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Portability of 245 polygenic scores when
derived from the UK Biobank and applied
to 9 ancestry groups from the same cohort

Florian Privé,l* Hugues Aschard,?3 Shai Carmi,* Lasse Folkersen,5> Clive Hoggart,6 Paul E. O’Reilly,¢
and Bjarni J. Vilhjalmsson!.”

Summary

The low portability of polygenic scores (PGSs) across global populations is a major concern that must be addressed before PGSs can be
used for everyone in the clinic. Indeed, prediction accuracy has been shown to decay as a function of the genetic distance between the
training and test cohorts. However, such cohorts differ not only in their genetic distance but also in their geographical distance and their
data collection and assaying, conflating multiple factors. In this study, we examine the extent to which PGSs are transferable between
ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and applying them in nine ancestry groups from
the same cohort. By restricting both training and testing to the UK Biobank data, we reduce the risk of environmental and genotyping
confounding from using different cohorts. We define the nine ancestry groups at a sub-continental level, based on a simple, robust, and
effective method that we introduce here. We then apply two different predictive methods to derive polygenic scores for all 245 pheno-
types and show a systematic and dramatic reduction in portability of PGSs trained using Northwestern European individuals and applied
to nine ancestry groups. These analyses demonstrate that prediction already drops off within European ancestries and reduces globally in

proportion to genetic distance. Altogether, our study provides unique and robust insights into the PGS portability problem.

Introduction

Ever larger genetic datasets are becoming more readily
available. This enables researchers to derive polygenic
scores (PGSs), which summarize an individual’s genetic
component for a particular trait or disease by aggregating
information from many genetic variants into a single
score. In human genetics, polygenic scores are usually
derived from summary statistics from a large meta-analysis
of multiple genome-wide association studies (GWASs) and
an ancestry-matched linkage disequilibrium (LD) reference
panel.' Polygenic scores can also be derived directly from
individual-level data when available, i.e., from the genetic
and phenotypic information of many individuals.” When
using a single individual-level dataset with only moderate
sample size, deriving polygenic scores usually results in
poor prediction for most phenotypes, e.g., for autoim-
mune diseases with moderately large effects.”* Fortu-
nately, biobank datasets such as the UK Biobank now
link genetic data for half a million individuals with pheno-
typic data for hundreds of traits and diseases.’ Thanks to
the availability of these large datasets and to efficient
methods recently developed to handle such data,*®” indi-
vidual-level data may be used to derive competitive PGSs
for hundreds of phenotypes.

A major concern about PGSs is that they usually transfer
poorly to other ancestries, e.g., a PGS derived from individ-

uals of European ancestry is not likely to predict as well in
individuals of African ancestry. Prediction in another
ancestry has been shown to decay with genetic distance
to the training population®’ and with increasing propor-
tion of admixture with a distant ancestry.'®'" This porta-
bility issue is suspected to be primarily due to differences
in LD and allele frequencies between populations, and
not so much about differences in effects and positions of
causal variants.”'" Individual-level data from the UK Bio-
bank offers an opportunity to further investigate this prob-
lem of PGS portability in a more controlled setting.”'”
Indeed, while the UK Biobank data contain genetic infor-
mation for more than 450K British or European individuals,
it also contains the same data for tens of thousands of indi-
viduals of non-British ancestry.” Of particular interest,
those individuals of diverse ancestries all live in the UK
and had their genetic and phenotypic information derived
in the same way as people of UK ancestry. Our study design
circumvents potential confounding bias that might arise in
comparative analyses from independent studies and makes
the UK Biobank data very well suited for comparing and
evaluating predictive performance of derived PGSs in
diverse ancestries and across multiple phenotypes. Indeed,
the UK Biobank has been shown to offer a much more
controlled setting (compared to published GWAS meta-an-
alyses) in the case of studying (for example) polygenic adap-
tation."”'* Note that these analyses are not completely free
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of bias since, on average, genotyped variants are more com-
mon and imputed variants are more accurately imputed in
European ancestries. We also acknowledge that some resid-
ual structure may remain when deriving PGSs."”

To investigate portability of PGSs to other ancestries, we
must first define groups of different ancestries from the
data. Principal component analysis (PCA) has been widely
used to correct for population structure in association
studies and has been shown to mirror geography in Eu-
rope.'®'” Due to its popularity, many methods have been
developed for efficiently performing PCA'®2° as well as
appropriately projecting samples onto a reference PCA
space,””*! making it possible to perform these analyses
for ever increasing datasets. Naturally, PCA has also been
used for ancestry inference.”’** However, among the
studies where we have seen PCA used for ancestry infer-
ence, there does not seem to be a consensus on what is
the most appropriate method for inferring ancestry using
PCA. For example, there are divergences on which distance
metric to use and the number of PCs to use to compute
these distances. The ancestry of an individual can also be
inferred based on other approaches, including the ADMIX-
TURE model, its various extensions, and haplotype-based
methods.>*! However, we focus on PCA here because it
is very fast and effective.

In this study, we examine the extent to which PGSs are
transferable between ancestries by deriving 245 polygenic
scores from the UK Biobank data and applying them in
nine ancestry groups from the same cohort. We first pro-
pose simple, robust, and effective methods for global
ancestry inference and grouping from PCA of genetic
data, and we use them to define nine ancestry groups in
the UK Biobank data. We then apply a computationally effi-
cient implementation of penalized regression® to derive
PGSs for 245 traits using the UK Biobank genetic and
phenotypic data only. As an alternative method, we also
run LDpred2-auto,’” for which we directly derive the sum-
mary statistics from the individual-level data available.
We show a dramatically low portability of PGSs from UK
ancestry to other ancestries. For example, on average, the
phenotypic variance explained by the PGSs is only 64.7%
in South Asia (the “India” ancestry group defined here),
48.6% in East Asia (“China”), and 18% in West Africa
(“Nigeria”) compared to in individuals of Northwestern Eu-
ropean ancestry (“United Kingdom”). These results are pre-
sented at a finer scale than the usual continental level,
which allows us to show that prediction already drops
within Europe, e.g., for Northeast and South Europe (the
“Poland” and “Italy” ancestry groups) compared to North-
west Europe. We find that this decay in variance explained
by the PGSs is roughly linear in the PC distance to the
training population and is remarkably consistent across
most phenotypes and for both prediction methods applied.
The few exceptions include traits such as hair color, tan-
ning, and some blood measurements. We also explore using
more than HapMap3 variants when fitting PGSs, it proves
useful when large effects are poorly tagged by HapMap3 var-

iants, e.g., for lipoprotein(a), but notin the general case. We
also explore the performance of PGS trained using a mixture
of European and non-European ancestry samples, but do
not observe any significant gain in prediction here.

Material and methods

Data

We derive polygenic scores for 245 phenotypes using the UK Bio-
bank (UKBB) data only.” We read dosages data from UKBB BGEN
files using function snp_readBGEN() of R package bigsnpr.'” We
divide the UKBB data in eight ancestry groups (Note A) and restrict
to 437,669 individuals without second-degree relatives (KING
kinship <27%%). We also define a ninth ancestry group composed
of 1,709 unrelated Ashkenazi (see below). For the variants, we use
1,040,096 HapMap3 variants used in the LD reference provided in
Privé et al.*” and that were also present in the iPSYCH2015 data**
with imputation INFO score larger than 0.6. Even though the iP-
SYCH data is not used in this study, we plan to use the PGSs
derived here for iPSYCH in the future.

To define phenotypes, we first map ICD10 and ICD9 codes
(UKBB fields 40001, 40002, 40006, 40013, 41202, 41270, and
41271) to phecodes using R package PheWAS.***° We filter
down to 142 phecodes of interest that showed potential genetic
signals in the PheWeb results from the SAIGE UKBB GWAS.***”
We further filter down to 106 phecodes with sufficient power for
penalized regression to include at least a few variants in the predic-
tive models. We then look closely at all 2,408 UKBB fields that we
have access to and filter down to defining 111 continuous and 28
binary phenotypes based on manual curation.

Additional data: Genotyped data

For the genotyped data used in some follow-up analyses, we
restrict to variants that have been genotyped on both chips used
by the UK Biobank, that pass quality control (QC) for all batches
and QC for possible mismappings,*® with a minor allele frequency
(MAF) larger than 0.01 and imputation INFO score of 1. There are
586,534 such high-quality variants, which we read from the BGEN
imputed data so that there is no missing value.

Additional data: 8M+ variants

We also design a larger set of imputed variants to compare against
using only HapMap3 variants for prediction. We first restrict to
UKBB variants with MAF > 0.01 and INFO > 0.6. We then compile
frequencies and imputation INFO scores from other datasets,
iPSYCH, and summary statistics for breast cancer, prostate cancer,
coronary artery disease, and type 1 diabetes.***?~*> We restrict to
variants with a mean INFO > 0.5 in these other datasets and also
compute the median frequency. To exclude potential mismappings
in the genotyped data®® that might have propagated to the imputed
data, we compare median frequencies in the external data to the
ones in UKBB (Figure S20). As we expect these potential errors to
be localized around errors in the genotype data (confirmed in
Figure S21), we apply a moving-average smoothing on the fre-
quency differences to increase power to detect these errors and
also reduce false positives. We define the threshold on these
smoothed differences based on visual inspection of their histogram.
This is the same method we have previously applied to PC loadings
to detect long-range LD regions when computing PCA."'*"?° This re-
sults in a set of 8,238,692 variants.

The American Journal of Human Genetics 109, 12-23, January 6, 2022 13



Ashkenazi Jewish ancestry group

First, we refer the reader to Note A on ancestry grouping for the de-
tails on how we define the other eight ancestry groups, and also to
better understand how we infer the “Ashkenazi Jewish” ancestry
group. Briefly, we project the UKBB data onto the PCA space of a
reference dataset composed of many Jewish and non-Jewish indi-
viduals.** We then compute the robust center (geometric median)
of the Ashkenazi Jewish reference individuals and compute the PC
distance to this center for all projected UKBB individuals. Based on
visual inspection of the histogram of these distances and on the
fact that the closest non-Ashkenazi Jewish reference individual,
an Italian Jew (Figure S22), is at distance 12.7, we use a threshold
of 12.5 under which to assign to the “Ashkenazi Jewish” ancestry
group. 1,709 unrelated UKBB individuals are then assigned to this
group. Note that, within the already defined eight ancestry groups,
the closest individual to this new group belongs to the Italian
group, and is at distance 17.3, so this new Ashkenazi group is
not overlapping with any of the other groups defined previously.

Penalized regression

To derive polygenic scores based on individual-level data from the
UKBB, we use the fast implementation of penalized linear and logis-
tic regressions from R package bigstatsr.* We have also considered
therecently developed R package snpnet for fitting penalized regres-
sions on large genetic data; however, we provide theoretical and
empirical evidence that bigstatsr is much faster than snpnet (Note
B). Our implementation allows for lasso and elastic-net penaliza-
tions; yet, for the sake of simplicity and because the UKBB data is
very large, we have decided to only use the lasso penalty.* We recall
that fitting a penalized linear regression with lasso penalty corre-
sponds to finding the vector of effects f (also pand y) that minimizes

L) =y -

(v +GB+XV)z+ A6l
——

Loss function Penalisation

where p is an intercept, G is the genotype matrix, X is the matrix of
covariates, y is the (quantitative) phenotype of interest, and A is a
hyper-parameter that controls the strength of the regularization
and needs to be chosen. We use sex (field 22001), age (field
21022), birth date (fields 34 and 52), Townsend deprivation index
(field 189), and the first 16 genetic principal components (field
22009),?° as unpenalized covariates when fitting the lasso models.

We have extended our implementation in two ways by allowing

for using different penalties for the variants (i.e., having ) |8
j

instead of A||8||;). First, this enables us to use a different scaling
for genotypes. By default, variants in G are implicitly scaled. By us-
ing ;o (SDv)@’” this effectively scales variant j by dividing it by
(SD; ) in our implementation. The default uses £ = 1 but we also
test £ = 0 (no scaling) and £ = 0.5 (Pareto scaling). We introduce
anew parameter power_scale for which the user can provide a vec-
tor of values to test; the best value is chosen within the Cross-
Model Selection and Averaging (CMSA) procedure.* We also intro-
duce a second parameter, power_adaptive, which can be used to
put less penalizition on variants with the largest marginal ef-
fects;** we try three values here (0 the default, 0.5, and 1.5) and
the best one is also chosen within the CMSA procedure.

LDpred2-auto
Using the individual-level data from the training set in the UK Bio-
bank, we run a linear regression GWAS using function big_univLin-

Reg of R package bigstatsr, 19 accounting for the same covariates as in
the penalized regression above. As LD reference, we use the one pro-
vided in Privé et al.*” based on UKBB data for European ancestry. We
use these summary statistics and this LD reference as input for
LDpred2-auto. LDpred2 assumes a point-normal mixture distribu-
tion for effect sizes, where only a proportion of causal variants p con-
tributes to the SNP heritability h%. In LDpred2-auto, these two
parameters are directly estimated from the data.>” We use the sparse
option in LDpred2-auto to also obtain a vector of effects that is
potentially sparse, i.e., effects of some variants are exactly 0. Also
note that, as we use linear regression for all phenotypes, we use
the total sample size instead of the effective sample size
(4/(1 /ncase +1 /Nconuror)) for binary phenotypes as input to
LDpred2. This means that heritability estimates from both LD score
regression and LDpred2-auto must be transformed to the liability
scale using both the prevalence in the GWAS and in the population;
this can be performed using function coef_to_liab from R package
bigsnpr. For simplicity, we assume here that the prevalence in the
population is the same as the prevalence in the training set.

New formula used in LDpred2
We also slightly modify the formula used in Privé et al.;** we have
previously used

()= (r-76) (1~ 7,6)

(1-K-1)G; G=¢"y
__vary)

nG,G mar(ai)'
where 7; is the marginal effect of variant j, and where y and éi are
the vectors of phenotypes and genotypes for variant j residualized
from K covariates, e.g., centering them. The first approximation
expects 7, to be small, while the second approximation assumes
the effects from covariates are small. However, we have found
here that some variants can have very large effects, e.g., one
variant explains about 30% of the variance in bilirubin log-con-
centration. Then, instead we compute
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finally giving (note the added term ?/»2)

sd(G;) = (i’z (Equation 1)

\/nse(¥;) +y]

Figure S23 shows that the updated formula Equation 1 is better; we
now use it in the code of LDpred2, and also recommend using it
for the QC procedure proposed in Privé et al.*”

Using more than HapMap3 variants in LDpred2

Here we also run LDpred2 using more than HapMap3 variants,
based on a set of 8M+ variants (see above). However, LDpred2
cannot be run on 8M variants because the implementation is
quadratic with the number of variants in terms of time and
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Table 1. Overview of sets of individuals used in this study

Set UK1 UK2 UK3 Poland Italy Iran India China Caribbean Nigeria Ashkenazi Jewish
Training 1 367,063 24,061 - - - - - - - - _

Test 1 - - 20,000 4,136 6,660 1,200 6,331 1,810 2,484 3,924 1,709

Training 2 367,063 - - 4,136 6,660 1,200 6,331 1,810 - 3,924 -

Test 2 - - 20,000 - - - - - 2,484 - -

In total, 439,378 unrelated individuals are used here. Most analyses in this paper use UK1 + UK2 (391,124 individuals) as training set and the other groups as test
sets. Secondary analyses in section “Training with a mixture of ancestries” involve multiple ancestry training and keep only the UK3 and Caribbean groups as test
sets; UK2 is removed from the training so that sample size from training 2 is the same as training 1 (391,124 individuals). Note that the names of the first eight
ancestry groups we define here refer to the country names from the UK Biobank (field 20115) that we use to define the centers of each ancestry group; therefore,
these groups also include individuals from nearby countries. For example, the “United Kingdom” ancestry group also includes many individuals who self-identify
as Irish, and the “India” ancestry group also includes many individuals who self-identify as Pakistani (Note A).

memory requirements. Thus, we employ another strategy consist-
ing in keeping only the 1M most significant variants. To correct for
winner’s curse, we employ the maximum likelihood estimator
used in Zhong and Prentice*® and Shi et al.:*

¢(Z* - Zthr) - ¢( -7 - Zrhr)
(I)(Z* - Zthr) + d)( AR Zthr)7

Z=Z+

where ¢ is the standard normal density function, @ is the standard
normal cumulative density function, Z is the Z-score obtained
from the GWAS, Z;, is the threshold used on (absolute) Z-scores
for filtering, and Z* is the corrected Z-score that we estimate and
use. As input for LDpred2, instead of using B (along with SE(g8)
and N), we use 8" = 8-Z*/Z where Z = 8/SE(B). This is now imple-
mented in function snp_thr_correct of package bigsnpr.

Performance metric

Here we use the partial correlation as the performance metric,
which is the correlation between the PGS and the phenotype after
they have been both residualized using the covariates used in this
paper, i.e., sex, age, birth date, deprivation index, and 16 PCs. To
derive 95% confidence intervals for these correlations, we use
Fisher’s Z-transformation. We implement this in function pcor
of R package bigstatsr and use it here.

Results

Overview of study

Here, we use the UK Biobank (UKBB) data only.” We first
infer nine ancestry groups in the UKBB. Then we use
391,124 individuals of Northwestern European ancestry
to train polygenic scores (PGSs) for 245 phenotypes (about
half being diseases; see categories in Figure S1) based on
UKBB individual-level genotypes and phenotypes, and
we assess portability of these PGSs in the remaining indi-
viduals of diverse ancestries (Table 1). As additional ana-
lyses, we also investigate using more variants than the
HapMap3 variants used in the main analyses, and we train
models using a mixture of multiple ancestries. To derive
PGSs in this study, we use two different methods, penal-
ized regression and LDpred2-auto, and finally compare
them.

Ancestry grouping

We investigate various approaches to classify individuals in
ancestry groups based on principal component analysis
(PCA) of genome-wide genotype data. Detailed results
can be found in the corresponding Note A; we recall
main results here. First, we show that (squared) Euclidean
distances in the PCA space of genetic data are approxi-
mately proportional to Fsr between populations, and we
therefore recommend using this simple distance. We also
provide evidence that using only two PCs, or even four
PCs, is not enough to distinguish between some less-
distant populations, and we recommend using all PCs visu-
ally capturing some population structure. Then, we use
this PCA-based distance to infer ancestry in the UK Bio-
bank and the POPRES datasets. We propose two solutions
to do so, either relying on projection of PCs to reference
populations such as the 1000 Genomes Project, or by
directly using internal data only. We show that these
solutions are simple, robust, and effective methods for
inferring global ancestry and for grouping genetically ho-
mogeneous individuals.

Here, we first use the second solution presented in Note
A, relying on PCs computed within the UK Biobank and in-
dividual information on the countries of birth, for infer-
ring the first eight ancestry groups presented in Table 1.
These groups were chosen on the basis of being distant
enough from the other groups, and including enough indi-
viduals (e.g., >1,000) to draw meaningful conclusions.
Note that the names of the ancestry groups we define
here refer to the country names from the UK Biobank (field
201135) that we use to define the centers of each ancestry
group; therefore, these groups also include individuals
from nearby countries. For example, the “United
Kingdom” ancestry group also includes many individuals
who self-identify as Irish, and the “India” ancestry group
also includes many individuals who self-identify as Pakis-
tani (Note A). Then, for inferring the “Ashkenazi Jewish”
ancestry group, we use the first solution, projecting
UKBB individuals onto the PCA space of a reference dataset
composed of many Jewish and non-Jewish individuals.**
We identify a ninth group of 1,709 unrelated individuals,
which is entirely non-overlapping with the other eight
groups previously defined (Material and methods). This

The American Journal of Human Genetics 109, 12-23, January 6, 2022 15



100 40 4

A -
o S
-100 A & 404
-200 4 80+
Ancestry group
\ ® Ashkenazi Jewish
T T T T T T T ® Caribbean
0 100 200 300 400 -150 -100 ® China
PC1 ® India
® lIran
230 e |taly
® Nigeria
200 ® Poland
igmie, ® United Kingdom
e NA
150 A
S 3
o 1004 o

-100

-20 0 20
PC5

Figure 1.
individuals

PC7

The first eight PC scores of the UK Biobank (field 22009) colored by the homogeneous ancestry group we infer for these

Only 50,000 individuals are represented at random. “NA” means that the corresponding individual is not categorized in any of the nine

ancestry groups.

group is largely overlapping with the 1,719 presumably
British Jews identified from IBD segments in Naseri
et al.*’ (personal correspondence with the authors).
Finally, we run ADMIXTURE (with k = 8 and k = 5) on
200 individuals from each of the nine ancestry groups
defined here.”* The results are consistent with the PCA
analysis (Figure 1), e.g., showing that the Caribbean group
we define is mostly composed of admixed individuals with
mostly African ancestry and some small percentage of Eu-
ropean ancestry (Figure S2). Moreover, the other groups we
define have distinct ADMIXTURE profiles (consistently
with being distinct on PCA), except for the “United
Kingdom” and “Poland” ancestry groups, which cannot
be distinguished based on this analysis.

Portability of polygenic scores to other ancestries

Figure 2 presents the results when fitting penalized regres-
sion using a training set composed of Northwestern Euro-
pean individuals from the UK Biobank (“United Kingdom,”
hereinafter also referred to as “the UK individuals” or “the
UK” for simplicity purposes) and testing in nine different
ancestry groups from the same cohort (Table 1). Averaged
over 245 phenotypes, compared to prediction performance
in individuals of Northwestern European ancestry, relative
predictive ability in terms of partial-* (Material and

methods) is 93.8% in the “Poland” ancestry group (North-
east Europe), 85.6% in “Italy” (South Europe), 72.2% in
“Iran” (Middle East), 64.7% in “India” (South Asia), 48.6%
in “China” (East Asia), 25.2% in the “Caribbean,” 18% in
“Nigeria” (West Africa), and 85.7% for the Ashkenazi Jewish
group. As a follow-up analysis to ensure that this drop in per-
formance in other ancestries is not due to differences in
imputation quality across ancestries, we perform the same
analysis for 83 of the continuous phenotypes using high-
quality genotyped variants only (Material and methods)
instead of the (mostly imputed) HapMap3 variants; results
are highly consistent (Figure S3). We also run the previous
follow-up analysis while removing third-degree relatives,
which leaves us with 349,991 individuals for training
(instead of 391,124) and 43,631 for testing (instead of
46,545); results are practically unchanged (Figure S4). These
results are also very similar when using LDpred2-auto
instead of penalized regression for training predictive
models for all phenotypes (Figure S5). A few phenotypes
deviate from this global trend, e.g., prediction of bilirubin
concentration ranges between 0.537 and 0.619 (partial-r)
for all ancestries except for “China,” for which it is 0.415
95% CI: 0.374-0.453, see Material and methods). In
contrast, for example for hair and skin color, partial correla-
tions decrease quickly and are not significantly different
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the intercept at 0. The square of this slope is provided above each plot, which we report as the relative predictive performance compared

to testing in the “United Kingdom” ancestry group.

from O for both “China” and “Nigeria,” while of 0.420 (95%
CI: 0.409-0.432) for “darker hair” in the “United Kingdom”
ancestry group (Figure 2). Overall, relative predictive perfor-
mance decreases approximately linearly with PC distance to
the training set (Figure 3). A similar pattern is observed
when computing PCA based on more balanced ancestry
groups, as recommended in Privé et al.”’ (Figure S6).

Using more than HapMap3 variants?

We investigate some of the outlier phenotypes in Figure 2,
especially the ones from blood biochemistry which have
some variants with large effects. We hypothesize that using
a denser set of variants could improve tagging of the causal
variants with large effect sizes, resulting in an improved
prediction in all ancestries. We focus on “total bilirubin,”
“lipoprotein(a)” (lipoA), and “apolipoprotein B” (apoB).
We perform a localized GWAS which includes all variants
around the most significant variant (hereinafter denoted
as “top hit”) from the GWAS in the training set 1 (UK indi-
viduals and HapMap3 variants only) in each of the first
eight ancestry groups defined here. More precisely, we
include all variants with an imputation INFO score larger
than 0.3 and within a window of 500 kb from the
HapMap3 top hit in the UK; there are approximately 30K
such variants for all three phenotypes. For bilirubin, the
overall top hit is a HapMap3 variant and explains around
30% of the phenotypic variance (Figure S8). Effects from
the three top hits are fairly consistent within all ancestry

groups (Figure S9) explaining why genetic prediction is
highly consistent in all ancestries, except for “China”
(Figure 2), for which these variants are rarer. For lipoA, re-
sults are very different across ancestries; HapMap3 variants
are far from being the top hits for the UK individuals,
where the top HapMap3 variant explains 5% of pheno-
typic variance compared to 29% for the (non-HapMap3)
top hit (Figure 4). Note that this top hit is more than 200
kb away from the HapMap3 top hit from the UK group.
Moreover, the three top hits for lipoA do not have very
consistent effect sizes across ancestries (Figure S10). Finally,
for apoB, effects from the three top hits, which are not part
of HapMap3 variants, are fairly consistent across ancestries
and explain up to 8.5% of the phenotypic variance (Figures
S11 and S12).

We then investigate whether the use of a larger set of var-
iants than the HapMap3 set is beneficial; we use more than
8M common variants (Material and methods) and apply
LDpred2-auto after restricting to the 1M most significant
variants and applying winner’s curse correction (Material
and methods). Except for lipoA for which we get a large
improvement in predictive accuracy compared to using
HapMap3 variants only, it is not beneficial for the other
seven phenotypes analyzed here (Figure 5). Remarkably,
while the partial correlation for lipoA is about 75% in the
UK test set when using this prioritized set of variants, it
is still not different from O when applied to the “Nigeria”
group. For height and BMI, estimated SNP heritability is
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PC distances are computed using Euclidean distance between geo-
metric medians of the first 16 reported PC scores (field 22009) of
each ancestry group. Relative performance values are the ones re-
ported in Figure 2. The slope and standard errors are computed
internally by function geom_smooth(method = “Im”) of R pack-

age ggplot2.

reduced when using this set of most significant variants
only, and all these variants are estimated to be causal,
i.e., the estimate of the proportion of causal variants p is
1 (Table S1). As height and BMI are very polygenic traits
(p is estimated to be ~2% and ~4%, respectively, when us-
ing HapMap3 variants), contribution from less significant
causal variants is missed due to this thresholding selection.
For the three binary phenotypes of breast cancer (phecode:
174.1), prostate cancer (185), and coronary artery disease
(411.4), although heritability estimates are larger when us-
ing this set of prioritized variants (Table S1), predictive ac-
curacy does not improve compared to when using
HapMap3 variants (Figure 5).

Training with a mixture of ancestries

We hypothesize that using individuals from diverse ances-
tries could improve tagging of the causal variants, resulting
in an improved prediction in all ancestries. Indeed, power
improvements for both association and prediction have
been reported when using even a small set of individuals
from different ancestries.'***’ Here we use all ancestry
groups except for the Caribbean and Ashkenazi for
training penalized regressions; we remove the same num-
ber of UK individuals to keep the same training sample
size as before (training 2 in Table 1). We recall that Carib-
bean individuals are mostly admixed between African, Eu-
ropean, and Native American ancestries,”” which are
almost all represented here in the training set 2. In
Figure S13, we investigate nine phenotypes of interest,
either because they are highly studied diseases or are out-
liers in Figure 2: breast cancer (phecode: 174.1), prostate
cancer (186), type 2 diabetes (250.2), hypertension (401),

coronary artery disease (411.4), skin tone, total bilirubin
concentration, lipoprotein(a) concentration, and years of
education. We predict in the test sets from the UK and
the Caribbean (test set 2); overall, the predictive perfor-
mance is highly similar when using this multi-ancestry
training compared to when using only UK individuals, in
both the UK and the Caribbean target samples. Prediction
is only improved for lipoprotein(a) concentration when
the mixed ancestry training data is used in application to
the Caribbean target data (Figure S13). Discrepancies be-
tween our results and results from Marquez-Luna et al.”’
and Cavazos and Witte'' may be explained by the fact
that we use the exact same sample size when training
with multiple ancestries (by removing some UK individ-
uals; see Table 1), whereas these studies use extra (non-Eu-
ropean) individuals, making it hard to know if the
improved predictions come from using non-European in-
dividuals, or just from using more individuals. We also
run the newly developed PRS-CSx method*’ using individ-
uals from training 2, deriving the GWAS summary statistics
from the UK Biobank individual-level data (as for LDpred2-
auto). PRS-CSx provides lower predictive performance
than using the penalized regression on training 2 for
both the UK and Caribbean test sets, except when predict-
ing years of education for both sets as well as “darker skin”
and coronary artery disease (phecode 411.4) in the
Caribbean test set (Figure S13). Predictive performance of
PRS-CSx is particularly lower for traits with large effects
(bilirubin and lipoprotein(a) concentrations) and moder-
ate effects (breast and prostate cancers; phecodes 174.1
and 185).

Comparison of predictive models

Penalized regression and LDpred2-auto provide approxi-
mately similar predictive performance across all traits
and ancestries considered here (Figure S14); there are
only four pairs of phenotype-ancestry (out of nearly
2,000 pairs) for which 95% ClIs for partial-r from penalized
regression and LDpred2 are not overlapping: “615: endo-
metriosis” in the “China” ancestry group with 0.065
(0.0074 to 0.122) versus —0.051 (—0.108 to 0.0068);
“hard falling asleep” in UK with —0.0349 (-0.742 to
0.0045) versus 0.071 (0.031 to 0.110); height in UK with
0.634 (0.626 to 0.643) versus 0.613 (0.605 to 0.622); and
log-bilirubin in “Nigeria” with 0.546 (0.523 to 0.569)
versus 0.475 (0.449 to 0.500). For prediction in UK
ancestry, penalized regression tends to provide better pre-
dictive performance than LDpred2 for phenotypes for
which partial-r > 0.3, and LDpred2 tends to outperform
penalized regression for phenotypes harder to predict
(Figure S14).

Both methods allow for fitting sparse effects, i.e., some re-
sulting effects are exactly 0. Sparse models may be beneficial
because they may be more easily implemented. The sparse
option in LDpred2-auto provides similar performance as
LDpred2-auto without this option (Figure S15). Sparsity of
resulting effects follows a very different pattern for
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Figure 4. Zoomed Manhattan plot for lipoprotein(a) concentration

The phenotypic variance explained per variant is computed as r> = t2/(n +t2), where t is the t-score from GWAS and n is the degrees of
freedom (the sample size minus the number of variables in the model], i.e., the covariates used in the GWAS, the intercept, and the
variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within a 500 kb radius around the top
hit from the GWAS performed in the UK training set and on the HapMap3 variants, represented by a vertical dotted line.

penalized regression compared to LDpred2-auto-sparse.
Indeed, penalized regression tends not to include variants
if it is uncertain that they have a non-zero effect, i.e.,
when effects are very small and prediction is difficult
(Figure S16). In contrast, LDpred2-auto-sparse tends not to
discard variants, only when h? is large enough it sets lots
of effects to O if p is small (Figure S17). Finally, running
each penalized regression model takes between a few mi-
nutes and a few days depending on the number of non-
zero effects in the resulting model (Figure S18). In contrast,
LDpred2-auto should take the same computation time for
all phenotypes; it completed under 7 h for most phenotypes
(Figure S19).

Discussion

In this paper, we have conducted an extensive assessment
of PGS portability across ancestries using hundreds of phe-
notypes. Our analysis demonstrates a canonical relation
between genetic distance and predictive performance for
most phenotypes. The reported poor portability is in agree-
ment with three previous studies;”’>*>* we show a relative
predictive performance compared to Europeans of ~18%
for Africans (versus 22%, 42%, and 24%), ~49% for East
Asians (versus 50%, 95%, and 64%), and ~65% for South
Asians (versus 60%, 62.5%, and 72%). However, our results
also provide a significant addition to the current literature

in many ways. First, we show that the portability issue re-
mains strong even when PGSs are derived and applied in
the same cohort. Second, the presented results are aver-
aged over 245 phenotypes, which is much more than
what has been typically used, and should capture a broad
range of the phenotypic spectrum. Portability results are
highly consistent across most phenotypes (with a few ex-
ceptions) and could therefore be used to predict the ex-
pected loss of accuracy for other phenotypes. Third, we
provide this result at a finer scale than the usual continen-
tal level by proposing a simple, robust, and effective
method for grouping UKBB individuals in nine ancestry
groups. This allows us to show, for example, that predictive
performance already decreases within Europe with only
~94% for Northeast Europe and ~86% for South Europe
of the performance reached within Northwest Europe.
We showcase two methods for deriving polygenic scores
when large individual-level datasets are available. Although
LDpred2-auto is a method based on summary statistics, it
provides good predictive performance compared to penal-
ized regression, when applied to individual-level data.
Moreover, portability results shown here are similar when
using either the individual-level penalized regression or
the summary statistics based LDpred2 method. Fitting of
penalized models is relatively fast when wusing 1M
HapMap3 variants. We have also tried fitting penalized
regression using 8M variants (>3 TB of data); this was
possible but took several days for the phenotypes we tried,
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411.4: coronary artery disease. HM3, HapMap3; top1M, the 1M most significant variants out of more than 8M common variants (see

Material and methods).

so we have not investigated this further. To the best of our
knowledge, we use the most efficient penalized regression
implementation currently available. Recently, Qian et al.”
proposed snpnet, a new R package for fitting penalized re-
gressions on large individual-level genetic datasets, but we
have found it to be much less efficient than R package big-
statsr on UKBB data (Note B). As for LDpred2, it currently
cannot be run using 8M variants, but we show how to use
a subset of 1M prioritized variants out of these 8M. Using
this new set of variants provides a large improvement in pre-
dicting lipoprotein(a) concentration (lipoA), but not for the
other seven phenotypes studied in this analysis. This
improvement for lipoA is not surprising given that the top
HapMap3 variant explains 5% of phenotypic variance
compared to 29% for the (non-HapMap3) top hit (Figure 4).

Here we use only the UK Biobank data to fit polygenic
scores. We do not use external information such as func-
tional annotations; those could be used to improve the her-
itability model assumed by predictive methods in order to
improve predictive performance.’* Moreover, we do not
use external summary statistics, which means that poly-
genic scores derived from large GWAS meta-analyses would
probably outperform the ones we derived here. Neverthe-

less, Albifiana et al.>> have shown that an efficient strategy
to improve predictive ability of polygenic scores consists in
combining two different polygenic scores, one derived us-
ing external summary statistics and another one derived us-
ing internal individual-level data. Therefore, the polygenic
scores we derived here could be combined with polygenic
scores derived using external summary statistics; we will
release these PGSs publicly and share them in databases
such as the PGS Catalog and the Cancer-PRSweb.>*>’

Data and code availability

The UK Biobank data are available through a procedure described at
https://www.ukbiobank.ac.uk/using-the-resource/. All code used for
this paper is available at https://github.com/privefl/UKBB-PGS/tree/
main/code. Links to the code used for the Notes A and B are provided
there. Code to reproduce our nine ancestry groups is available at
https://github.com/privefl/ UKBB-PGS#code-to-reproduce-ancestry-
groups.

We have extensively used R packages bigstatsr and bigsnpr'® for
analyzing large genetic data, packages from the future frame-
work>® for easy scheduling and parallelization of analyses on the
HPC cluster, and packages from the tidyverse suite*” for shaping
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and visualizing results. We have also used R package deming for
fitting Deming regressions.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2021.11.008.
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Web resources

bigsnpr, tutorial on LDpred2, https://privefl.github.io/bigsnpr/
articles/LDpred2.html

bigstatsr, tutorial on penalized regressions, https://privefl.
github.io/bigstatsr/articles/penalized-
regressions.html

PGS Catalog, effect sizes of PGSs derived here, https://www.
pgscatalog.org/publication/PGP000263/

UK Biobank, quality control information on genetic variants,
https://biobank.ctsu.ox.ac.uk/crystal/crystal/auxdata/ukb_snp_
qc.txt

UKBB-PGS, description of the 245 phenotypes used in this study,
https://github.com/privefl/UKBB-PGS/blob/main/phenotype-
description.xlsx

UKBB-PGS, other information on the phenotypes (e.g., sample sizes),
https://github.com/privefl/UKBB-PGS/blob/main/phenotype-
info.xlsx
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