has been addressed at the meso-scale voxel level, it has 
not been investigated at the micro-scale layer level. To 
test these possibilities, many technical challenges need to 
be surmounted as we discuss below, to provide motiva-
tion for the methodological choices we have made.

The major limitation of fMRI is that it is an indirect 
measure of neural activity, because it measures changes 
in blood oxygenation level that is modulated by the 
local vascular distribution (vessel size) and the activa-
tion-induced hemodynamic changes [21]. The BOLD 
fMRI signal can be modeled as the result of the convo-
lution of a latent neural response and the hemodynamic 
response function (HRF). At the voxel level, the HRF 
varies across brain regions as well as across individuals 
[44, 45]. Some animal and human MRI studies at high 
field have shown that the response height and time-
to-peak (TTP) of the HRF varies with cortical depth 
[18, 46–50]. It was shown that the deeper layers have 
faster and narrower hemodynamic response compared 
to the superficial layers. In addition, at the laminar 
level, gradient-echo BOLD signals have relatively poor 
laminar specificity, because they are more sensitive to 
larger vessels [51]. However, a recent investigation of 
the spatial point spread function (PSF) for the BOLD 
response showed that the laminar PSF of the gradient-
echo BOLD signal had a “flat-tail” characteristic across 
layers, with the tail running to the pial surface [52]. 
This indicates that lower layers contribute signal to any 
given layer in gradient-echo BOLD. While spin echo 
BOLD may provide better spatial laminar specificity, 
one may lose sensitivity to the BOLD effect when using 
spin echo. Investigations into the laminar specificity of 
BOLD as well as HRF variability across cortical layers 
have invariably used task-based paradigms and cannot 
be readily generalized to resting state given that neu-
rovascular coupling likely operates under a different 
regime in resting state (see extension of Buxton’s bal-
loon model to resting state conditions [53].
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Many studies have characterized the effect of HRF vari-
ability across regions and subjects [45, 54], as well as the 
impact of HRF variability across layers [18, 46–50]. How-
ever, all of these studies investigated the impact of HRF 
variability in the context of detecting activation (and not 
in the context of characterizing functional connectivity). 
Furthermore, inter-subject and spatial variability of the 
HRF could potentially give rise to a scenario, wherein the 
BOLD fMRI time series from any given two regions are 
synchronized, while the underlying neural response is 
not, thus giving high correlation between BOLD signals, 
while the true correlation between latent neural variables 
may be low. The opposite scenario, wherein the underly-
ing neuronal variables are synchronized, while the BOLD 
fMRI time series are not, is also equally possible (see 
Additional file 1: Fig. S1 for illustration of these scenar-
ios). Therefore, we need to extract the underlying latent 
neural response to get reliable estimates of FC between 
layers of different regions. The readers are referred to 
Rangaprakash et al. for more details on the effects of HRF 
variability on functional connectivity [55].

In this study, we applied a surface-based laminar analy-
sis pipeline  available in FreeSurfer (https://​surfer.​nmr.​
mgh.​harva​rd.​edu/) to process high-resolution anatomical 
data with a 0.6 mm isotropic resolution and to delineate 
the six layers of the cortex [56, 57]. To investigate whether 
FC is sensitive to layer-specific connectional architec-
ture, we examined this aspect with high-resolution 
resting state fMRI data (voxels with 0.85  mm in-plane 
resolution) obtained at 7  T. A simple blind deconvolu-
tion technique [58] was used to obtain the latent neural 
signals for each layer. Specifically, we tested the following 
hypotheses regarding thalamo-cortical and cortico-cor-
tical layer-specific microcircuits derived from previous 
invasive anatomical studies (Fig.  1): (1) FC between the 
entire thalamus and cortical layers I and VI must be sig-
nificantly greater than between the whole thalamus and 
other layers. This follows from evidence in rat brain trac-
ing studies which show that regions across the cortex 
receive inputs to layer I from M-type thalamic neurons 
distributed in most thalamic nuclei [59–64]. In addition, 
pyramidal neurons in layer-VI are known to target all tha-
lamic nuclei. Furthermore, FC between somatosensory 
thalamus (ventral posterolateral nucleus, VPL) and lay-
ers IV and VI of the primary somatosensory cortex (S1), 
must be stronger than other layers. This follows from the 
well-known C-type thalamic neurons in VPL that pri-
marily target layer IV in the primary somatosensory cor-
tex, and then corticothalamic pyramidal neurons in layer 
VI are known to project back to C-type thalamic neurons 
in VPL [65, 66], (2) inter-hemispheric cortico-cortical FC 
(i.e., between the left and right brain regions of the same 
area) in superficial layers (layers I–III) must be higher 

compared to deep layers (layers V–VI). This follows from 
evidence in rodents that 80% of the cell bodies of those 
callosal projecting neurons are distributed in layer II and 
layer III, with only 20% in layers V and VI [67, 68]. Other 
studies have claimed that layers I through III are the 
main target of inter-hemispheric cortico-cortical affer-
ents, while some suggest that layer III is the main source 
of cortico-cortical efferents [69–71]. Taken together, it 
makes sense to hypothesize higher cortico-cortical FC in 
superficial layers compared to deeper layers.

We found that resting state functional connectivity at 
the laminar level, to a great extent, were in sync with the 
hypotheses stated above. To the best of our knowledge, 
we are the first to show that fine-grained layer-specific 
thalamo-cortical and cortico-cortical anatomical con-
nections between cortical layers are reflected by stronger 
resting state functional connectivity in these pathways.

2 � Results
2.1 � Surface‑based laminar analysis and blind 

deconvolution
We employed a surface-based laminar analysis pipeline 
to extract vertex-based resting state fMRI time series 
for 68 cortical regions separately from six layers of the 
neocortex (Fig. 2). Then, we performed vertex-by-vertex 
blind deconvolution [58] to get each vertex’s latent neu-
ral response and HRF. Please refer to the methods section 
for further details on these analyses.

2.2 � Functional connectivity across cortical regions 
between layers

With each vertex’s latent neural response, we calculated 
the mean time series for 68 regions of interest in each 
layer. To investigate global trends, we estimated the mean 
Pearson’s correlation between the 68 ROIs (using latent 
neural signals) in a given layer and those in all layers. The 
mean correlation did not show any significant difference 
between layers (Fig.  3). This demonstrates that global 
connectivity differences between layers were absent.

2.3 � Hypotheses testing before deconvolution
To test the thalamocotical hypothesis, we computed 
the Pearson’s correlation between the mean time series 
extracted from 68 ROIs in each layer with the mean 
time series extracted from the entire thalamus. For 
testing the specific VPL ↔ S1 connectivity hypoth-
esis, the Pearson’s correlation between the mean time 
series from primary somatosensory cortex (S1) and the 
VPL were computed. For testing the cortico-cortical 
hypothesis, we estimated the mean inter-hemispheric 
correlations only between homologous regions in each 
layer. The functional connectivity pattern for thalamo-
cortical connections showed that the mean Pearson’s 

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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correlation between layer I and the entire thalamus was 
strongest across the cortex (Fig.  4a), and was signifi-
cantly (FDR corrected p < 0.05) greater than the corre-
lation between the thalamus and layers II–VI. Although 
layer IV showed a trend to be more strongly con-
nected to the thalamus, it did not reach significance. 

In contrast, VPL ↔ S1 connectivity was significantly 
stronger in layer IV than in layers I, V, and VI (Fig. 4b). 
We then examined the inter-hemispheric cortico-cor-
tical connections for all 68 cortical regions for each 
layer (i.e., between the left and right brain regions of 
the same area). We found that the inter-hemispheric 

Fig. 1  Illustration of our functional hypotheses that were motivated by previous invasive anatomical tract tracing studies. The width of the lines 
represent the strength of the connections. a Thamalocortical hypotheses: we hypothesized that FC between the entire thalamus and cortical 
layers I and VI will be significantly stronger than between the thalamus and other layers (blue, left panel). Furthermore, FC between somatosensory 
thalamus (ventral posterolateral nucleus, VPL) and layers IV, VI of the primary somatosensory cortex (S1) will be stronger than with other layers 
(yellow, right panel). b Cortico-cortical hypothesis: inter-hemispheric cortico-cortical FC between homologous regions in superficial layers (layers 
I–III) will be stronger compared to that in deeper layers (layers V–VI). c 6 surfaces plus white matter and pial surface overlayed on anatomical MRI 
(white matter surface: yellow, layer VI surface: brown, layer V: green, layer IV: lime, layer III: blue, layer II:, cyan, layer I: purple, and pial surface: red; the 
white dots are the vertices on these surfaces). d Illustration of the relative distance of 6 intermediate surfaces to white matter surface
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cortico-cortical mean correlation for layer III was sig-
nificantly greater than layer VI (Fig. 4c).

2.4 � Laminar HRF differences
The hemodynamic response could be different between 
regions across subjects and it has been previously 
shown that this might impact the estimates of connec-
tivity obtained between such regions [44, 54]. To assess 
the laminar variability of the HRF and recover the neu-
ral response, we performed blind deconvolution before 
functional connectivity analysis. To assess the effect of 
deconvolution, we compared the shape of region-spe-
cific HRFs across six layers (Fig. 5). Three parameters of 
region-specific HRFs we examined were response height, 
time-to-peak, and full-width at half-max (FWHM). The 
means and standard deviations of the three parameters 
were calculated separately for each layer across all sub-
jects. As an illustration, we show the region-specific HRF 
results for left orbitofrontal cortex (Fig.  5a–d) and pri-
mary somatosensory cortex (Fig. 5e–h), which are two of 
the 68 parcellation regions.

After one-way analysis of variance (ANOVA) for 
response height (p = 0.0469), time-to-peak (p = 0.0026), 
and FWHM (p = 0.0268) of region-specific HRF sepa-
rately, we found response height as well as time to peak 
and FWHM were significantly different across the layers 

(p < 0.05 FDR corrected) for left orbitofrontal cortex. In 
addition, the three parameters were distinct across layers 
for left primary somatosensory cortex as well (p = 0.0035 
for response height, p = 0.0014 for time-to-peak, and 
p = 0.0312 for FWHM). Furthermore, multiple com-
parison of means in one-way ANOVA was employed for 
each parameter. Here, for the left orbitofrontal cortex, we 
found that the response height and FWHM of layer I was 
significantly (p < 0.05 corrected) larger than for layer VI, 
and time to peak of layers I, II, and III was significantly 
(p < 0.05 corrected) larger than layer VI. For the primary 
somatosensory cortex, we found that the response height 
and time to peak of layer I were significantly (p < 0.05 
corrected) larger than for layers III–VI, and at the same 
time, the response height and time to peak of layer VI 
were significantly smaller (p < 0.05 corrected) than layer 
II. Moreover, FWHM of layer I was significantly (p < 0.05 
corrected) wider than layer VI.

To investigate whether this is a general fact for all 
region-specific laminar HRFs, we performed similar 
analyses for all other 66 regions and summarized the 
results in Fig. 6. 66 out of 68 regions had significant dif-
ference (p < 0.05 corrected) across the layers for the 
response height, 62 out of 68 regions for time to peak, 
and 36 regions for FWHM. In summary, the HRF var-
ies across cortical layers in many brain regions and it is 

Fig. 2  Schematic illustrating the laminar analysis pipeline for extracting mean time series from the six cortical layers for all 68 brain regions in the 
Desikan–Killiany atlas [9]
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necessary to recover the latent neural signal at each layer 
before performing connectivity analysis.

2.5 � Individual‑level FC difference before and after 
deconvolution

We estimated individual-level mean connectivity values 
of all possible connectivity paths between the 68 ROIs 
and the results for all 20 subjects, obtained with both 
deconvolved and non-deconvolved data, are shown in 
Fig. 7. The differences in connectivity due to deconvolu-
tion are plotted at the bottom part of Fig. 7, showing the 
magnitude of change caused by HRF variability in each 
subject. The group average non-deconvolved FC value 

was 0.033 higher than deconvolved FC value. A paired 
t test between non-deconvolved FC and deconvolved 
FC returned a high statistical significance for all paths 
(p = 0.0012).

2.6 � Hypotheses testing after deconvolution
Results obtained after deconvolution, i.e., those esti-
mated from latent neural signals, were more in sync with 
our hypotheses. As we can see from Fig. 8a, FC between 
the entire thalamus and Layer I across the cortex was 
significantly greater than the FC between the entire thal-
amus and layers II–VI (FDR corrected p < 0.05). In addi-
tion, FC between the entire thalamus and Layer VI was 

Fig. 3  Top: an illustration of the method for calculating FC between all layers across all cortical regions to investigate global trends (i, j represents 
layer number; m, n represents regions, and Cij represents the mean Pearson’s correlation between two given layers calculated across all cortical 
regions). Bottom: the mean Pearson’s correlation values between a given layer and all layers across all cortical regions in the Desikan–Killiany [9] 
atlas. No significant differences were found. 21 pairs are included. The error bar indicates the calculated standard deviation
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significantly higher than FC between the entire thalamus 
and layers II, III, and V. In contrast, the FC between sen-
sory core thalamus (VPL) and layers IV, VI of S1 was sig-
nificantly stronger than between VPL and layers I, II, III, 
and V (Fig. 8b).

Finally, we examined the inter-hemispheric cortico-
cortical FCs for each layer (i.e., between the left and 
right brain regions of the same area) and compared the 
FC results before deconvolution (Fig. 4c) with FC results 
after deconvolution (Fig. 8c). Before deconvolution, only 
the inter-hemispheric cortico-cortical FCs for layer III 
were significantly greater than layer VI (Fig. 4c). However, 
after deconvolution, FCs between homologous regions in 
layers I–III were significantly greater than in layers IV–VI 
(Fig. 8c). Generally speaking, the inter-hemispheric mean 
correlations in superficial layers were higher compared to 
those deeper layers [71].

3 � Discussion
In this study, we tested hypotheses involving thalamo-
cortical and cortio-cortical layers specific microcir-
cuits derived from previous invasive anatomical studies. 
The thalamo-cortical hypothesis is that FC between the 

entire thalamus and cortical layers I and VI must be sig-
nificantly greater than that between the thalamus and 
other layers. This hypothesis is based on the fact that the 
regions across the cortex receive inputs to layer I from 
M-type thalamic neurons distributed in most nuclei of 
the thalamus and receive cortico-thalamic radiations 
from layer VI of the cortex [59–64]. Accordingly, we 
found that FC (estimated from latent neural variables) 
between the entire thalamus and layer I was indeed sig-
nificantly greater than between the thalamus and layers 
II–VI, and FC between the thalamus and layer VI was 
higher than between the thalamus and layers II, III, and 
V. In addition, we found the FC between the sensory core 
thalamus (i.e., VPL) and layers IV and VI of the primary 
somatosensory cortex, were higher than other layers. 
This follows from the fact that C-type thalamic neurons 
in VPL primarily target layer IV in the primary soma-
tosensory cortex, and then corticothalamic pyramidal 
neurons in layer VI project back to C-type thalamic neu-
rons in VPL [65, 66]. To a large extent, the results con-
firmed our hypotheses. The cortico-cortical hypothesis is 
that inter-hemispheric cortico-cortical FC in superficial 
layers (layers I–III) must be higher compared to deep 

Fig. 4  a Mean thalamo-cortical FC values between the entire thalamus and all cortical layers estimated from BOLD data before blind 
deconvolution; b mean FC between the somatosensory thalamus (VPL) and six different layers of primary somatosensory cortex before blind 
deconvolution; c mean inter-hemispheric cortico-cortical laminar FC values estimated before blind deconvolution. *Significant difference with p 
(corrected) < 0.05, the error bar indicates the estimated standard deviation
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layers (layers V–VI) following evidence in rodents that 
80% of the cell bodies of those callosal projecting neurons 
are distributed in layer II and layer III, with only 20% in 
layers V and VI [67–71]. Our results suggested that the 
inter-hemispheric FC was significantly higher in superfi-
cial layers than deeper layers. To our knowledge, this is 
the very first study to investigate the sensitivity of resting 

state fMRI connectivity at sub-millimeter spatial scale to 
the connectional architecture at the laminar level.

One common concern in laminar fMRI studies is the 
large signal amplitude on the pial surface, which could be 
potentially affected and contaminated by large veins on 
the cortical surface, or partial volume effects from large 
voxel sizes. Different methods have been employed to 

Fig. 5  Region-specific HRF plot and multiple comparisons across the layers for left orbitofrontal cortex (OFC) (a–d) and left primary somatosensory 
cortex (S1) (e, f). The mean left OFC (a) and left S1 (e) HRF plot for six layers separately. Layer VI (red), layer V (yellow), layer IV (green), layer III (cyan), 
layer II (blue), and layer I (purple); multiple comparisons across the layers for left OFC (b) and left S1 (f) for response height; time to peak multiple 
comparisons across layers for left OFC (c) and left S1 (g); FWHM multiple comparisons across the layers for left OFC (d) and left S1 (h). *Significant 
difference with p (corrected) < 0.05. The error bar indicates the estimated standard deviation
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resolve the large vein problem. Simply avoiding the first 
layer compartment is the easiest way [21]. Indeed, if we 
did consider our hypotheses by excluding the first layer, 
they would be confirmed by our results. Another alter-
native approach is restricting the laminar analysis to 
strongly activated clusters in each subject [18]. A novel 

pial vein pattern analysis by optical imaging was sug-
gested by Chen et  al. to remove voxels associated with 
large veins, and the vein-free fMRI exhibited clear lami-
nar specificity [13]. However, around 40% of activated 
voxels in the primary visual cortex was excluded for this 
study. In addition, optical imaging technique used by 

Fig. 6  Summary of one-way ANOVA analysis performed on HRF parameters (response height, time to peak, and FWHM) for 68 regions. 66 out of 
68 region had significant difference across the layers for the response height, 62 out of 68 regions for time to peak, and 36 regions for FWHM at p 
(corrected) < 0.05

Fig. 7  Comparison of the individual-level average FC values before and after deconvolution for all paths. Blue represents FC values with 
non-deconvolved data, and red for FC values after deconvolution
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Chen et  al. was invasive, and hence is not suitable for 
human studies. In this study, we approached this issue in 
terms of HRF differences across layers. We reasoned that 
any differences between BOLD signals across layers that 
have a vascular origin, must be reduced or eliminated if 
voxel (or vertex-specific) HRF was deconvolved from the 
BOLD data and connectivity estimation was performed 
in the latent neural space.

To investigate the variability of HRF across layers, we 
employed a simple but powerful blind deconvolution 
technique to recover the latent neural signal at each 
vertex. Our results showed that all three parameters of 
region-specific laminar HRF (response height, time-to-
peak, and FWHM) varied in reference to cortical depths, 
and were significantly greater in superficial layers than 
deeper layers. This finding matches findings from previ-
ous HRF studies in animals. Tian et  al. found both the 
onset of the BOLD response and the initial dip rely on 
cortical depth, and the fastest response was in deeper 
layers within the rat primary somatosensory cortex [49]. 
In addition, Yu et al. showed the onsets at different lay-
ers coincided with the neural inputs with line-scanning 
fMRI both in rat somatosensory cortex and motor cortex 

[47]. We have demonstrated that this is a general fact for 
almost all cortical regions. The comparison of functional 
connectivity before and after deconvolution showed the 
importance and necessity of recovering latent neural 
signals before any resting state functional connectivity 
analysis is performed at the laminar level. The functional 
connectivity post-deconvolution in the latent neural 
space aligned more closely with the underlying anatomi-
cal connections compared to FC obtained on BOLD data.

3.1 � Limitations and future work
There are a few limitations of present study, which need 
to be addressed in future layer-specific fMRI functional 
connectivity related research. First, different methods 
exist for identifying different cortical lamina from MRI 
data. The method we employed was to construct lami-
nar profiles, which keeps a relatively fixed distance to 
the cortical boundaries (Fig. 1), the so-called equidistant 
laminae [18, 72, 73]. An alternate approach is the equi-
potentials method, wherein the equipotentials are com-
puted between the inner white matter surface and pial 
surface with the Laplace equation, and then the corti-
cal profiles can be constructed along the gradients [74]. 

Fig. 8  a Mean thalamo-cortical FC values between the entire thalamus and six cortical layers after blind deconvolution, i.e., using latent neural time 
series; b mean FC between the sensory core thalamus (VPL) and six different layers of primary somatosensory cortex after blind deconvolution; c 
mean inter-hemispheric cortico-cortical laminar FC values after blind deconvolution. *Significant difference with p (corrected) < 0.05. The error bar 
indicates the estimated standard deviation
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However, the drawback with this approach is that the 
Laplacian equation may not match the anatomical layers 
observed from high-resolution MRI [75]. Recently a new 
model called equal-volume model for identifying cortical 
laminae was proposed by Waehnert et al. [75], and they 
claimed that it provides a better fit to observed cortical 
layering. In future, studies must compare the three differ-
ent models for how well functional connectivity derived 
from layers constructed by them match the underlying 
anatomical predictions.

Second, the spatial laminar point spread function 
(SL-PSF) of the BOLD response presents a fundamen-
tal stumbling block for gaining laminar specificity in 
fMRI data. Lower layers always contribute signal to the 
upper layers, because the intracortical veins (ICV) are 
perpendicular to the surface, and the draining blood 
flows along the ICV into pial veins on the pial surface 
[52]. The interpolation-averaging method, wherein the 
fMRI volume is interpolated at certain cortical depths 
and the surface profiles are averaged, has been proposed 
for addressing this issue [18, 21, 22], but a more pre-
cise method to extract laminar signals is needed. As we 
briefly mentioned in the introduction, this is especially 
true for gradient echo EPI based fMRI which has a flat-
ter PSF compared to spin-echo based EPI. Therefore, 
future studies may investigate whether spin echo EPI may 
be better for FC studies at the laminar level, even with 
the loss of sensitivity in spin echo compared to gradi-
ent echo. Recently, an extension of the Friston–Buxton 
hemodynamic model, which accounts for blood draining 
effects by coupling local hemodynamics across layers in 
dynamic causal models of fMRI during visual activation, 
was reported [14]. However, priors about two parameters 
controlling blood draining effects (the delay τd between 
the lower and upper layers, and λd which represents the 
strength of the blood draining effect from the lower to 
the upper layers) need further experimental validation in 
human resting state studies. Investigations into the lami-
nar specificity of BOLD have invariably used task-based 
paradigms and cannot be readily generalized to resting 
state given that neurovascular coupling likely operates 
under a different regime in resting state (see extension of 
Buxton’s balloon model to resting state conditions [53]. 
Therefore, further modeling and experimental work is 
needed in this area, which could potentially lead us to a 
reliable and accurate laminar time series that will allow a 
more fine-grained investigation of resting state FC at the 
laminar level.

Third, the hypotheses we chose to test provide only an 
initial demonstration of the sensitivity of resting state 
fMRI functional connectivity to layer-specific functional 
microcircuits in the human brain. However, further fine-
grained investigations are possible. This could involve 

specific thalamo-cortical pathways from other thalamic 
nuclei, specifically in systems that are unique in humans 
and for which we do not have reliable homologues in 
animals, and hence are not amenable to invasive inves-
tigations. For example, two parallel layer-specific path-
ways connect language-related thalamic nuclei to layer I 
and middle layers of Broca’s area. The cortico-thalamic 
radiations from Broca’s area in turn originate from cor-
tical layers V and VI. Dysfunction in these pathways 
are important in aphasic patients with damage to the 
thalamic nuclei [76]. Our study opens the possibility of 
characterizing such layer-specific microcircuits, both in 
healthy and clinical populations, using ultra high field 
fMRI in the future.

Fourth, it is well recognized that functional connec-
tivity cannot decipher the direction of information flow 
between regions, where as many anatomical projections 
which we have based our hypothesis on, are in fact direc-
tional in nature. Therefore, the next logical steps would 
be to test whether directional connectivity models of 
fMRI such as dynamic causal modeling (DCM) [77] and 
Granger causality (GC) [78–81] are sensitive to direc-
tion-specific anatomical projections at the layer-level.

Fifth, we have used the DK atlas to identify regions of 
interest given the fact that it is widely used and avail-
able as a surface. However, better atlases are available for 
volume-based analysis, which are less coarse and homo-
geneous than the DK atlas. Using such an atlas in the sur-
face domain may improve the fidelity of the results.

Sixth, we do acknowledge that there may be regional 
specificity in the structure–function relationship, but 
previous evidence suggests that such specificity may be 
less for thalamo-cortical connections as well as inter-
hemispheric connections between homologous regions. 
In addition, not all cortical regions have six layers. There-
fore, it is reasonable to surmise that the broad nature of 
our hypotheses might have averaged out some effects 
and decreased their effect sizes. Testing more specific 
hypotheses in future studies may unravel the full extent 
of the utility of layer specific FC investigations.

Finally, we employed a gradient echo EPI sequence 
optimized for SNR and spatial resolution. The sequence 
used for data acquisition for testing FC-related hypoth-
eses at the laminar level could well be optimized in other 
ways. This includes using a spin echo sequence and 
trading sensitivity for a narrow SL-PSF, as well as using 
a multiband EPI sequence to obtain a shorter TR, pos-
sibly at the cost of SNR (but not spatial resolution). One 
way of increasing the spatial resolution further would be 
to restrict coverage to regions specifically relevant to the 
hypothesis being tested, but this would require a custom 
processing pipeline (other than the one in FreeSurfer) 
that does not require whole brain coverage. In summary, 
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our seminal study offers a lot of possibilities for investi-
gating the brain’s functional connectome at a more fine-
grained laminar spatial scale.

4 � Methods
4.1 � Data acquisition
Twenty healthy adult subjects (10 males, 10 females; 
24.5 ± 3.3  years of age) participated in this study. All 
subjects provided informed consent, and the experi-
mental protocols were approved by the Auburn Uni-
versity Institutional Review Board. High resolution 
resting state fMRI data was obtained from twenty 
healthy individuals using an EPI sequence with the fol-
lowing parameters: 37 slices acquired parallel to the 
AC–PC line, 0.85  mm × 0.85  mm × 1.5  mm voxels, TR/
TE: 3,000/28  ms, 70º flip angle, base/phase resolution 
234/100, A → P phase encode direction, iPAT GRAPPA 
acceleration factor = 3, interleaved acquisition, 100 time-
points. Data were acquired on a Siemens 7  T MAG-
NETOM outfitted with a 32-channel head coil by Nova 
Medical (Wilmington, MA). During resting state, the 
subjects were instructed to keep their head as still as pos-
sible, keep their eye open and let their mind wander and 
not think about anything specific.

A whole-brain high-resolution three-dimensional (3D) 
MPRAGE sequence (256 slices, 0.6 mm × 0.6 mm × 0.6 mm, 
TR/TE: 2,200/2.8, 7º flip angle, base/phase resolution 
384/100%, collected in an ascending fashion, acquisition 
time = 14:06 min) was used to acquire anatomical data.

4.2 � Functional MRI data preprocessing
First five timepoints were discarded from the analysis to 
allow for MR equilibration. Slicing time correction was 
applied, and all functional MRI data were motion cor-
rected using rigid body registration using SPM software 
(http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/). Next, linear trends 
were removed from each voxel time series. We also 
removed nuisance variance in the data by regressing out 
mean time series from ventricular CSF, white matter, as 
well as six head motion parameters. Importantly, spa-
tial smoothing and spatial normalization were not per-
formed. Spatial smoothing negates the advantages gained 
by smaller voxels sizes. In addition, spatial smoothing is 
employed in traditional general linear model based acti-
vation analysis to satisfy the assumptions of random field 
theory. We did not perform those kinds of analysis and 
hence found it unnecessary to spatially smooth the data. 
Next, the Freesurfer analysis pipeline enables individual-
specific cortical parcellation from which we extracted the 
time series used in the analysis. Therefore, we found that 
spatially normalizing the data into a common space and 
incurring the costs of blurring and registration errors 
associated with such a procedure was unnecessary and 

may be counter-productive for the small voxel size we 
had and the type of analysis we planned.

4.3 � Surface‑based MRI analysis
Cortical surface reconstruction of the cerebral cortex 
from magnetic resonance images is a major step in the 
quantitative analysis of the human brain structure. Cor-
tical reconstruction approaches with Freesurfer are opti-
mized for standard resolution (~ 1 mm) data. However, in 
this work, we applied Lüsebrink’s method to preprocess 
high-resolution anatomical MRI data with our original 
0.6 mm isotropic resolution using FreeSurfer 6 beta ver-
sion [82]. The white/gray and gray/CSF interfaces, as well 
as cortical thickness maps were automatically generated 
with FreeSurfer (Fig. 1). The surfaces generated by Free-
surfer are represented in the form of triangular meshes, 
and each triangle has three vertices. In addition, a set of 
3D coordinates of these surfaces gives the position of the 
vertices.

Once we obtained the white matter and pial surfaces, 
the laminar profiles were delineated within the cortical 
gray matter. They were constructed at fixed relative dis-
tance between the white matter and pial surfaces, deter-
mined from cortical thickness [21]. The position of each 
vertex on intermediate surfaces depends on the position 
of the correponding vertex on the white matter surface 
(Fig. 1). The first intermediate surface was located at 16% 
of cortical thickness away from the white matter surface, 
then at 32%, 48%, 64%, 80%, and 96% depths, giving us 
a total of 6 layers (Fig.  1). In addition, cortical regions 
defined on the inflated surface were automatically 
obtained from the Desikan–Killiany (DK) Atlas, includ-
ing the primary somatosensory cortex [9]. The whole 
thalamus was identified in MRI volume data using auto-
matic subcortical segmentation proposed by Fischl et al. 
[83]. We defined the sensory core thalamus (VPL) mask 
from the Oxford thalamic connectivity atlas [84] in com-
mon MNI space, and transformed the mask to each indi-
vidual’s coordinate space.

4.4 � Registration of functional MRI to anatomical MRI
To enable the analysis of laminar fMRI, we need to align 
the fMRI volumes to those intermediate laminar surfaces. 
Apparently, the gray/white matter boundary in the EPI 
volume is easily identified automatically. We employed a 
method called boundary-based registration (BBR) [85]. 
It identified the interface between gray matter and white 
matter in the EPI data and then calculated a 12 degrees 
of freedom affine transformation, which registers the 
interface in EPI data to the corresponding surface recon-
struction from the anatomical data (Fig.  2). After the 

http://www.fil.ion.ucl.ac.uk/spm/
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registration, the results were visually inspected for each 
subject and manually edited, if needed [85].

4.5 � The extraction of functional MRI data from different 
layers

The preprocessed fMRI volume data were then trans-
formed onto the six laminar surface reconstructions 
using the transformation matrix obtained in the previous 
step above. An average time series was extracted from the 
whole thalamus. This was done, because our first hypoth-
esis involved the M-type thalamus cells distributed in 
each nucleus of thalamus [59–64]. Next, time series from 
each vertex in 34 lateral cortical ROIs in the DK atlas [9] 
were extracted, separately for left and right hemispheres 
in each subject. The 68 ROIs’ mean time series corre-
sponding to the cortical ROIs were extracted for each 
of the 6 layers (Fig.  2). The regions in the DK atlas are 
defined on an inflated surface by manually tracing from 
the depth of one sulcus to another, thus incorporating 
the gyrus within. Therefore, unlike volume based ROIs 
that are affected by the folding pattern of sulci and gyri, 
the surface-based definition of DK atlas ROIs means that 
the results are not affected by the gyral and sulcal folding 
patterns.

4.6 � Blind deconvolution
After the time series in the preprocessed functional data 
were transformed onto the six laminar surface recon-
structions, we performed vertex by vertex (a vertex 
is a point on a triangle surface as explained before, see 
Fig.  1c) blind deconvolution [58] to get each vertex’s 
latent neural response and HRF.

Hemodynamic deconvolution of the BOLD signal is 
under the assumption that the relationship between a 
latent neural signal and the BOLD response can be mod-
eled as a linear and time invariant system, which can be 
described as follows:

where y(t) denotes the observed BOLD signal, x(t) 
denotes the underlying latent neural signal and h(t) and 
e(t) represent the HRF and the noise term in the meas-
urement, respectively. Since the three terms in right side 
are unobservable quantities, we consider the neuron 
activity term x(t) as a simple on–off model with series of 
delta functions x̂(t) as

(1)y(t) = x(t)⊗ h(t)+ e(t)

(2)x̂(t) =

∞
∑

τ=0

δ(t − τ).

Note that the delta functions modeling the events exist 
at random times, which essentially amounts to modeling 
the resting state data as an event-related paradigm with 
randomly occurring events. Then the HRF h(t) was fitted 
using a canonical HRF (two gamma functions) and two 
derivatives (temporal derivative and dispersion deriva-
tive). The parameters of h(t) were allowed to vary for 
each time series. The approximation ⌣

x(t) of the latent 
neural signal can be obtained from the observed data 
using a Wiener filter as described below:

where ⊗ denotes convolution. Applying Fourier trans-
forms to h(t) , y(t) , e(t) , and d(t) , respectively, we get 
H(ω) , Y (ω) , E(ω) , and D(ω) . D(ω) can be expressed as 
follows:

where ∗ denotes complex conjugate. The estimate ⌣x(t) of 
the latent neural signals x(t) is then given by

In Eq. 5,  F−1 is the inverse Fourier transform opera-
tor. Since the measurement noise e(t) is assumed to be 
white, the covariance of the noise term must be 0. For 
task-related fMRI, the stimulus function provides the 
prior information about neural activity and a generative 
model whose inversion corresponds to deconvolution. 
Here, resting state fMRI is considered as a spontaneous 
event-related signal, and these events can be reflected 
by relatively large amplitude BOLD signal peaks [58, 86]. 
Therefore, the time series from each vertex was evalu-
ated against a given amplitude threshold around the 
local maximum (threshold was set to 1, since the input 
time series were normalized) to obtain a set of estimated 
onsets (the timing of delta functions) for these pseudo-
events. To get the delay  τ (the delay between the peak 
of fMRI and the peak of neural signal), we searched all 
integers between [0 8] based on a previous study that 
reported 4–8 s latencies in the gray matter [87]. Then the 
optimal integer was chosen as τ for which the covariance 
of noise cov

(

y(t)− x̂(t)⊗ h(t)
)

 was smallest, to obtain 
the set of onsets. Subsequently, the vertex-by-vertex 
HRF was fitted and extracted with these pseudo-events. 
The readers are referred to Tagliazucchi et  al. [86] and 
Wu et  al. [58] for further details on the deconvolution 
method.

(3)
⌣
x(t) = d(t)⊗ y(t),

(4)D(ω) =
H∗(ω)

|H(ω)|2 + |E(ω)|2
,

(5)

⌣
x(t) = F

−1
{

D(ω)Y (ω)} = F
−1

{

H∗(ω)Y (ω)

|H(ω)|2 + |E(ω)|2

}

.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40708-​021-​00150-4.

Additional file 1: Fig. S1. The importance of performing hemodynamic 
deconvolution illustrated for two possible scenarios. (a) The BOLD fMRI 
signals are highly correlated (the bottom left panel), whereas the latent 
neural signals are not (the top left panel); (b) the underlying latent 
neural signals are highly synchronized (the top right panel); however, the 
correlation between the corresponding BOLD fMRI signals are low (the 
bottom right panel). Both scenarios result from the fact that the HRFs cor-
responding to the two signals are not the same and have a delay between 
them. Therefore, when convolved with the latent neural signals, they can 
introduce or nullify the shifts in the resulting BOLD signal. The (a) scenario 
can cause false positives, and (b) scenario lead to false negatives.
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