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|dentification of a diarylpentanoid-producing
polyketide synthase revealing an unusual
biosynthetic pathway of 2-(2-phenylethyl)
chromones in agarwood
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Takeshi Kodama?, Yuan-E Lee?, Ze-Kun Zhang1, Chin-Piow Wongz, Qian-Qian LiuZ, Bo-Wen Qi' Juan Wang1,
Jun Li® ", Xiao Liu® !, Ikuro Abe® 3, Hiroyuki Morita 2 Peng-Fei Tu 145 & She-Po Shi@ 1®

2-(2-Phenylethyl)chromones (PECs) are the principal constituents contributing to the dis-
tinctive fragrance of agarwood. How PECs are biosynthesized is currently unknown. In this
work, we describe a diarylpentanoid-producing polyketide synthase (PECPS) identified from
Aquilaria sinensis. Through biotransformation experiments using fluorine-labeled substrate,
transient expression of PECPS in Nicotiana benthamiana, and knockdown of PECPS expression
in A. sinensis calli, we demonstrate that the C¢-Cs5-Cg scaffold of diarylpentanoid is the
common precursor of PECs, and PECPS plays a crucial role in PECs biosynthesis. Crystal
structure (1.98 A) analyses and site-directed mutagenesis reveal that, due to its small active
site cavity (247 A3), PECPS employs a one-pot formation mechanism including a “diketide-
CoA intermediate-released” step for the formation of the C¢-Cs5-Cg¢ scaffold. The identifi-
cation of PECPS, the pivotal enzyme of PECs biosynthesis, provides insight into not only the
feasibility of overproduction of pharmaceutically important PECs using metabolic engineering
approaches, but also further exploration of how agarwood is formed.
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garwood, also known as aloeswood, gaharu, eaglewood,
jinkoh and Chenxiang, is a quite expensive resinous wood
gradually formed by Thymelaeaceae plants in response to
abiotic and/or biotic stresses such as fungal infection, hurricane
wounds, and insect bites!2. Agarwood is widely used in Oriental
medicine as digestive, sedative, and antiemetic agents for the
treatment of stomachache, emesis, and insomnia3. In addition,
agarwood is an important aromatic ingredient in perfumes,
incense ceremonies, and craft production because of its unique
and pleasant fragrance?->. However, as a pathological product of
Thymelaeaceae plants, high-quality agarwood is extremely rare
due to its infrequent occurrence in natural environments and
long forming period. With the ever-increasing market demand
for agarwood, the ecology of wild agarwood-producing plants has
been destroyed due to overharvesting and excessive logging®-8.
Accordingly, wild agarwood-producing plants, such as Aquilaria
spp. and Gyrnops spp., were included in Appendix II of the
Convention of International Trade in Endangered Species of Wild
Fauna and Flora (CITES). Consequently, artificial cultivation of
agarwood-producing plants has recently caused widespread
concern in China, Indonesia, Cambodia, Thailand, Vietnam, and
some other countries, and a variety of artificial agarwood
induction techniques including fungal inoculation, physical
damage such as trunk pruning and burning-chisel drilling, and
chemical elicitation have been developed®~13. However, the
quality and yield of agarwood produced using these artificial
approaches are less than satisfactory. Hence, it is of great interest
to unveil the molecular mechanism to thereby artificially
manipulate the process of agarwood formation. It has been
demonstrated that the formation of agarwood is characteristically
accompanied by the synthesis and accumulation of sesquiterpe-
noids and 2-(2-phenylethyl)chromones (PECs), which are the
principal constituents contributing to the important biological
activities and the pleasant fragrance of agarwood!4-17. To deci-
pher the molecular mechanism of agarwood formation, great
efforts have been made in the past decade to explore the bio-
synthesis of these two classes of chemicals in agarwood. Although
the enzymes involved in the biosynthetic pathway of agarwood
sesquiterpenoids have been reported!8-24, the biosynthesis of
PECs currently remains completely unknown.
PECs are a subgroup of chromones that characteristically bear
a phenylethyl group at the C-2 position. Since the first natural
PEC, flindersiachromone, was elucidated in 19762°, nearly 250
PECs have been isolated exclusively from agarwood!4-17:26-29 In
the Chinese pharmacopeia, PECs were legally assigned as diag-
nostic constituents for evaluating the quality of agarwood. Based
on the core structures, PECs could be classified into three groups:
flindersiachromones (FDC-type), oxidoagarochromones (OAC-
type), and agarotetrolchromones (ATC-type) (Fig. la). The
flexible variations of the substituents on the core structures and
the complex stereochemical configurations occurring in OAC-
and ATC-type PECs have greatly expanded the structural
diversity and chemical complexity of PECs. Recently, PEC
dimers30-34, trimers34-3%, and PEC-sesquiterpene hybrids37-3°
have also been reported. Remarkably, recent studies have
revealed that PECs possess a broad spectrum of bioactivities,
such as neuroprotective, acetylcholine esterase inhibitory*!,
anti-inflammatory#?43, and antibacterial**. In particular, PECs
GYF-17 and GYF-21 were demonstrated to be promising inhi-
bitors of the STAT1/3 signaling pathway*>4°, and 5-hydroxy-2-
(2-phenylethyl)chromone (5-HPEC) was reported to be a selec-
tive antagonist of the 5-HT,p receptor?’:48. Thus, elucidation of
the biosynthetic pathway of PECs would not only inspire the
biomimetic or enzymatic synthesis of structurally diverse and
chemically complex PECs but also benefit the industries that
depend on agarwood.

In this work, we demonstrated that PECs in agarwood are
biosynthesized from a common precursor featuring a Cs—Cs—Cg
skeleton produced by a diarylpentanoid-producing polyketide
synthase, hereafter named 2-(2-phenylethyl)chromone precursor
synthase (PECPS). Crystal structure analyses suggested that
PECPS utilizes unique catalytic machinery with the formation
and release of a diketide-CoA intermediate to form the C4-C5-Cg
scaffold, which has not been previously reported in other known
type III polyketide synthases (PKSs).

Results and discussion

Cloning PECPS from Agquilaria sinensis. We have previously
reported structurally diverse PECs produced by A. sinensis calli in
150 mM NaCl treated conditions (Supplementary Fig. 1), as well
as RNA sequencing of these PEC-producing calli treated with
NaCl and PEC-nonproducing healthy calli*”. Considering the
high similarity of the backbone structures of PECs to those of
flavonoids biosynthesized by type III PKSs, this type of enzyme
might also play an important role in the biosynthesis of PECs.
Accordingly, comprehensively screening the transcriptomic
dataset led to the identification of five PKS genes with upregulated
expression. Initially, we focused on the cloning and functional
analysis of AsCHSI, which showed the most significantly upre-
gulated expression among the five candidates. However, AsCHSI
cloned from A. sinensis always contains an intron and cannot be
heterologously expressed in Escherichia coli even after removal of
the intron. Therefore, we switched to identify the catalytic func-
tions of the other four candidate genes, which resulted in the
identification of one chalcone-producing PKS (AsCHS) and two
pyrone-producing PKSs (AsPKS1 and AsPKS2)*. The last
remaining candidate gene encodes a PKS (PECPS) sharing high
amino acid sequence identity with the other four PKSs, as well as
the highest 93% similarity with AsCHSI, and this gene maintains
the Cys-His-Asn catalytic triad conserved in all known type III
PKSs (Supplementary Fig. 2). Phylogenetic analysis revealed that
PECPS was grouped into the class of plant non-chalcone syn-
thases (Supplementary Fig. 3). Fortunately, the full-length PECPS
protein could be easily expressed in E. coli as a fusion protein with
a hexahistidine tag at the N-terminus. The purified recombinant
PECPS migrated as a single band with a molecular weight of
approximately 40 kDa on SDS-PAGE, which is consistent with
the calculated molecular weight of 43kDa (Supplementary
Fig. 4a). In contrast, size-exclusion chromatography indicated a
homodimeric protein with a molecular weight of approximately
86 kDa (Supplementary Fig. 4b).

Determination of the enzymatic activity of PECPS. Considering
that PECs contain a phenylethyl moiety, 4-hydroxyphenylpropionyl-
CoA, rather than p-coumaroyl-CoA, was deliberately selected as the
starter substrate for the reaction with malonyl-CoA, a canonical
chain extender for PKSs, and the recombinant PECPS. The reaction
specifically generated a diarylheptanoid C4—C,~Cg scaffold assigned
as tetrahydrobisdemethoxycurcumin (1) (Fig. 1a, b, Supplementary
Fig. 5, and Supplementary Table 1), since diarylheptanoid derivatives
have never been isolated from agarwood. The construction of a
Cs—C5—Cs scaffold by coincubation of benzoyl-CoA, malonyl-CoA,
and 4-hydroxyphenylpropionyl-CoA was attempted. As expected, in
addition to the production of 1, an unknown product (2) with a
deduced molecular formula of C,,H;c05 (m/z 267.1027 [M - H]™,
calc. for C;,H;50; 267.1027) was generated (Fig. 1b). Through NMR
investigation, product 2 was elucidated as 5-(4-hydroxyphenyl)-1-
phenylpentane-1,3-dione (Supplementary Fig. 6 and Supplementary
Table 1), a diarylpentanoid with a C4~Cs—C4 backbone. Interestingly,
diarylpentanoids have been isolated from agarwood”!. Further qRT-
PCR (Supplementary Fig. 7) and western blot analysis using a specific
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Fig. 1 Representative 2-(2-phenylethyl)chromone skeletons and the identification of PECPS. a The core structures of three groups of 2-(2-phenylethyl)
chromones and enzymatic products 1 and 2. b HPLC chromatograms for the formation of the C¢-C5-Cg scaffold of tetrahydrobisdemethoxycurcumin (1)
from 4-hydroxyphenylpropionyl-CoA and malonyl-CoA by PECPS (i), The formation of the C¢-Cs-Cgq scaffold of 5-(4-hydroxyphenyl)-1-phenylpentane-1,3-
dione (2) from benzoyl-CoA, malonyl-CoA, and 4-hydroxyphenylpropionyl-CoA by PECPS (ii) and boiled PECPS (iii). ¢ Western blot analysis of the PECPS
protein expression levels in 150 mM NaCl-treated A. sinensis calli (NaCl+-) and healthy A. sinensis calli (NaCl-) at different time points. GAPDH was used as
internal reference. d Western blot quantification of the relative expression levels of PECPS by ImageJ and normalization to the protein levels of GAPDH.
Data represent the mean = SD (n = 3). Statistical analysis was performed with unpaired two-tailed Student'’s t-tests. Significance is shown with asterisks:
****p < 0.0001, ***p <0.001, **p < 0.01. Exact p-values and source data are provided in the source data file. Total protein was extracted from 100 mg of calli
using Plant Total Protein Extraction Reagent (Invent, USA) according to the manufacturer's instructions. The protein expression levels of PECPS were
analyzed by Western blotting with an anti-PECPS antibody prepared in rabbits.

antibody against PECPS prepared in rabbits (Fig. 1c, d) revealed that
the expression level of PECPS in NaCl-stressed cells notably
increased, suggesting the possible involvement of PECPS in the
biosynthesis of PECs. Accordingly, we speculated that PECs are
biosynthesized from a common precursor featuring a C4—Cs5-Cg
skeleton produced by PECPS, differing from the biosynthesis of
flavonoids derived from a common precursor of naringenin chalcone
which is generated via Claisen-type cyclization of a linear tetraketide
intermediate produced by chalcone synthase (CHS) from p-cou-
maroyl-CoA and three malonyl-CoAs®>>.

Biotransformation of diarylpentanoid-precursor into PECs. To
verify the aforementioned hypothesis that diarylpentanoid is the
common precursor of PECs, substrate-feeding experiments were
performed. First, a putative innate-substrate, 5-(4-hydro-
xyphenyl)-1-phenylpentane-1,3-dione (2), was fed to NaCl-
stressed A. sinensis cells, and its metabolites were carefully ana-
lyzed by LC-MS. In the presence of substrate 2, the accumulation
of PECs (P1-P5) in substrate-fed cells visibly increased (Fig. 2a),
suggesting that 2 might be converted to PECs. Next, the fluorine-
containing nonphysiological substrate 5-(4-F-phenyl)-1-phe-
nylpentane-1,3-dione (F-2) was fed to NaCl-stressed A. sinensis
cells. As a result, 10 fluorinated PECs (C01-C10) were success-
fully obtained by LC-MS guided separation and purification
(Fig. 2b and Supplementary Fig. 8), and the structures of
C01-C06 were unequivocally determined by extensive spectro-
scopic techniques, including 'H-NMR, 13C-NMR and HRESI-MS
(Supplementary Figs. 9-14 and Supplementary Tables 2 and 3).

Unfortunately, attempts to elucidate the structures of compounds
C07-C10 by NMR techniques were complicated by their small
yields. However, the HRESI-MS spectra of C07-C10 indicated
the characteristic cleavage of PECs, which tends to yield a
fluorine-containing benzyl fragment, allowing us to tentatively
determine the structures of C07-C10 (Supplementary
Figs. 15-18). Interestingly, the fluorinated PECs (C01-C10) are
the analogs in which the F atoms replaced the OH groups of the
natural PECs. Honda and coworkers proposed that OAC-type
PECs are the key precursors of FDC- and ATC-type PECs>%.
However, feeding experiments demonstrated that the C4—Cs—Cs
scaffold is a key precursor to form flindersiachromone (C01), the
simplest FDC-type PEC, and CO01 then serves as a key inter-
mediate to form structurally diverse FDC-type PECs (C02-C09)
via hydroxylation and subsequent O-methyltransfer reactions
(Fig. 2b). Furthermore, production of the highly oxygenated tet-
rahydrochromone C10 suggested that C01 (FDC-type) might be
the precursor of OAC-type PECs, and then the OAC-type PECs
are converted to ATC-type PECs by the opening of the epoxy
rings by nonenzymatic reactions and/or epoxide hydrolases
(Fig. 2¢). In fact, the products produced from the opening of the
epoxy ring could be readily detected from a methanol aqueous
solution of oxidoagarochromone C (Supplementary Fig. 19),
supporting the possibility of the nonenzymatic conversion of
OAC-type PECs into ATC-type PECs. However, a portion of
natural ATC-type PECs2%31:32 contain cis-6,7-diol fragments,
which are theoretically difficult to be generated from the spon-
taneous opening of the epoxy ring, suggesting the possibility that
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Fig. 2 Biotransformation of the diarylpentanoid-precursor to structurally varied PECs. a HPLC chromatogram of PECs produced by suspension cells fed
with 5-(4-hydroxyphenyl)-1-phenylpentane-1,3-dione (2). b Conversion of fluorine-labeled substrate (F-2) to structurally varied fluorinated PECs by
suspension cells. € Proposed biosynthetic pathway of the three types of PEC skeletons.

an enzyme, such as an epoxide hydrolase, catalyzes the stereo-
selective ring-opening reaction.

The in vivo biochemical function of PECPS. PECPS was
expressed in N. benthamiana leaves via Agrobacterium-mediated
transient expression (Supplementary Fig. 20a), and the metabolites in
the N. benthamiana leaves were carefully analyzed by LC-MS after
the plants were growing in a chamber for another 5 days. As a result,
the N. benthamiana leaves expressing PECPS accumulated a unique
compound identified as 5-hydroxy-1,7-bis(4-hydroxyphenyl)heptan-
3-one (1R), corresponding to the reduced product of 1, by LC-MS/
MS analysis. In contrast, accumulation of this compound was not
observed in the wild type N. benthamiana leaves (Fig. 3a, b). Fur-
thermore, benzoyl-CoA feeding experiment on N. benthamiana
leaves expressing PECPS led to the accumulation of 2-(4-hydro-
xyphenylethyl)-4H-chromen-4-one (P1), corresponding to the
cyclized product of 5-(4-hydroxyphenyl)-1-phenylpentane-1,3-dione
(2), which was unambiguously identified by comparisons of its
retention time on the column and MS data with those of the standard
compound (Fig. 3a, b). Further infiltration of 5-(4-hydroxyphenyl)-1-
phenylpentane-1,3-dione (2) and 1,5-diphenylpentane-1,3-dione with
the C4-Cs-Cg scaffold into the wild type N. benthamiana leaves
revealed that these compounds were converted to PECs, 2-(4-
hydroxyphenylethyl)-4H-chromen-4-one (P1) and 2-phenylethyl-
4H-chromen-4-one, respectively (Supplementary Fig. 21), suggesting
that PECPS could generate 2 in wild type N. benthamiana leaves, and
then, 2 was further cyclized by oxidase(s) indigenous to N. ben-
thamiana to form the PEC scaffold (P1). In addition, the expression
level of PECPS in A. sinenesis calli was knocked down using the

4

RNAi method (Supplementary Fig. 20b), and PECs in PECPS
knockdown calli were carefully analyzed and quantified by LC-MS.
Compared with those of the calli treated with 150 mM NaCl alone,
the contents of PECs in the PECPS knockdown calli (also treated
with 150 mM NaCl) were dramatically decreased (Fig. 3c, d and
Supplementary Fig. 22), confirming that PECPS is a pivotal enzyme
involved in the biosynthesis of PECs in agarwood.

Structural basis for the PECPS catalytic mechanism. To explore
the underlying mechanism for the formation of the C4—C5—Cq
scaffold by PECPS, we solved the crystal structure of PECPS at
1.98 A resolution. The crystal structure of PECPS showed typical
homodimeric type III PKS folding (Supplementary Fig. 23). The
Cys-His-Asn catalytic triad was also sterically well conserved in
PECPS, in a location and orientation very similar to those of the
other type III PKSs (Supplementary Fig. 24). However, a com-
parison of the structures of PECPS and naringenin chalcone-
producing Medicago sativa CHS (MsCHS) suggested that
PECPES may differ from MsCHS by the so-called ‘coumaroyl-
binding pocket’ (pocket A), which is thought to lock the aromatic
moiety of the intermediates®. In these comparisons, the
equivalent pocket A in PECPS could be tapered off the “main”
catalytic pocket via a large steric shift from MsCHS’s Ser338 to
PECPS’s Phe340 (Fig. 4a, b), leading to a smaller cavity (247 A3)
compared to those of the apo- and naringenin-complexed
structures of MsCHS (PDB ID: 1BI5; 742 A3 and PDB ID:
1CGK; 754 A3, respectively). Despite this, docking simulation
predicted that the volume of the smaller PECPS cavity is sufficient
to accommodate the 4-hydroxyphenylpropionyl-$-diketide unit.
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Fig. 3 Determination of the in vivo biochemical function of PECPS by transient expression of PECPS in N. benthamiana and knockdown expression of
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harboring pPCAMBIA1300-35S vector. b MS and MS? spectra of 1R and P1. ¢ MS chromatograms (EIC) of the major PECs 1-7 (structures could be found in
Supplementary Fig. 22) accumulated in A. sinensis calli treated by different methods: (i) treated with 150 mM NaCl; (ii) knockdown PECPS expression and
treated with 150 mM NaCl; (iii) healthy calli. d The relative contents (1,5-diphenylpentane-1,3-dione was implemented as internal standard, IS) of PECs 1-7
accumulated in different A. sinensis calli. Data represent the mean £ SD (n = 3). Statistical analysis was performed with unpaired two-tailed Student's
t-tests. Significance is shown with asterisks: ****p < 0.0001, ***p <0.001, **p < 0.01. Exact p-values and source data are provided in the source data file.

To investigate whether the small pocket A is required for enzyme
activity, we mutated Phe340 to the bulkier residue Trp and found
that the mutant retained its 1-producing activity and binding
ability with 4-hydroxyphenylpropionyl-CoA at levels comparable
to those of the wild type in HPLC and isothermal titration
calorimetry (ITC) experiments (Fig. 4h, i and Supplementary
Table 4). Furthermore, the crystal structure of the F340W mutant
indicated a similar size and shape of the main catalytic cavity to
that of the wild type, suggesting that pocket A is not required for
substrate and intermediate binding during the enzyme reaction
(Fig. 4d).

Interestingly, the active site architecture of PECPS is apparently
different from that of curcuminoid synthase (CUS), a plant-
specific type III PKS that catalyzes the one-pot formation of
bisdemethoxycurcumin from the condensation of two p-coumar-
oyl-CoAs and one malonyl-CoA%®, In PECPS, pocket B
corresponding to pocket C in the apo-structure of CUS (PDB
ID: 3ALE), consisting of residues Tyr207, Thr209, Arg217,
Thr218, Met265, Arg271, Leu272, Asp273, and Gly274, is absent
(Fig. 4a, c), resulting in a cavity volume (247 A3) that is 2.5 times
smaller than that of CUS (642 A3). The significant difference
between the catalytic cavities of PECPS and CUS is principally
attributed to the steric volumes and placements of Asnl99,
Thr213, and Pro267 in PECPS, which form a constricting loop to

cut off auxiliary pocket B from the overhead main catalytic pocket
(Supplementary Fig. 25). However, in light of the reported CUS
catalytic mechanism, where an aromatic portion of the p-
coumaroyldiketide acid intermediate is locked into pocket C to
accept the second extender substrate, p-coumaroyl-CoA®’, the
side chain of Asnl199, located as the gatekeeper of pocket B, in
PECPS may adopt other rotameric configurations during the
catalytic reaction to form a larger catalytic cavity consisting of
pocket B and the overhead main catalytic pocket similar to that in
CUS. To investigate the role of pocket B in the catalytic reaction
of PECPS, Ala210, located in the vicinity of pocket B, was
substituted with a bulkier residue (Glu210), which possesses a
protruding side chain that may extend into pocket B. However,
the A210E mutant did not lose its catalytic activity and exhibited
mostly the same 1-producing activity as that of the wild type in
the HPLC experiment (Fig. 4h, i). The binding affinity (Kp) of the
A210 mutant was estimated to be 40.12 + 4.52 uM with respect to
4-hydroxyphenylpropionyl-CoA, which was slight weaker than
that of wild type PECPS (Kp = 18.57 + 1.37 uM) (Supplementary
Table 4). The crystal structure of the A210E mutant enzyme
revealed that the A210E substitution eliminated pocket B
observed in the wild type PECPS structure by occupying a space
corresponding to pocket B with the Glu210 side chain. Other
significant conformational changes between the wild type and
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A210E mutant were not observed in their crystal structures
(Fig. 4e). The docking simulation also showed no critical
movement of the side chains, including the apparent rotation of
Asnl199, even though the substrate and intermediate were located
in the active site cavity (Fig. 5). These results suggested that the
PECPS catalytic reaction is independent of pocket B.

We also constructed Asnl99 mutants in which Asn was
substituted with Leul99 and Phel99 to investigate the role of
Asnl99 in enzyme activity. Interestingly, the activities of N199L and

6 NATURE CON

N199F decreased by 35% and 56%, respectively, compared with that
of wild type PECPS (Fig. 4h, i). ITC analyses indicated that the
NI99L mutant possessed a binding affinity of a Kp value of
120.40 +10.78 uM with respect to 4-hydroxyphenylpropionyl-CoA,
which was 6.5 times weaker than that of wild type PECPS
(1857 +£1.37 uM). Furthermore, the NI199F mutant possessed
significantly lower binding affinity as compared with that of the
N199L mutant (Kp value is close to 1000 pM) (Supplementary
Table 4). Remarkably, the crystal structures of N199L (Fig. 4f) and
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Ce-Cs-Cg scaffold product. e Schematic representation of the proposed mechanism of the formation of the C¢-Cs-Cg scaffold by PECPS. The entrances to

the catalytic cavities are indicated with red arrows.

N199F (Fig. 4g) did not indicate critical movement of the
architectures around the active site, and further docking calculations
for wild type PECPS complexed with 4-hydroxyphenylpropionyl-
CoA predicted that the side chain of Asn199 could be essential for
ligand binding via hydrogen-bond interactions (Fig. 5 and

Supplementary Fig. 26), suggesting that the relatively reduced
activity of the N199L and NI99F mutants was due to the
hydrophobicity or bulkiness caused by the substitutions of Asn199
to Leu and Phe. These observations suggested that PECPS utilizes
only the main catalytic pocket to generate the final products.
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Contrary to CUS, PECPS lacks the Ser351-Asn142-H,0-Tyr207-
Glu202 rearrangement, which is thought to be involved in thioester
bond cleavage between the catalytic center’s Cys174 and the Cys-
tethered intermediate to produce a 4-coumaroyldiketide acid
intermediate in CUS®’, neighboring the catalytic Cys174 at the
active-site center. This phenomenon is basically caused by
substitutions of Ser351, Asn142, and Tyr207 of CUS with Phe340,
Ser134, and Asnl99 in PECPES, respectively (Supplementary
Fig. 27). This observation, especially the substitution of Ser351 of
CUS with Phe340 neighboring the catalytic Cys166 in PECPS,
suggests that PECPS may employ another mechanism from CUS to
generate the diketide acid intermediate. Interestingly, the 4-
hydroxyphenylpropionyl-f-diketide-CoA and 4-hydroxyphenylpro-
pionyl-B-diketide acid intermediates could be captured from the
reaction mixtures by LC-MS (Supplementary Fig. 28), and the
diketide-CoA intermediate could be nonenzymatically hydrolyzed
to yield the corresponding diketide acid in the reaction buffer
(Supplementary Fig. 29). Furthermore, we found that PECPS could
not produce a benzoyl-S-diketide-CoA or benzoyl-S-diketide acid
intermediate from the condensation of benzoyl-CoA and one
molecule of malonyl-CoA (Supplementary Fig. 30). Notably, ITC
analysis revealed that the binding affinity of PECPS to 4-
hydroxyphenylpropionyl-CoA (Kp = 18.57 + 1.37 uM) was drama-
tically higher than that to benzoyl-CoA (Kp, value is close to 1000
uM), suggesting that PECPS could use 4-hydroxyphenylpropionyl-
CoA and malonyl-CoA to generate the corresponding diketide-CoA
intermediate but could not form the corresponding diketide acid
intermediate from thioester bond cleavage between the catalytic
center’s Cys166 and the Cys-tethered intermediate. From the results
mentioned above, a plausible mechanism for the formation of the
Cs—Cs—Cg scaffold was proposed (Fig. 5).

PECPS first accepts 4-hydroxyphenylpropionyl-CoA as the
starter substrate to form a 4-hydroxyphenyl-propionyl-g-dike-
tide-CoA intermediate, from the decarboxylative condensation of
4-hydroxyphenylpropionyl-CoA and malonyl-CoA. However,
due to the steric constriction of the active site architecture,
PECPS terminates further polyketide chain extension reactions.
Therefore, the diketide-CoA intermediate is released from the
catalytic cavity, which consequently allows PECPS to tether a
benzoyl unit onto the catalytic center Cys166. The subsequent
tail-to-tail decarboxylative condensation of the enzyme-tethered
benzoyl unit and the 4-hydroxy-phenylpropionyl-S-diketide acid,
produced from the initially released diketide-CoA via non-
enzymatic hydrolysis (or in vivo by an unidentified thioesterase),
generates 5-(4-hydroxyphenyl)-1-phenylpentane-1,3-dione with
the C¢-C5-Cg scaffold.

To confirm that a B-ketone acid could be involved in the
formation of the C¢-Cs-Cg scaffold, chemically synthesized 4-
hydroxyphenylpropionyl--diketide acid (Supplementary Fig. 31)
was incubated with benzoyl-CoA. The reaction expectedly
generated the C4—Cs—Cs scaffold of 2 (Supplementary Fig. 32a).
Additionally, PECPS could accept 3-hydroxybenzoyl-CoA or 4-
hydroxybenzoyl-CoA as a starter to perform condensation with
4-hydroxyphenylpropionyl-f-diketide acid to produce the
Cs—C5-Cq scaffold (Supplementary Fig. 32b, ¢). In contrast, 2-
hydroxybenzoyl-CoA was not accepted by PECPS (Supplemen-
tary Fig. 32d). Interestingly, when PECPS was incubated with
benzoyl-f-diketide acid and phenylpropionyl-CoA, the Cs—Cs-Cq
scaffold of 3 could also be produced (Supplementary Figs. 33-34
and Supplementary Table 1). Notably, both benzoyl-CoA and
benzoyl-f-diketide acid are the key intermediates involved in the
biosynthesis of salicylic acid®8-%0, a signaling molecule that plays
a crucial role in plant defense. Further studies to clarify the
biosynthetic relationship between PECs and salicylic acid
would be helpful to understand the mechanism of agarwood
formation.

In summary, we have identified a diarylpentanoid-producing
PKS from A. sinensis. The further successful conversion of
fluorine-labeled diarylpentanoid to structurally diverse PECs
demonstrated that PECs in agarwood are biosynthesized from a
common Cg—Cs-Cg precursor. Transient expression of PECPS in
N. benthamiana and knockdown of the expression of PECPS in A.
sinensis calli demonstrated that PECPS plays an important role in
the biosynthesis of PECs. Crystal structure analyses suggested that
PECPS utilizes unique one-pot catalytic machinery that includes
the release of a diketide-CoA intermediate, which has never been
reported in other known type III PKSs. The discovery of the role
of PECPS in the formation of the key intermediate of the PEC
biosynthetic pathway in agarwood provides insight into the
overproduction of these pharmaceutically important molecules.
In addition, the findings will contribute to the further exploration
of the mechanism of agarwood formation and thus might be
beneficial for the protection of the ecology of agarwood-
producing plants, which have been seriously destroyed by
overharvesting and logging.

Methods
General experimental procedures. Chemicals and reagents were purchased from
Sigma Aldrich (St. Louis, MO, USA) and J&K Scientific Ltd. (Beijing, China),
unless noted otherwise. Restriction enzymes, DNA polymerase, and DNA ligase
were purchased from Takara Biotechnology Co. Ltd. (Dalian, China). Primer
synthesis and DNA sequencing were performed at Invitrogen (Shanghai, China).
Malonyl-CoA was purchased from Sigma Aldrich. Chemical shifts () were
recorded with reference to solvent signals (\H NMR: CDCl; 7.26 ppm, CD;0D
3.31 ppm, acetone-dg 2.05 ppm, DMSO-d, 2.50 ppm; and 13C NMR: CDCl; 77.16
ppm, CD;0D 49.00 ppm, acetone-ds 29.92 and 206.27 ppm, DMSO-d, 40.80
ppm). HRESI-MS analyses were performed with an LCMS-IT-TOF system (Shi-
madzu, Kyoto, Japan) equipped with an electrospray ionization source.
4-Hydroxyphenylpropionyl-CoA, benzoyl-CoA, 2-hydroxybenzoyl-CoA, 3-
hydroxybenzoyl-CoA, 4-hydroxybenzoyl-CoA, phenylpropionyl-CoA, and p-
coumaroyl-CoA were prepared according to the reported methods®!-92 of which
the details were included in Supplementary Information (Supplementary
Method 1). Benzoyl-f-diketide acid and 4-hydroxyphenylpropionyl-$-diketide acid
was synthesized using a similar method reported by Peuchmaur®, and the
experimental details were also included in Supplementary Information
(Supplementary Method 2). Small amount of 4-hydroxyphenylpropionyl--
diketide-CoA was enzymatically synthesized by diketide-CoA synthase (DCS) from
the condensation of 4-hydroxyphenylpropionyl-CoA and malonyl-CoA%%.

Plant tissue culture. Fresh young leaves of A. sinensis (collected from Zhongshan,
Guangdong Province, China) were cut into pieces, surface-sterilized with a sodium
hypochlorite solution (2.5%) for 10 min followed by 70% ethanol for 30 s, and then
washed with sterile distilled water 4 times. The treated leaf pieces were inoculated
aseptically onto Murashige-Skoog (MS) medium containing 2 pug/mL naphthalene-
1-acetic acid (NAA) and 1 ug/uL 6-benzylaminopurine (6-BA). After incubation at
25 °C for one month in the dark, calli were subcultured each month onto fresh MS
medium containing 2 ug/mL NAA, 1 pg/mL 6-BA, 1 pg/mL dichlorophenoxyacetic
acid (2,4-D) and 1 pg/mL kinetin (KT).

For the suspension cell culture, robustly growing calli on solid MS medium were
transferred into 100 mL of liquid MS medium containing the same components as
in the solid medium, and reciprocally shaken at 200 rpm and 25 °C in the dark.
Suspension cells were subcultured every three weeks.

Gene cloning, expression and enzyme purification. Total RNA was isolated from
100 mg of A. sinensis calli (treated with 150 mM NaCl) using Total RNA Pur-
ification Reagent (Norgen, Canada) according to the manufacturer’s instructions.
The first cDNA strand was synthesized from approximately 1 pg of total RNA
using oligo d(T);s primer and M-MLV transcriptase (Promega, Madison, WI,
USA) at 42 °C for 90 min. The full-length cDNA of PECPS was obtained using 5’
and 3/-terminal PCR primers: 5'-CGC GGA TCC ATG GCA GCC CAA CCT GTG
GAG TGG GTG-3’ (the BamH 1 site is underlined), and 5-CCC AAG CTT CTA
TGC GTC TGT GAG CGT TGC AGT AG-3’ (the Hind III site is underlined). The
obtained PECPS cDNA contains a 1194 bp ORF encoding a polypeptide of 398
amino acids with a calculated molecular mass of 43 kDa.

The amplified DNA was digested with BamH I/Hind III and cloned into the
BamH 1/Hind III site of pET28a. The recombinant PECPS contains an additional
hexahistidine tag at the N-terminus. After sequence confirmation, pET28a
encoding wild type PECPS was introduced into the E. coli BL21(DE3) host. A single
colony harboring the plasmid was inoculated into 10 mL of Luria-Bertani (LB)
liquid medium containing kanamycin (50.0 pg/mL) and grown at 37 °C overnight
to prepare a seed culture. Afterwards, a 2 mL aliquot of the seed culture was
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transferred into 1 L of LB liquid medium and incubated at 37 °C to an ODsg of 0.6.
After the addition of 1.0 mM isopropyl-f-D-thiogalactoside to induce protein
expression, the culture was further incubated at 20 °C for 20 h.

For the enzyme assay, the E. coli cells were harvested by centrifugation and
resuspended in 40 mM potassium phosphate buffer (KPB) (pH 7.9, containing
100 mM NaCl and 5 mM imidazole). Cells were lysed by sonication, and the lysate
was centrifuged at 12,000xg at 4 °C for 20 min. The supernatant containing wild
type PECPS was collected and passed through a Ni-NTA His-Bind™ Resin column
(CWBIO, Beijing, China) containing Ni** as an affinity ligand. After washing with
20 mM KPB (pH 7.9, containing 500 mM NaCl and 40 mM imidazole), the
recombinant wild type PECPS was finally eluted with 15 mM KPB (pH 7.5,
containing 10% glycerol and 500 mM imidazole). The purified PECPS was used in
the enzyme assay after desalination and concentration with Amicon Ultra-15
centrifugal concentrators (Millipore, MI, USA). Protein concentrations were
determined by the BCA method (Protein Assay, BIOMIGA) with bovine serum
albumin as the standard.

For crystallization, the E. coli cells were harvested by centrifugation and
resuspended in buffer A [20 mM Tris-HCI (pH 8.0), containing 100 mM NaCl and
10% glycerol]. The cells were disrupted by sonication and the lysate was centrifuged
at 12,000 x g and 4 °C for 30 min. The supernatant containing the crude fusion
protein was collected and loaded onto Ni-NTA His-Bind™ Resin (CWBIO, Beijing,
China) equilibrated with buffer A. After washing the resin with buffer B (buffer A
containing 50 mM imidazole), the recombinant wild type PECPS was eluted with
buffer C (buffer A containing 500 mM imidazole). The eluted fraction was then
equilibrated to buffer C, using Macrosep® Advanced Centrifugal Device-30K units
(PALL Corporation, NY, USA) by centrifugation at 8000 rpm, and applied to a
Resource Q column (Cytiva, USA) equilibrated with buffer D [50 mM HEPES-
NaOH (pH 7.0), containing 20 mM NaCl and 2 mM DTT]. The wild type PECPS
was subsequently eluted using a linear gradient of 20-1000 mM NaCl in buffer E
(buffer D containing 1.0 M NaCl). After volume reduction of the fractions
containing recombinant wild type PECPS to 5 mL, the protein solution was further
purified to homogeneity by gel-filtration chromatography on a Superdex 200
HiLoad 16/60 prep grade column (Cytiva, USA) equilibrated with buffer F [20 mM
HEPES-NaOH (pH 7.0), containing 100 mM NaCl and 2 mM DTT]. The wild type
PECPS fractions were concentrated to 15 mg/mL in buffer F using Macrosep®
Advanced Centrifugal Device-30K units and used for crystallization. The protein
concentration was determined by the same method as mentioned above.

Transient expression of PECPS in N. benthamiana. The open reading frame
(ORF) of PECPS was amplified and inserted into the binary pCAMBIA1300-35S
vector to construct the plasmid pCAMBIA1300-35S-PECPS. The plasmid was
transformed into Agrobacterium tumefaciens EHA105, and the positive colony was
then inoculated in LB media containing 50 ng/uL kanamycin and 30 ng/uL
rifampicin and grown overnight at 28 °C. After the ODg( value of the culture was
adjusted to 0.5 with induction media (containing 10 mmol/L MES, 10 mmol/L
MgCl,, and 150 mmol/L acetosyringone), the culture was incubated at 28 °C for
3-4h. After that, the culture was infiltrated into 5-8 week-old N. benthamiana
leaves (A. tumefaciens containing pCAMBIA1300-35S-P19 was also infiltrated to
enhance the expression of PECPS). After 2-3 days, the expression of PECPS in the
Agrobacterium-transformed leaves was analyzed by Western blots with anti-PECPS
antibody (rabbit) and anti-GAPDH antibody (mouse). For the infiltration of
substrate, benzoyl-CoA dissolved in induction media (12 umol/L) was infiltrated
into N. benthamiana leaves (2-3 days later than the infiltration of PECPS). All
Agrobacterium-transformed leaves were harvested after 5 days of growth in a
chamber and extracted with methanol. After removal of chlorophyll by a solid
phase extract cartridge, metabolites in the extract were carefully analyzed by UPLC
system combined with a Thermo Fisher Scientific high resolution Q Exactive
Orbitrap mass spectrometer equipped with heated electrospray ionization source.
The Acquity HSS T3 Column (2.1 mm LD. x 100 mm, 1.7 um, Waters Corpora-
tion, Wexford, Ireland) was used. Two eluents, 0.1% formic acid (A) and acet-
onitrile (B) were used in a gradient program: 0-5 min, 5-35% (B); 5-20 min,
35-80% (B); 20-25 min, 80-100% (B), 25-30 min, 100% (B). The flow rate was
0.3 ml/min and the injection volume was 2 pl.

Knockdown of PECPS expression in A. sinenesis calli. The 200 bp fragment of
PECPS was amplified and inserted into pBWA(V)HS-RNAi to generate intron-
containing hairpin RNA constructs. The resulting recombinant vector was trans-
formed into A. tumefaciens GV3101, and the positive colony harboring the
recombinant plasmid was inoculated in 10 mL of LB media (containing 50 ng/uL
kanamycin and 30 ng/uL rifampicin) and grown at 28 °C until the ODgo = 0.6-0.8.
After centrifugation, the Agrobacterium cells were resuspended in MS media for the
infection of healthy A. sinensis calli. The infected calli were cultured on MS plates
containing 300 pug/mL cefotaxime and 50 pg/mL hygromycin at 25 °C in the dark
for 8 days (the expression level of PECPS was determined by qQRT-PCR) and then
incubated on new MS plates containing 150 mM NacCl, 50 ug/mL hygromycin and
300 pg/mL cefotaxime for 10 days. PECs in the treated calli were extracted and
analyzed by LC-MS. The structures of PECs were tentatively assigned by their MS
data recorded on Thermo Fisher Scientific high resolution Q Exactive Orbitrap
mass spectrometer. The relative content of PECs were quantified using Agilent
Technologies 6460 triple quadrupole mass spectrometer equipped with Acquity

HSS T3 Column (2.1 mm LD. x 100 mm, 1.7 pm), 1,5-diphenylpentane-1,3-dione
was implemented as the internal standard (IS). Two eluents, 0.1% formic acid (A)
and acetonitrile (B) were used in a gradient program: 0-20 min, 40-90%(B). The
flow rate was 0.3 ml/min and the injection volume was 5 pl.

Isothermal titration calorimetry experiments. ITC measurements of affinity
(Kp), stoichiometry (1) and apparent enthalpy change (AH®) were obtained using a
Nano LV ITC calorimeter (TA Instruments). Samples for cell and injectant solutions
were prepared in the same buffer (100 mM KPB, pH 7.5). All experiments were
conducted at 37 °C with a stirring speed of 240 rpm and a sequence of 20 injections
of 2.5 uL and 380 s delays between succeeding injections. The sample cell was filled
with 47-85 puM protein solution (300 pl), while 1.09 mM 4-hydroxyphenylpropionyl-
CoA (or 1.15mM benzoyl-CoA) solution was placed in the syringe. The resulting
data were processed with the standard NanoAnalyze software package (version
3.11.0), assuming the model of one type of binding site with an apparent stoichio-
metry close to 1:1. The first injection resulting in a heat change was disregarded in
the later analysis. Titration experiments were performed in triplicate to show
reproducibility. Control experiments confirmed that the heats of dilution caused by
the reactant being titrated into buffer and the buffer into protein solution were
negligible. The heats of dilution for the sample in the cell were subtracted from the
final trace before integration with respect to time. The thermodynamic data obtained
from the traces were averaged across three runs, and a standard deviation was
calculated. Representative ITC thermograms and isotherm plots for experiments can
be found in Supplementary Fig. 35.

Site-directed mutagenesis and mutant enzymes purification. Plasmids
expressing the PECPS mutants (A210E, F340W, N199L, and N199F) were gener-
ated by the Fast Mutagenesis System (TRANSGEN BIOTECH) according to the
manufacturer’s instructions, using designed primers (Supplementary Table 5). The
mutant enzymes were expressed, extracted, and purified by the same procedure as
that for the wild type PECPS, and used in the enzyme assay and for crystallization.

Enzyme reaction. The standard reaction mixture contained 26 nmol of starter-
CoA (4-hydroxyphenylpropionyl-CoA/benzoyl-CoA/phenylpropionyl-CoA/2-
hydroxybenzoyl-CoA/3-hydroxybenzoyl-CoA/4-hydroxybenzoyl-CoA), 29 nmol
of malonyl-CoA/benzoyl-f-diketide acid/4-hydroxyphenylpropionyl-g-diketide
acid (note: before S-diketide acids were added to the reaction buffer, they were first
dissolved in dimethyl sulfoxide to a final concentration of 2.9 mM), and 0.4 nmol
of the purified recombinant enzyme, in 100 mM KPB (pH 7.5) for a final volume of
500 uL. Incubations were performed at 37 °C for 12 h and terminated by the
addition of 20 pL of 20% HCL. The reaction solution was then extracted three times
with 800 uL of ethyl acetate. The organic layers were combined, evaporated to
dryness with nitrogen, and dissolved in 50 uL of MeOH for LCMS-IT-TOF (Shi-
madzu, Japan) analysis. The HPLC was equipped with an Agilent Eclipse XDB C, 5
column (250 x 4.6 mm I.D., 5 um) and eluted at a flow rate of 1.0 mL/min. For the
standard assay, gradient elution was performed with H,O and acetonitrile:

0-10 min, 30% acetonitrile; 10-20 min, 30-60% acetonitrile; 20-25 min, 60-70%
acetonitrile; 25-30 min, 70-80% acetonitrile; 30-35 min, 80-100% acetonitrile;
35-40 min, 100% acetonitrile.

For the large scale reaction: 100-200 pmol of starter-CoA, 100-200 pmol of
extenders (malonyl-CoA and another starter-CoA or f-diketide acid) and 0.4-0.6
umol of recombinant enzyme were dissolved in 250 mL of 100 mM potassium
phosphate buffer (pH 7.5) (note: before the S-diketide acids were added to the
reaction buffer, they were first dissolved in dimethyl sulfoxide), and incubated at
37 °C for 12 h. The reaction mixture was stopped by the addition of 10 mL of 20%
HCI and extracted with 750 mL of ethyl acetate. After solvent removal under
reduced pressure, the residue was dissolved in 1 mL of MeOH and purified by
semipreparative HPLC using an Agilent ZORBAX Eclipse XDB C;5 column (250 x
4.6 mm LD, 5 um). The products were analyzed by HRESI MS and NMR.

For the mutagenesis study, the reaction mixture contained 26 nmol of 4-
hydroxyphenylpropionyl-CoA, 29 nmol of malonyl-CoA, and 0.4 nmol of the
purified recombinant mutant enzyme in 100 mM KPB (pH 7.5), with a final
volume of 500 pL. Incubations were performed at 37 °C for 3 h and terminated by
the addition of 20 uL of 20% HCI. The reaction solution was then extracted three
times with 500 pL of ethyl acetate. The combined organic layers were evaporated
and dissolved in 50 uL of MeOH, for analysis with an Agilent 1260 Infinity HPLC
system (Agilent Technologies, Japan). The HPLC was equipped with a Tosoh TSK-
gel ODS-80T's column (150 mm X 4.6 mm L.D., 5 um) and eluted at a flow rate of
0.5 mL/min. For the standard assay, gradient elution was performed with H,O and
acetonitrile, both containing 0.1% TFA: 0-10 min, 30% acetonitrile; 10-20 min,
30-60% acetonitrile; 20-25 min, 60-70% acetonitrile; 25-30 min, 70-80%
acetonitrile.

Capture of p-diketide-CoA and g-diketide acid intermediates. A solution of 26
nmol of 4-hydroxyphenylpropionyl-CoA, 29 nmol of malonyl-CoA, and 0.4 nmol
of the purified recombinant enzyme, in 100 mM KPB (pH 6.5) with a final volume
of 500 uL was incubated at 37 °C for 5 h. The reaction mixture was centrifuged at
13,000 rpm for 20 min, and a 5 pL aliquot of the supernatant was injected into an
LC-MS system (ionization source: both positive and negative polarities were
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applied simultaneously; column: Shim-pack XR-ODS II, 100 mm x 2.0 mm LD.);
mobile phase: 5 mM ammonium formate and acetonitrile in the following gradient
program: 0-10 min, 5% acetonitrile; 10-20 min, 5-100% acetonitrile; flow rate:
0.2 mL/min).

Chemical synthesis of fluorine-labeled substrate (F-2). To a solution of
4-fluorobenzaldehyde (30 mmol) in DMF (10 mL), 1-phenylbutane-1,3-dione

(10 mmol), B,O3; (16 mmol), B(OCHj3); (7 mmol), and #n-BuNH, (8 mmol) were
sequentially added. The solution was stirred at 40 °C for 12 h. Afterwards, 10 mL of
5% acetic acid was added to stop the reaction, and the precipitate was filtered and
repeatedly washed with dH,O to obtain a yellow residue (1.15 g). The residue was
further separated and purified by semipreparative HPLC (column: YMC-Pack Cjs,
250 mm X 10 mm L.D., 5 um; mobile phase: 45% acetonitrile) to afford 5-(4-
fluorophenyl)-1-phenylpent-4-ene-1,3-dione (810 mg). 5-(4-fluorophenyl)-1-phe-
nylpent-4-ene-1,3-dione was dissolved in 15 mL of MeOH, and after 100 mg of
10% Pd/C was added to the solution, it was stirred at 40 °C for 4 h under flowing
hydrogen gas. The reaction mixture was filtered and concentrated under reduced
pressure, and the residue was separated and purified by semipreparative HPLC
(column: YMC-Pack C;g 250 mm x 10 mm; mobile phase: 49% acetonitrile) to
afford F-2 (600 mg). F-2: ESI MS: m/z 271 [M + H]*; 'H NMR (400 MHz, in
CDCL): 8 2.73 (2H, t, ] = 8.0 Hz), 2.99 (2H, t, ] = 8.0 Hz), 6.12 (1H, s), 6.98 (2H, ¢,
J=8.0Hz), 7.19 (2H, t, ] = 8.0 Hz), 7.42 (2H, m), 7.45 (1H, m), 7.85 (2H, d,

J= 8.0 Hz). The purity of F-2 was > 98% determined by HPLC.

Conversion of F-2 into fluorinated PECs. Robustly growing suspension cells
(200 mL x 10) were treated with NaCl (final concentration 150 mM) and imme-
diately fed the fluorine-labeled substrate F-2 (20 mg x 10). After 10 days of culture
at 200 rpm and 25 °C in the dark, the cells (wet cells, 350 g) were harvested by
centrifugation and extracted with methanol (350 mL), while the liquid medium
(2000 mL) was extracted with ethyl acetate (2000 mL X 3). The methanol and ethyl
acetate extracts were combined, and the organic solvent was removed under
reduced pressure at 42 °C to obtain a dried residue (7.08 g). Fluorinated PECs could
be detected from the crude residue by LC-MS (Supplementary Fig. 8). Accordingly,
the residue was separated on a silica gel column eluted with a CH,Cl,-MeOH
gradient (from 20:1 to 2:1). After LC-MS analysis, the fractions that contained
fluorinated PECs were further separated and purified by semipreparative HPLC
(column: YMC-Pack C;g 250 mm x 10 mm, 65% MeOH) to afford compounds
C01 (3 mg), C02 (5.5 mg), CO3 (3 mg), C04 (5 mg), CO5 (1.5 mg), CO6 (2.8 mg) and
very small amounts (no more than 0.1 mg) of compounds C07-C10.

Crystallization and structure determination. Crystals with lengths of approxi-
mately 100 pm were obtained from a 15 mg/mL solution of the purified, recom-
binant wild type PECPS protein at 20 °C, in 100 mM Tris-HCI (pH 8.5) containing
0.12 M KF, 4% butanediol, and 24% PEG 8000 by the sitting-drop vapor-diffusion
method. Diffraction quality crystals of the PECPS A210E mutant were obtained
under the same reservoir conditions, except 15% PEG 8000 was used. Diffraction
quality crystals of the PECPS F340W mutant were obtained under the same
reservoir conditions, except for the use of 0.24 M KF and 24% PEG 8000.
Diffraction-quality crystals of the PECPS N199L and N199F mutants were
obtained under the same reservoir conditions, except for the use of 0.3 M KF and
25% PEG 8000. All crystals were transferred for 10 s into a cryoprotectant solution,
consisting of each crystallization solution with 20% (v/v) glycerol and then flash-
cooled at —173 °C in a nitrogen-gas stream. Diffraction data of the wild type
PECPS and the PECPS A210E, F340W, and N199F mutant crystals were collected
on beamline BL-1A at the Photon Factory (PF) (Tsukuba, Japan). Diffraction data
of the PECPS N199L mutant crystals were collected on beamline BL-5A at the PF.
These diffraction data were processed and scaled with XDS®> and AIMLESS in the
CCP4 suite®. The initial phases of wild type PECPS and its mutant structures were
determined by molecular replacement with the crystal structures of OsPKS (PDB
entry 4YJY) and wild type PECPS (PDB entry 7FFA) as search models, respectively,
using phaser®” in the CCP4 suite. The structures were modified manually with
Coot8 and refined with phenix.refine®. The final crystal data and intensity sta-
tistics are summarized in Supplementary Table 6. A structural similarity search was
performed with the Dali program?®. The cavity volume was calculated by CASTP
(http://cast.engr.uic.edu/cast/). All crystallographic figures were prepared using
PyMOL (DeLano Scientific, http://www.pymol.org). The coordinates and the
structure factor amplitudes for the wild type PECPS and PECPS A210E, F340W,
N199L, and N199F mutant structures have been deposited in the Protein Data
Bank, with entry codes 7FFA, 7FFC, 7FFI, 7FFH, and 7FFG, respectively.

Docking model of PECPS complexed with the intermediates and product.
AutoDock Vina (version 1.1.2)7! was used in this project to conduct molecular
docking for all calculations. The modeled protein molecules are wild type PECPS
coded in the PDB ID: 7FFA. The three-dimensional structures of all ligands
(malonyl-CoA, 4-hydroxyphenylpropionyl-S-diketide-CoA, phenylpropionyl-S-
diketide acid, and Cs—Cs—Cg scaffold product) and Cys-tethered 4-hydro-
xyphenylpropionyl- and benzoyl-monoketides (4-hydroxyphenylpropionyl-L-
cysteine and benzoyl-L-cysteine) were generated from SMILES strings with pri-
mary optimization using the eLBOW program’? available in PHENIX’3. Further

optimization of the ligand was achieved through the AutoDockTools (ADT)
program’4. S-sulfinocysteine in the 166 residue of the wild type PECPS structure
was appropriately manually converted into L-cysteine, 4-hydroxyphenylpropionyl-
L-cysteine, and benzoyl-L-cysteine with Coot®. Water molecules around the cavity
pocket were initially removed from the wild type PECPS structure. The protein and
ligand files were converted into the PDBQT-file format by adding hydrogen atoms
and partial atomic charges with the standard setting in the ADT program. For all
the docking studies, Arg60, Lys64, Ser134, Asn163, Cys166 (or appropriate inter-
mediate), Glu194, Leul98, Asn199, Thr213, Leu216, Phe217, Ile256, Leu265,
Leu269, 1le273, Met308, Asn338, Phe340, and Met139 (from the paired monomer
molecule) were set as the flexible side chains. A grid box size of 35 A x 35 A x 30 A,
covered with the flexible set residues and the cavity pocket, was used. The docking
calculation was performed with the default setting, and the quality of ligand
positioning in the active sites of PECPS was characterized by the free binding
energy (Supplementary Table 7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The structures of wild PECPS and PECPS A210E,
F340W, N199L, and N199F have been deposited in the Protein Data Bank under codes
7FFA, 7FFC, 7FFl, 7FFH, and 7FFG, respectively. The GenBank accession number for
the nucleotide sequence of PECPS is MH885494. RNA-Seq data that support the findings
of this study have been deposited in the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) with accession number S3. The source data
underlying Figs. 1, 3a, ¢, d, 4i, Supplementary Figs. 7, 20, 21, 29, and 35 are provided as a
Source Data file. Source data are provided with this paper.
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