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Genomic interrogation of a MAGIC population
highlights genetic factors controlling fiber quality
traits in cotton
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Jack C. McCarty 3, Yingjie Xiao2, Jianying Li2, Xianlong Zhang2✉ & David D. Fang 1✉

Cotton (Gossypium hirsutum L.) fiber is the most important resource of natural and renewable

fiber for the textile industry. However, the understanding of genetic components and their

genome-wide interactions controlling fiber quality remains fragmentary. Here, we sequenced

a multiple-parent advanced-generation inter-cross (MAGIC) population, consisting of 550

individuals created by inter-crossing 11 founders, and established a mosaic genome map

through tracing the origin of haplotypes that share identity-by-descent (IBD). We performed

two complementary GWAS methods—SNP-based GWAS (sGWAS) and IBD-based haplo-

type GWAS (hGWAS). A total of 25 sQTLs and 14 hQTLs related to cotton fiber quality were

identified, of which 26 were novel QTLs. Two major QTLs detected by both GWAS methods

were responsible for fiber strength and length. The gene Ghir_D11G020400 (GhZF14)

encoding the MATE efflux family protein was identified as a novel candidate gene for fiber

length. Beyond the additive QTLs, we detected prevalent epistatic interactions that con-

tributed to the genetics of fiber quality, pinpointing another layer for trait variance. This study

provides new targets for future molecular design breeding of superior fiber quality.
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Cotton is the most important natural fiber used in the textile
industry, supporting a multibillion-dollar production and
processing industry. Cotton belongs to the genus Gossy-

pium that includes 45 diploid species (2n = 2× = 26) and 7
tetraploid species (2n = 4× = 52) with different morphology and
fiber characteristics1. There are four distinct but overlapping
stages during cotton fiber development: initiation, elongation,
secondary cell-wall biosynthesis, and maturation2. Spinnable lint
fibers initiate before or on the day of flowering and grow to a final
length of about 30 mm. Upland cotton (G. hirsutum L.) presently
accounts for ~95% of the worldwide cotton production and
dominates the world cotton commerce3. Consequently, improv-
ing the quality of Upland cotton is the main concern in most of
the world’s cotton breeding programs.

Cotton fiber-quality traits are quantitatively inherited, and
influenced by a variety of genes. In order to understand the
genetic basis of quantitative traits, many genetic algorithms have
been developed4–6. A genome-wide association study (GWAS) is
a population-based approach that takes advantage of the long
history of recombination events in natural populations to identify
small haplotype blocks associated with phenotypes of interest
across species-scale diversity. Genotyping has been the main
limitation of the GWAS method for a long time, but in the past
few years, advances in high-throughput sequencing and data
processing have facilitated the use of this approach not only in
model species, but also in crops7–14. However, this approach
is limited by the presence of rare alleles and confounding popu-
lation structure15.

The algorithms developed for GWAS can also be applied to
carefully designed multi-parent populations, where both problems
mentioned above can be mitigated to some degree because of
balanced allele frequency and controlled population structure15,16.
Various multi-parent genetic designs have been proposed,
including nested association mapping (NAM)17,18, multi-parent
advanced-generation inter-cross (MAGIC)19,20, random-open-
parent association mapping (ROAM)21,22, and the recently pre-
sented complete-diallel design plus unbalanced breeding-like
inter-cross (CUBIC)16. In plants, a MAGIC population was first
created in Arabidopsis19. Subsequently, more have been created in
numerous crop species, including rice23, wheat24,25, maize26,
tomato27, barley28, and cotton29,30. Compared to traditional bi-
parental populations, a MAGIC population has a higher potential
for more accurate quantitative trait locus (QTL) detection through
the segregation of higher genetic diversity, because the progeny
lines are mosaics with contributions from all founders. A study in
maize showed that a relatively small number of MAGIC lines can
achieve a high mapping power31. Furthermore, unlike natural
populations, the traceability of the pedigree within the MAGIC
population makes it possible to perform GWAS based on identity-
by-descent (IBD). IBD is a term used in genetics to describe a
matching segment of DNA shared by two or more individuals
that have been inherited from a common ancestor without
recombination. Detection of IBD segments provides a funda-
mental measure of genetic relatedness and plays an important role
in QTL mapping. Studies have shown that IBD-based GWAS is
complementary to conventional single-variant-based association
mapping and is particularly superior in the identification of QTL
with allelic series or small effects15,16.

For many traits, causal loci uncovered by genetic mapping stu-
dies explain only part of the heritable contribution to trait variation.
Multiple explanations for this “missing heritability” have been
proposed. One of them is the interaction between different loci
(epistasis)32. Epistatic interactions are the driving factors for the
rapid evolution of traits and phenotypic diversification16,33,34.
However, due to the limitations of genetic and genomic tools and
resources, the comprehensive breadth and significance of epistasis

in crop domestication and breeding are not well understood35. A
wider range of epistatic interactions can be tested in a MAGIC
design because a particular haplotype of a founder in one genomic
location occurs in combination with the haplotypes of many other
founders at different genomic regions26.

In this study, we performed two complementary GWAS
methods (single-variant-based GWAS (sGWAS) and IBD-based
haplotype GWAS (hGWAS)) to identify QTLs associated with
fiber-quality traits by using a cotton MAGIC population. Beyond
the additive QTLs obtained, we also found that epistasis was pre-
valent, and most epistatic pairs showed moderate effects, indicating
that epistatic interactions were as important as additive effects. The
full exploration of the genetic architecture of fiber-quality traits will
allow genomics-based cotton breeding in the future.

Results
Genetic diversity of the MAGIC population. Eleven cotton
cultivars, Acala Ultima (AU), Tamcot Pyramid (TP), Coker
315 (C315), Stoneville 825 (ST825), Fibermax 966 (FM966),
M240RNR (M240), Paymaster HS26 (HS26), Deltapine Acala 90
(DP90), Suregrow 747 (SG747), Phytogen PSC355 (PSC355) and
Stoneville 474 (ST474) (referred to parent numbers 1-11 in the
text, respectively) were crossed in a half-diallel design to produce
550 MAGIC recombinant inbred lines (RILs) (C5S6)29,36. To
dissect the genome architecture of this population, we performed
resequencing of each parent and RIL. A total of 1,548,294 high-
quality SNPs were identified (Fig. 1a and Supplementary Data 1).
Among these SNPs, 134,581 (8.69%) were located in gene regions,
79,909 (5.16%) were located in upstream or downstream regions
(variant overlaps 1-kb region upstream or downstream of tran-
scription start or end site) and 1,333,804 (86.15%) were located in
the intergenic regions. With splicing SNP defined as a variant
within 2-bp of a splicing junction, we annotated 16 splicing SNPs
in exonic regions and 270 in intronic regions (Supplementary
Data 1). In exonic regions, a total of 25,426 (1.64%) non-
synonymous SNPs (including stop-gain and stop-loss SNPs) were
identified in 12,257 genes (Supplementary Data 2). This rate was
much lower than that in rice (4.8%), but was similar to that
in maize (1.9%)37,38. The SNP distribution along the A and D
subgenomes (At and Dt, in which t indicates tetraploid) was
different and the SNP density in Dt was much higher (0.60 SNPs/
kb and 0.86 SNPs/kb in At and Dt, respectively). We found that
about 1.56% of SNP genotypes were heterozygous in the 550 RILs,
as expected after six generations of self-pollination.

We produced a neighbor-joining (NJ) phylogenetic tree and
found that the RILs are distributed at roughly equal distances
(Fig. 1b). Using principal component (PC) analysis of the full set of
SNPs, we found that the first two principal components only
explained 5.64% of the sample variance (Fig. 1c), indicating that
the RIL population had been successfully random-mated, and no
obvious structure was present. The linkage-disequilibrium (LD)
halving distances of the At and Dt subgenomes were 1750 and 1200
Kb (r2 = 0.33), respectively (Fig. 1d). The LD decay distance was
higher than that in natural populations of Upland cotton13,39,40.
All the above data indicated that the 550 MAGIC RILs were
not structured and had moderate LD, and thus were suitable
for GWAS.

IBD-based mosaic map of MAGIC RILs. To detect IBD seg-
ments, we performed an analysis with a hidden Markov model
(HMM) to infer the parental origin of every genomic segment in
each RIL. A total of 115,316 IBD segments were identified in 550
MAGIC RILs (Fig. 2a and Supplementary Data 3). The length of
the IBD segments per line varied, ranging from 0.1 to 119 Mb,
with an average length of 8.12 Mb (Fig. 2b). The mean length of
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IBD segments was 9.99 Mb and 6.09 Mb in the At and Dt sub-
genomes, respectively. This finding was consistent with At being
approximately 1.7 times the size of Dt

41. The number of IBD
segments per line ranged from 130 to 258, with an average
number of 210 (Supplementary Data 3). The mean number of
IBD segments was 109 and 101 in the At and Dt subgenomes,
respectively, indicating the recombination in At subgenome was
slightly more frequent (Fig. 2c). On average, 23.75% of the DNA
fragments were not traced back to any specific parent, pre-
sumably reflecting the co-ancestral origins. The eleven parents
had different contributions to the genomic composition of the
550 MAGIC RILs. The smallest was FM966 with a contribution
rate of 2.3%, and the largest was TP with a contribution rate of
14.3% (Fig. 2d).

Following the IBD analysis, we counted the recombination
events in a 2-Mb sliding window across the 550 MAGIC RILs and
found that recombination events mostly occurred in the regions
far away from the centromeres (Fig. 2a and Supplementary
Fig. 1). The average number of recombination events per
generation was also counted. On average, there were 38.1
recombination events (1.5 per chromosome) per generation in
each RIL, varying from 1 for chromosome (Chr.) D13 to 2.3 for
Chr. A05 (Supplementary Data 4).

According to the IBD blocks, a total of 46,204 recombination
breakpoints were identified, half of which had only one
recombinant event (Supplementary Data 5). However, there were
516 loci in which more than 50 recombination events occurred.

These loci were defined as recombination hot spots. The maximum
number of recombination events that occurred in a single 2-Mb
sliding window was 360 (Supplementary Data 5). The numbers of
recombination hot spots located in At and Dt subgenomes were
approximately equal (260 and 256 in At and Dt, respectively).

Genetic dissection of fiber-quality traits via two approaches.
Two model-based approaches, sGWAS and hGWAS, were used
to dissect the genetic basis of fiber-quality traits. These traits
comprised fiber elongation (FE), length (FL), strength (FS), uni-
formity (UI), and micronaire value (MIC) (Fig. 3). In sGWAS, a
total of 25 sQTLs were identified, of which 14 were novel QTLs.
Detailed information for the five fiber-quality traits across the
whole genome is given in Supplementary Data 6. There were 1856
genes in these sQTLs, of which 563 genes had non-synonymous
SNPs (Supplementary Data 7). Most detected QTLs had a mod-
erate additive effect, ranging from 0.23 to 0.56 standard devia-
tions for each trait, with an average of 0.36. Among these QTLs,
most could explain only a small portion of phenotypic variation,
with an average of 7.4%. However, four contributed more than
10% of the trait variance, including two loci for FE on Chr. D04
and D05, one locus for FS on Chr. A07, and one locus for UI on
Chr. A07 (Supplementary Data 6). In addition, we found that
the QTL on Chr. A07 was associated with both FS and UI, pos-
sibly explained by the observed strong phenotypic correlation
(Pearson correlation coefficient was 0.74) (Supplementary Fig. 2).
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Fig. 1 Diversity in the cotton MAGIC population. a Distribution of SNPs in 26 chromosomes. b Neighbor-joining tree of the 11 founders and 550 MAGIC
RILs, with founder labeled in blue. c A principal component analysis of the 11 founders and 550 MAGIC RILs using the full set of SNPs. Blue color represents
parents. Gray color represents RILs. d Decay of linkage-disequilibrium (LD) in the At and Dt subgenomes.
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The sQTL jointly explained 23.8% (5–37%) of the phenotypic
variation, much lower than the estimated heritability for each
trait (Supplementary Data 8).

We reconstructed the founder haplotypes in the MAGIC RILs
and performed hGWAS16 for FE, FL, FS, UI, and MIC. The 95th
percentile of 100 permuted likelihood ratio test (LRT) scores was
used as the significance threshold. The 37th percentile was used as
a suggestive significance threshold42. The suggestive threshold

was 10.55, 10.14, 10.35, 10.39, and 10.92 for FE, FL, FS, UI and
MIC, respectively. Peaks above the suggestive threshold were
identified as hQTL. A total of 14 significant loci were detected in
the four cotton fiber-quality traits (FL, FS, UI and MIC), of which
12 were novel QTLs. No significant hQTL was identified for FE
(Supplementary Data 9). There were 576 genes in these QTLs, of
which 157 had non-synonymous mutations (Supplementary
Data 10). These QTLs had small estimated effects with each
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explaining a small percentage of the phenotypic variance. The
phenotypic variance explained (PVE) by a single hQTL was 3.9%
to 10.4%, with an average of 6% (Supplementary Fig. 3a and
Supplementary Data 9). There was one hQTL located on Chr.
A07 contributed more than 10% of the trait variance for FS.
This FS QTL was at the same location identified by sGWAS. Only
two sQTL and hQTL were physically co-mapped (Supplementary
Fig. 3b), indicating that the two GWAS methods perform in a
complementary manner. The two methods identified 10 QTLs
that explained above 40% of the total variance for FL and FS,
respectively, whereas only 3 QTLs explained 13% of the variance
for MIC (Supplementary Data 8). sQTL and hQTL jointly
contributed an average of 32.8% of the phenotypic variance
(13–41% per trait) (Supplementary Data 8).

Identification of fiber strength-related genes. Due to the trace-
able IBD feature of a MAGIC population, one targeted strategy to
identify causal genes is to consider phenotypic differences between
individuals with distinct allelic statuses. The MAGIC RILs were first
categorized into parental IBD groups according to the peak bin of
GWAS. Because some parents may share the same QTL allele, the
parental IBD groups with phenotypically distinguishable status were
extracted. These IBD states were called functional alleles.

For FS, one large effect QTL was identified on Chr. A07 by
sGWAS and hGWAS (Fig. 3). The QTL contributed ~13% of the
trait variance, causing a change of 0.97 g/tex. By assessing the IBD
status of the peak bin (bin5216, LRT = 15.5), a total of 9 parental
IBD groups (n > 3) were observed (Fig. 4a, b). We found that the
fiber strength of these parental IBD groups was significantly
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Fig. 3 Manhattan plots for five fiber-quality traits based on two different GWAS methods. a SNP-based GWAS (sGWAS). Purple line represents the
significant threshold (−log10P = 6.43). b IBD-based GWAS (hGWAS). Green line and purple line represent significant and suggestive thresholds. The 95th
and 37th percentile of 100 permuted LRT scores were used as the significance threshold (LRT = 15.76, 15.14, 15.43, 15.83, 15.44) and suggestive threshold
(LRT = 10.55, 10.39, 10.35, 10.92, 10.14), respectively. The fiber traits include elongation (FE), length (FL), strength (FS), micronaire value (MIC), and
uniformity (UI).
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different (ANOVA, P = 4.8 × 10−9). The fiber strength of parent
7 (P7) descendent RILs was significantly higher than the average
of all RILs, and the fiber strength of P2-descendent RILs was
significantly lower than the average of all RILs (as determined by
two-tailed Student’s t-test, P < 0.01). There were 53 P7-
descendent RILs and 68 P2-descendent RILs. By comparing the
genotypes of the RILs between P7 and P2, we found three
adjacent SNPs in P7 with significantly altered allele frequency
compared to P2 (Fig. 4c). The three SNPs were A07:89284108,
A07:89292340, and A07:89310139, two of them were not found in
sGWAS. This result showed that hGWAS was particularly
superior in the identification of QTL with allelic series16. The
main genotype of A07:89284108 in P7-descendent RILs was CC
(95%), but in P2-descendent RILs it changed to TT (81%); for
A07:89292340 the change was AA (81%) to GG (78%); for
A07:89310139 it was GG (83%) to AA (93%). As some loci were
not genotyped because of the relatively low sequencing depth (3×
for RILs), the difference between P7- and P2-descendent RILs
may be more substantial (Fig. 4c). These three markers can be
used to conduct marker-assisted selection breeding.

Particularly, the phenotype of the parents was similar to that
of RILs, i.e., the fiber strength of parent 7 was higher than the

average value of all parents, and the fiber strength of parent 2
was lower than the average value of all parents (Fig. 4d). Thus
we integrated transcriptomic data of the 11 founders to predict
the more likely causal genes within the QTL interval by
hypothesizing that the cis-effects of the local haplotypic region
of each founder on the expression of genes in the nearby region
might cause some part of the phenotypic variation. Totally,
there were 11 genes in this hQTL region based on the genome
annotation information for Upland cotton TM-1. Among
these genes, the expression of Ghir_A07G020390 at 20 days
post-anthesis (DPA) showed a positive correlation with the
fiber strength (Fig. 4d, e). The previously identified gene
Gh_A07G176913 (corresponding to Ghir_A07G021030 in our
genome) is located in bin5239 (91.43–91.52 Mb). Neither this
bin (LRT = 8.9) nor its neighboring bins have reached a
significant level (LRT = 10.35), suggesting that this region
probably does not contribute much to phenotypic variation.

Identification of fiber length-related genes. We identified a QTL
in both GWAS analyses on Chr. D11 for FL. This QTL overlapped
with those identified in the previous studies43–45. According to the

Fig. 4 Inference of functional allelic types across parent IBD groups for FS on chromosome A07 (88.97-89.69 Mb) and identification of the candidate
genes. a Dot plot of hGWAS result for FS (top) and SNP distribution (bottom) surrounding the peak on chromosome A07. Red box indicates the position of
the most significant bin. Arrow indicates the position of candidate gene Ghir_A07G020390. b Boxplots for FS based on the different parent IBD groups (P)
(n > 3). Parent IBD group was defined by the different status of bin5216. Dashed line indicates the mean value of FS in all RILs. ANOVA (P = 4.8 × 10−9)
shows that the mean values of different parent IBD groups are not equal. Differences between RILs of a single parent IBD group and all RILs were analyzed
by a two-tailed Student’s t-test (***P < 0.001; **P < 0.1). The numbers in parentheses are the MAGIC RIL counts in each parent IBD group. c Percentage of
different genotypes of 3 SNPs located in bin5216 in HS26 and TP. d FS of parent HS26 and TP. P-value was calculated by Student’s t-test. Error bars,
standard error. e Expression of gene Ghir_A07G020390 in parent HS26 and TP at the cell-wall-thickening stage (20 DPA) of fiber development. P-value
was calculated by a two-tailed Student’s t-test. Error bars, standard error.
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states of the two most significant bins (bin16702 and bin16703; LRT
= 13.1 and 13.0, respectively), the RILs were categorized into 11
parental IBD groups. Each parental IBD group comprised 7-98
RILs. We found that the mean value of fiber length in each parental
IBD group was significantly different (ANOVA, P = 9 × 10−5).
Parent 7 contributed the short-FL haplotype and parent 2 con-
tributed the long-FL haplotype (two-tailed Student’s t-test, P < 0.01)
(Fig. 5a). Within the association region at D11:24.59–24.72 Mb, we
identified eleven genes. We integrated the expression-profiling data
of parents and functional annotation of the orthologs in Arabidopsis
to rapidly predict candidate genes associated with FL. In this can-
didate region, two (Ghir_D11G020390, Ghir_D11G020410) of
the eleven genes were not expressed, indicating they may be
merely silenced in fiber development. Three (Ghir_D11G020400,
Ghir_D11G020420, Ghir_D11G020460) of the expressed genes had
non-synonymous SNPs. Among the three genes, the expression
level of Ghir_D11G020400 (D11:2459616-24603237) showed a
dynamic change from 3 to 20 DPA during fiber development, with
the highest expression level at 12 DPA (Fig. 5b). This gene was a

homolog of the MATE efflux family protein gene (ZF14) which
encodes a plant MATE (multidrug and toxic compound extrusion)
transporter that is localized to the Golgi complex and small orga-
nelles and is involved in determining the rate of organ initiation in
Arabidopsis46. Four SNPs at the second exon of Ghir_D11G020400
(named GhZF14) resulted in amino acid changes. D11:24601150
(T/C) at the 2088-bp position in the relevant genome region (195-
bp position in the coding sequence (CDS)) resulted in an amino
acid change from isoleucine to methionine, D11:24600920 (G/C) at
2318 bp (425-bp in the CDS) resulted in an amino acid change
from proline to arginine, D11:24600167 (T/C) at 3071 bp (1178-bp
in the CDS) resulted in an amino acid change from asparagine to
serine, and D11:24600144 (C/T) at 3094 bp (1201-bp in the CDS)
resulted in an amino acid change from alanine to threonine
(Fig. 5c). According to these four non-synonymous SNPs, we found
two alleles (n > 3) in the 550 MAGIC RILs, named Allele_1
(T_G_T_C) and Allele_2 (C_C_C_T). Allele_1 may descend from
parent 7 (homozygous in the region) or parent 1, or 2 (hetero-
zygous in the region). The mean FL value of the two haplotypes

Fig. 5 Inference of functional allelic types across parent IBD groups for FL on chromosome D11 (24.25-24.72 Mb) and identification of candidate
genes. a Boxplots for FL based on the different parent IBD groups (P). Parent IBD group was defined by the different status of bin16702 and bin16703.
Dashed line indicates the mean of FL in all RILs. ANOVA (P = 9 × 10−5) shows that the mean values of different parent IBD groups are not equal.
Differences between RILs of a single parent IBD group and all RILs were analyzed by a two-tailed Student’s t-test (***P < 0.001; **P < 0.01). The numbers in
parentheses are the MAGIC RIL counts in each parent IBD group. b Expression level of GhZF14 from 3 to 20 days post-anthesis (DPA) during fiber
development. Error bars represent s.d. c Gene structure of GhZF14. Blue rectangles, yellow rectangles, and black lines indicate UTR, CDS, and intron,
respectively. d Box plots for fiber length with the two functional alleles shown above (n = 448 vs. 36). Center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× the interquartile range. e Expression of gene Ghir_D11G020400 in parent HS26 and TP at 8 DPA and 10 DPA of fiber development.
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showed a significant difference (P= 1.8 × 10−4, two-tailed Student’s
t-test) and Allele_1 increased the value of FL by 0.84 mm compared
to Allele_2 (Fig. 5d). Moreover, the fiber length of parent 2 was
longer compared to parent 7, with an increased expression level of
Ghir_D11G020400 (Fig. 5e). We noticed that the previously
reported KRP6 gene13,43 was located in the bin16698 adjacent to
the significant region identified by hGWAS (bin16699-16703;
24.46–24.72 Mb). However, the LRT value from bin16699 (LRT =
11.1) to bin16698 (LRT = 6.8) dropped rapidly, indicating that
there was probably no major gene in bin16698. Considering all
evidence together, the gene Ghir_D11G020400 encoding the MATE
efflux family protein was identified as a more likely causal gene for
the FL QTL.

Epistasis serving as a major contributor to trait variance.
Epistasis refers to the interaction between alleles from different
loci. Following the identification of QTLs by genome-wide asso-
ciation analysis, we then focused on the detection of effects that
might not be identified by using single-locus tests. A total of
581 significant epistatic interactions (epiQTL) were identified for
the five fiber-quality traits and most epistatic pairs showed
moderate effects, explaining 4% of the phenotypic variations on
average (Fig. 6a, b and Supplementary Data 11). This indicated
that epistasis was important for fiber-quality trait variance. In
detail, there were 195 pairs of epistasis for FE, 52 for FL, 193 for
FS, 72 for UI, and 69 for MIC. For FE and FS, nearly 200 sig-
nificant interacting loci were identified, indicating that epistasis
played a more important role in these two traits than other fiber-
quality traits. According to the subgenome of interacting loci, the
epistasis was classified into three types: AA, AD, and DD. The
proportion of DD epistasis was very low in UI (5%) and FE (8%)
(Fig. 6a and Supplementary Fig. 4, Supplementary Data 11, 12).
The proportion of AD epistasis was relatively higher in FE
compared to other traits, probably because an epistatic hotspot
existed on Chr. D09 (Fig. 6a). For example, the epistatic effect
between two genetic loci for FE—one on Chr. D09 and the other
on Chr. A10 is only found when the genotype of D09:35396780
was considered, as there was no difference between the mean FE
value of the two genotypes (Fig. 6c). When two loci were con-
sidered, the effect of D09:35396780 on the phenotype changed
depending on the genotype of A10:58433793 (Fig. 6d).

With the interval of epiQTL defined as the physical position
range delimited by the bin, we found that some epiQTLs were
linked to significant loci identified by sGWAS for FE, FS, and UI
(Supplementary Data 13 and Supplementary Fig. 5). The propor-
tions were 36.31%, 16.67% and 16.92%, respectively (Fig. 6e). For
example, A07:91848027 was a significant locus detected by sGWAS
for FS. The phenotypic values of the two genotypes (CC and TT) at
this locus were significantly different. The mean FS values of CC
and TT were 30.36 and 32.04 g/tex respectively. This locus had an
epistatic interaction with another locus (A08:48184391; AA/GG),
in which the phenotype of plants with the superior allele at
A07:91848027 was further enhanced by the genotype of GG at
A08:48184391 (i.e., the phenotypic value increased from 30.04 in
AATT to 35.09 g/tex in GGTT) (Supplementary Fig. 6). These
results indicated some sQTLs may interact with other loci and
jointly regulate the development of cotton fiber. Furthermore, we
found the recombination frequency in the epiQTL regions was
much lower than the random level (Fig. 6f), suggesting that epiQTL
regions may be experiencing selection.

Discussion
One main purpose in plant genetics is to identify the genes
(or sequence variants, not all of which are coding genes)
responsible for phenotypic variation associated with agronomic

traits. A low diversity of the mapping population, small QTL
effect, and low frequency of the causal variants are the main
factors that influence the comprehensive dissection of the
genetic basis of complex traits47. The creation of inbred lines
derived from multi-parent cross designs has been used to solve
these problems. Here we presented an analysis of a MAGIC
population in cotton. Conceptually, the MAGIC design requires
all parents to be intercrossed in multiple rounds, resulting in a
balanced parent composition and numerous recombination
events in the offspring, which is critical for improving statistical
power and mapping resolution48. In our population, the con-
tribution for each parent in genome level ranged between 2.3%
for FM966 and 14.3% for TP. The contribution rate was com-
parable to that reported by Liu et al. (min: 0.5%; max: 13.4%) in
maize16. In order to boost power for the identification of minor-
effect and low-frequency variants, we performed two GWAS
methods—SNP-based GWAS and IBD-based GWAS. Few QTLs
identified by both statistical approaches were physically co-
mapped, indicating that the two GWAS methods worked in a
complementary manner. The additive QTLs jointly contributed
an average of 32.8% of the phenotypic variance (13–41% per
trait). The result was much lower than that in a maize CUBIC
population (71%)16, probably because the overall genetic
diversity in cultivated cotton was very low even though these 11
founders were selected to represent the wide spectrum of
diversity within the US cotton cultivars29,49. Finally, we tested a
wide range of epistatic interactions in the MAGIC population
and found epistasis was prevalent and significantly contributed
to phenotypic variance, indicating that epistasis is important for
fiber-quality traits.

The large number of recombination that accumulated during the
eleven generations of MAGIC population development ensured a
very high resolution to the GWAS mapping approach. In this study,
we mapped a major QTL for FL located in D11:24.59–24.72 using
IBD-based GWAS. This QTL contributed to 7% of the FL variance,
causing a change in fiber length of 0.84 mm. This candidate region
containing 11 genes and the likely causal gene Ghir_D11G020400
(GhZF14) was identified by integrating the expression-profiling
data of the 11 parental lines. Ghir_D11G020400 showed a dynamic
change from 3 to 20 DPA during fiber development. Although there
has been no functional characterization of Ghir_D11G020400
in cotton, its homologous gene AT1G58340 has clear functional
information. AT1G58340 is a member of a subgroup of MATE
transporter genes that regulate hypocotyl cell elongation in
Arabidopsis46. Another large effect QTL was identified on Chr.
A07 for FS. For this QTL, we used an approach of searching for
genes whose transcription patterns matched the founder allele QTL
effects, by hypothesizing that the cis-effects of the local haplotypic
region of each founder on the expression of genes within the same
region might cause some part of the phenotypic variation. The
expression level of Ghir_A07G020390 at 20 DPA showed a positive
correlation with fiber strength. Thus this gene could be a candidate
gene for this QTL.

Although a very large number of genetic variants were iden-
tified in our study, only a few were located in genes. It is rea-
sonable to assume that many other genetic variants may have a
regulatory role in gene expression. In our previous study, an
eQTL hotspot that could regulate the expression of 962 genes was
identified by using a natural population of Upland cotton43.
Interestingly, that eQTL hotspot is very close to the major QTL
for FL on Chr. D11 (24.59–24.73 Mb). We also identified several
2-Mb regions where hundreds of recombination breakpoints
occurred during the development of the MAGIC population.
These regions may have relatively open chromatin structures and
possibly be involved in important biological processes50,51. Fur-
ther work will be necessary to investigate the regulatory roles of

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03022-7

8 COMMUNICATIONS BIOLOGY |            (2022) 5:60 | https://doi.org/10.1038/s42003-022-03022-7 | www.nature.com/commsbio

www.nature.com/commsbio


these loci. In summary, our work made an effort to fully explore
the genetic architecture of cotton quality traits, including additive
effect and epistatic interactions, and should facilitate future
breeding for fiber quality by pyramiding the elite alleles.

Methods
Plant materials. The MAGIC population consisting of 550 recombinant inbred
lines (RILs) was derived from crosses between eleven cotton lines (10 cultivars and
1 breeding line) that represent a diverse group of non-related cotton lines. The
details of the population development were described before29,36,52. Briefly, the
eleven parents were crossed in a half-diallel to establish 55 families. Using 55 F1
crosses as the founding populations, random mating by a bulked pollen approach

was performed for five generations. After five cycles of random mating, self-
pollination was followed for six generations using single seed descent. Ten lines
were randomly selected from each of these 55 founding populations and a new
population including 550 RILs was created.

Field experiments and phenotyping. Phenotyping of fiber quality-related traits
was performed in 12 natural environments at 4 different locations from 2009 to
2015. The MAGIC RILs and eleven parents were planted in Starkville, MS, in
2009–2011, and 2014–2016; in Florence, SC, in 2014–2016; and in Stoneville, MS,
in 2013–2015. Detailed information is given in a previous study53.

Estimating breeding value. The best linear unbiased predictor (BLUP) value for
each trait of each RIL was calculated across all replicates, years, and locations using

Fig. 6 Characterization of epistatic contribution to trait variance. a Significant epistasis for FE. The epistatic analyses for other traits are shown in
Supplementary Fig. 4. Gray line, AA epistasis; blue line, DD epistasis; yellow line, AD epistasis. b The number of significant epistasis for different traits.
c Boxplot of FE in two genotypes at SNP D09:35396780 locus. t-test shows there is no difference between the two genotypes. d Interaction plot for
epistasis between two SNPs (D09:35396780 × A10:58433793). This plot displays the relationship between D09:35396780 and A10:58433793 at two
values of A10:58433793. e Different ratios for identified epiQTL linked with significant SNPs identified by sGWAS. Orange color, epiQTL linked with a
significant SNP; blue color, neither of two interacting loci linked with any significant SNP. f Fraction of recombinants encompassing interacting pairs of loci
between epiQTL and random distal pairs.
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the mixed linear model in the R package “lme4”54. The formula was “model =
lmer(phenotype ~ (1|line) + (1|location) + (1|year) + (1|(replicate: location):year) +
(1|line: location) + (1|line:year))”.

Genome sequencing. The 550 MAGIC RILs and their 11 parental lines were
grown in a greenhouse in 2013 in New Orleans, Louisiana, USA. Young leaves were
collected from 10 plants of each RIL or parent and stored at −80 °C. Genomic
DNA was extracted from the frozen leaves using a CTAB method with an addi-
tional RNAase A digestion steps as described previously52,55. Genomic DNA was
sent to Novogene (Chula Vista, CA, USA) for library preparation and the whole
genome was sequenced using Illumina HiSeq 2500 with 150 bp end-paired reads. A
total of 4.4 TB of sequencing data from 550 RILs (~3× coverage for each) and 550
GB from 11 parents (~20× coverage for each) were obtained53.

Mapping and sequence variant calling. Paired-end resequencing reads were
mapped to the Upland cotton TM-1 genome41 with Burrows–Wheeler-Aligner
(BWA) software (the BWA-MEM command) using the default parameters56.
We used SAMtools to convert the mapping result to the BAM format57. The PCR
duplicates of sequencing reads for each accession were filtered with the Picard
package, and uniquely mapping reads were retained in BAM format. SNP calling
was performed using GATK toolkit58.

Annotation of genetic variants. SNP annotation was performed according to the
Upland cotton TM-1 genome in the package ANNOVAR59 (version: 2017-07-16).
We performed gene-based annotation to identify non-synonymous SNPs that
cause protein-coding changes. SNPs were categorized in exonic regions, intronic
regions, and intergenic regions. SNPs in coding exons were further grouped into
synonymous SNPs or non-synonymous SNPs; in addition, mutations causing stop-
gain or loss were also classified in this group.

Phylogenetic tree and population structure. To conduct the phylogenetic analysis,
SNPs of all MAGIC RILs were filtered with minor allele frequency (MAF) = 0.05.
These SNPs were used to construct a neighbor-joining tree with PHYLIP software and
were visualized with the online interactive tree of life (iTOL) tool (https://itol.embl.de/).
Principal components analysis (PCA) was performed with this SNP set with the
SMARTPCA program embedded in the EIGENSOFT package60.

Linkage-disequilibrium (LD) analysis. The software PLINK61 was used to cal-
culate the LD coefficient (r2) between pairwise high-quality SNPs; the parameters
were set as: ‘–ld-window-r2 0 –ld-window 99999 –ld-window-kb 1000’. LD decay
was calculated on the basis of r2 between two SNPs and averaged in 5-kb windows
with a maximum distance of 2 Mb.

Mosaic map tracing IBD origins. A hidden Markov Model (HMM) was used to
reconstruct the genome of each progeny RIL, since each RIL was made up of IBD
segments of the founder genomes. The biallelic SNPs cannot distinguish between
all founders, so HMM used the neighboring SNPs to estimate the posterior
probability of the offspring line being descended from a given founder. The IBD
state is built as the founder with the maximum posterior probability, only if this
probability is twice the random probability (1/11); otherwise, it was considered an
unknown state16.

IBD-based GWAS. The genome of each MAGIC RIL was divided into 18,003 bins
(Supplementary Data 14 and Supplementary Fig. 7) based on all identified recom-
bination breakpoints. In each bin, there was only one IBD state for a given RIL, but
7–11 IBD states were available across all 550 RILs. When calculated, the bins were
reformatted as dummy variables. The hGWAS was performed using a mixed linear
model, by treating bin and polygenic effects as random effects and the top 10 principal
components as fixed effects. The restricted maximum likelihood (REML) was used to
test the significance of each bin16. The 95th percentile of the permuted LRT scores
was chosen as a high significance threshold for each trait. The 37th percentile was
used as a suggestive significance threshold for all traits42. The suggestive significance
threshold ranged from 10.14 to 10.91 for five fiber-quality traits. Significant bins were
merged into a locus (or hQTL) with nearby positions (≤1 Mb) or located within ≤5
bins. The interval of each hQTL was defined as the physical position range delimited
by the significant bin.

SNP-based GWAS. In total, 1,548,294 high-quality SNPs (MAF ≥ 0.05) were used to
perform sGWAS. Association analysis was carried out using FAST-LMM (v.2.02)
programs62. Kinship was calculated based on these SNPs. The significance threshold
for the association was set to 6.5 × 10−7, which was equal to 1/n, where n is the total
number of genomic SNPs. To interpret GWAS results, significantly associated SNPs
for each trait were first grouped into one locus in which two adjacent SNPs were less
than 700 Kb (r2 = 0.4). The consecutive loci were further merged into a single locus if
any significant SNPs between adjacent loci were in LD. The significant loci were
treated as sQTL, the peak SNP defined the significance of the sQTL, and the extended
region of significant SNPs was defined as the sQTL interval.

Epistasis analysis. SNPs were first filtered for frequency (MAF ≥ 5%) and linkage-
disequilibrium (PLINK 1.9; r2 < 0.5, window size = 50 Kb, step = 5 SNPs). For
each trait, the PLINK program (–epistasis) was used to test for SNP × SNP epis-
tasis. As a default setting, pairs of loci with P-value > 1 × 10−4 was to output.
Considering covariate, linear regression with controlling of population structure
and additive effect was performed for each putative epistatic pair. Then the P-value
was adjusted using Bonferroni correction and those with adjusted P-values < 0.01
were kept as instances of significant epistasis. To estimate the trait variance
explained by epistasis, the covariates and additive effects of epistatic pairs were first
regressed out, and the residuals for each trait were further regressed against the
interacting items. All the calculations were done in R using lm() function.

Gene expression analysis. About 50 plants from each of 11 parents were grown
during the summer of 2015 in a field in New Orleans, LA. The bolls were collected at
five time points, representing early elongation (3 DPA), fast elongation (8, 12 DPA),
transition to secondary cell-wall synthesis (16, 20 DPA). Bolls were randomly grouped
into three groups to represent 3 biological replicates. The number of bolls per bulked
sample varied, with a greater number of bolls required for the earliest time-point.
Harvested bolls were placed immediately on ice and transported to the laboratory
where they were dissected on ice, frozen in liquid nitrogen, and stored at −80 °C.
Total RNA was isolated from detached fibers using the Sigma Spectrum Plant Total
RNA Kit (Sigma-Aldrich, St. Louis, MO) as described before44.

RNA samples from each of the parental lines were sequenced with the paired-
end Illumina platform (Platform PE150). The 8 DPA samples were sequenced with
three biological replicates, while other DPA samples were sequenced with two
replicates. Over 50 million paired raw reads were obtained per sample. Library
preparation and sequencing were performed by Novogene Corporation (Chula
Vista, CA, USA). The clean reads were mapped to the Upland cotton TM-1
genome with Hisat2 (version 2.1.0)63. The expression level of each gene was
determined with Stringtie (version 1.3.5)64.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data are available in NCBI https://www.ncbi.nlm.nih.gov/, with a
Bioproject ID PRJNA789329. The SNP data used in this study are available in https://
doi.org/10.6084/m9.figshare.17065469. The authors declare that the other data
supporting the findings of this study are available in the Supplementary Information file
and Supplementary Data 1–14.
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