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Summary
The low portability of polygenic scores (PGSs) across global populations is a major concern that must be addressed before PGSs can be

used for everyone in the clinic. Indeed, prediction accuracy has been shown to decay as a function of the genetic distance between the

training and test cohorts. However, such cohorts differ not only in their genetic distance but also in their geographical distance and their

data collection and assaying, conflating multiple factors. In this study, we examine the extent to which PGSs are transferable between

ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and applying them in nine ancestry groups from

the same cohort. By restricting both training and testing to the UK Biobank data, we reduce the risk of environmental and genotyping

confounding from using different cohorts. We define the nine ancestry groups at a sub-continental level, based on a simple, robust, and

effective method that we introduce here. We then apply two different predictive methods to derive polygenic scores for all 245 pheno-

types and show a systematic and dramatic reduction in portability of PGSs trained using Northwestern European individuals and applied

to nine ancestry groups. These analyses demonstrate that prediction already drops off within European ancestries and reduces globally in

proportion to genetic distance. Altogether, our study provides unique and robust insights into the PGS portability problem.
Introduction

Ever larger genetic datasets are becoming more readily

available. This enables researchers to derive polygenic

scores (PGSs), which summarize an individual’s genetic

component for a particular trait or disease by aggregating

information from many genetic variants into a single

score. In human genetics, polygenic scores are usually

derived from summary statistics from a large meta-analysis

of multiple genome-wide association studies (GWASs) and

an ancestry-matched linkage disequilibrium (LD) reference

panel.1 Polygenic scores can also be derived directly from

individual-level data when available, i.e., from the genetic

and phenotypic information of many individuals.2 When

using a single individual-level dataset with only moderate

sample size, deriving polygenic scores usually results in

poor prediction for most phenotypes, e.g., for autoim-

mune diseases with moderately large effects.3,4 Fortu-

nately, biobank datasets such as the UK Biobank now

link genetic data for half a million individuals with pheno-

typic data for hundreds of traits and diseases.5 Thanks to

the availability of these large datasets and to efficient

methods recently developed to handle such data,4,6,7 indi-

vidual-level data may be used to derive competitive PGSs

for hundreds of phenotypes.

A major concern about PGSs is that they usually transfer

poorly to other ancestries, e.g., a PGS derived from individ-
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uals of European ancestry is not likely to predict as well in

individuals of African ancestry. Prediction in another

ancestry has been shown to decay with genetic distance

to the training population8,9 and with increasing propor-

tion of admixture with a distant ancestry.10,11 This porta-

bility issue is suspected to be primarily due to differences

in LD and allele frequencies between populations, and

not so much about differences in effects and positions of

causal variants.9,11 Individual-level data from the UK Bio-

bank offers an opportunity to further investigate this prob-

lem of PGS portability in a more controlled setting.9,12

Indeed, while the UK Biobank data contain genetic infor-

mation formore than450KBritish or European individuals,

it also contains the same data for tens of thousands of indi-

viduals of non-British ancestry.5 Of particular interest,

those individuals of diverse ancestries all live in the UK

and had their genetic and phenotypic information derived

in the same way as people of UK ancestry. Our study design

circumvents potential confounding bias thatmight arise in

comparative analyses from independent studies andmakes

the UK Biobank data very well suited for comparing and

evaluating predictive performance of derived PGSs in

diverse ancestries and across multiple phenotypes. Indeed,

the UK Biobank has been shown to offer a much more

controlled setting (compared to published GWAS meta-an-

alyses) in the case of studying (for example) polygenic adap-

tation.13,14 Note that these analyses are not completely free
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of bias since, on average, genotyped variants aremore com-

mon and imputed variants are more accurately imputed in

European ancestries. We also acknowledge that some resid-

ual structure may remain when deriving PGSs.15

To investigate portability of PGSs to other ancestries, we

must first define groups of different ancestries from the

data. Principal component analysis (PCA) has been widely

used to correct for population structure in association

studies and has been shown to mirror geography in Eu-

rope.16,17 Due to its popularity, many methods have been

developed for efficiently performing PCA18–20 as well as

appropriately projecting samples onto a reference PCA

space,20,21 making it possible to perform these analyses

for ever increasing datasets. Naturally, PCA has also been

used for ancestry inference.21–23 However, among the

studies where we have seen PCA used for ancestry infer-

ence, there does not seem to be a consensus on what is

the most appropriate method for inferring ancestry using

PCA. For example, there are divergences on which distance

metric to use and the number of PCs to use to compute

these distances. The ancestry of an individual can also be

inferred based on other approaches, including the ADMIX-

TURE model, its various extensions, and haplotype-based

methods.24–31 However, we focus on PCA here because it

is very fast and effective.

In this study, we examine the extent to which PGSs are

transferable between ancestries by deriving 245 polygenic

scores from the UK Biobank data and applying them in

nine ancestry groups from the same cohort. We first pro-

pose simple, robust, and effective methods for global

ancestry inference and grouping from PCA of genetic

data, and we use them to define nine ancestry groups in

theUKBiobank data.We then apply a computationally effi-

cient implementation of penalized regression4 to derive

PGSs for 245 traits using the UK Biobank genetic and

phenotypic data only. As an alternative method, we also

run LDpred2-auto,32 for which we directly derive the sum-

mary statistics from the individual-level data available.

We show a dramatically low portability of PGSs from UK

ancestry to other ancestries. For example, on average, the

phenotypic variance explained by the PGSs is only 64.7%

in South Asia (the ‘‘India’’ ancestry group defined here),

48.6% in East Asia (‘‘China’’), and 18% in West Africa

(‘‘Nigeria’’) compared to in individuals of Northwestern Eu-

ropean ancestry (‘‘United Kingdom’’). These results are pre-

sented at a finer scale than the usual continental level,

which allows us to show that prediction already drops

within Europe, e.g., for Northeast and South Europe (the

‘‘Poland’’ and ‘‘Italy’’ ancestry groups) compared to North-

west Europe. We find that this decay in variance explained

by the PGSs is roughly linear in the PC distance to the

training population and is remarkably consistent across

most phenotypes and for both predictionmethods applied.

The few exceptions include traits such as hair color, tan-

ning, and somebloodmeasurements.We also explore using

more than HapMap3 variants when fitting PGSs, it proves

usefulwhen large effects are poorly taggedbyHapMap3var-
The Am
iants, e.g., for lipoprotein(a), but not in the general case.We

also explore theperformanceof PGS trainedusing amixture

of European and non-European ancestry samples, but do

not observe any significant gain in prediction here.
Material and methods

Data
We derive polygenic scores for 245 phenotypes using the UK Bio-

bank (UKBB) data only.5 We read dosages data from UKBB BGEN

files using function snp_readBGEN() of R package bigsnpr.19 We

divide the UKBB data in eight ancestry groups (Note A) and restrict

to 437,669 individuals without second-degree relatives (KING

kinship <2�3.5). We also define a ninth ancestry group composed

of 1,709 unrelated Ashkenazi (see below). For the variants, we use

1,040,096 HapMap3 variants used in the LD reference provided in

Privé et al.32 and that were also present in the iPSYCH2015 data33

with imputation INFO score larger than 0.6. Even though the iP-

SYCH data is not used in this study, we plan to use the PGSs

derived here for iPSYCH in the future.

To define phenotypes, we first map ICD10 and ICD9 codes

(UKBB fields 40001, 40002, 40006, 40013, 41202, 41270, and

41271) to phecodes using R package PheWAS.34,35 We filter

down to 142 phecodes of interest that showed potential genetic

signals in the PheWeb results from the SAIGE UKBB GWAS.36,37

We further filter down to 106 phecodes with sufficient power for

penalized regression to include at least a few variants in the predic-

tive models. We then look closely at all 2,408 UKBB fields that we

have access to and filter down to defining 111 continuous and 28

binary phenotypes based on manual curation.
Additional data: Genotyped data
For the genotyped data used in some follow-up analyses, we

restrict to variants that have been genotyped on both chips used

by the UK Biobank, that pass quality control (QC) for all batches

and QC for possible mismappings,38 with a minor allele frequency

(MAF) larger than 0.01 and imputation INFO score of 1. There are

586,534 such high-quality variants, which we read from the BGEN

imputed data so that there is no missing value.
Additional data: 8Mþ variants
We also design a larger set of imputed variants to compare against

using only HapMap3 variants for prediction. We first restrict to

UKBB variants with MAF> 0.01 and INFO > 0.6. We then compile

frequencies and imputation INFO scores from other datasets,

iPSYCH, and summary statistics for breast cancer, prostate cancer,

coronary artery disease, and type 1 diabetes.33,39–42 We restrict to

variants with a mean INFO > 0.5 in these other datasets and also

compute themedian frequency. To exclude potentialmismappings

in thegenotypeddata38 thatmighthave propagated to the imputed

data, we compare median frequencies in the external data to the

ones in UKBB (Figure S20). As we expect these potential errors to

be localized around errors in the genotype data (confirmed in

Figure S21), we apply a moving-average smoothing on the fre-

quency differences to increase power to detect these errors and

also reduce false positives. We define the threshold on these

smootheddifferences basedonvisual inspectionof their histogram.

This is the samemethodwe have previously applied to PC loadings

to detect long-range LD regions when computing PCA.19,20 This re-

sults in a set of 8,238,692 variants.
erican Journal of Human Genetics 109, 12–23, January 6, 2022 13



Ashkenazi Jewish ancestry group
First, we refer the reader to Note A on ancestry grouping for the de-

tails on how we define the other eight ancestry groups, and also to

better understand how we infer the ‘‘Ashkenazi Jewish’’ ancestry

group. Briefly, we project the UKBB data onto the PCA space of a

reference dataset composed of many Jewish and non-Jewish indi-

viduals.43 We then compute the robust center (geometric median)

of the Ashkenazi Jewish reference individuals and compute the PC

distance to this center for all projected UKBB individuals. Based on

visual inspection of the histogram of these distances and on the

fact that the closest non-Ashkenazi Jewish reference individual,

an Italian Jew (Figure S22), is at distance 12.7, we use a threshold

of 12.5 under which to assign to the ‘‘Ashkenazi Jewish’’ ancestry

group. 1,709 unrelated UKBB individuals are then assigned to this

group. Note that, within the already defined eight ancestry groups,

the closest individual to this new group belongs to the Italian

group, and is at distance 17.3, so this new Ashkenazi group is

not overlapping with any of the other groups defined previously.

Penalized regression
To derive polygenic scores based on individual-level data from the

UKBB,weuse the fast implementation of penalized linear and logis-

tic regressions from R package bigstatsr.4 We have also considered

the recentlydevelopedRpackage snpnet for fittingpenalized regres-

sions on large genetic data; however, we provide theoretical and

empirical evidence that bigstatsr is much faster than snpnet (Note

B). Our implementation allows for lasso and elastic-net penaliza-

tions; yet, for the sake of simplicity and because the UKBB data is

very large, we have decided to only use the lasso penalty.4We recall

that fitting a penalized linear regression with lasso penalty corre-

sponds tofinding thevectorof effectsb (alsomandg) thatminimizes

LðlÞ ¼ ky � ðmþGbþ XgÞk22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Loss function

þ lkbk1|fflffl{zfflffl}
Penalisation

;

where m is an intercept,G is the genotypematrix,X is thematrix of

covariates, y is the (quantitative) phenotype of interest, and l is a

hyper-parameter that controls the strength of the regularization

and needs to be chosen. We use sex (field 22001), age (field

21022), birth date (fields 34 and 52), Townsend deprivation index

(field 189), and the first 16 genetic principal components (field

22009),20 as unpenalized covariates when fitting the lasso models.

We have extended our implementation in two ways by allowing

for using different penalties for the variants (i.e., having
P
j

lj

�����bj
�����

instead of lkbk1). First, this enables us to use a different scaling

for genotypes. By default, variants in G are implicitly scaled. By us-

ing ljfðSDjÞðx�1Þ, this effectively scales variant j by dividing it by

ðSDjÞx in our implementation. The default uses x ¼ 1 but we also

test x ¼ 0 (no scaling) and x ¼ 0:5 (Pareto scaling). We introduce

a new parameter power_scale for which the user can provide a vec-

tor of values to test; the best value is chosen within the Cross-

Model Selection and Averaging (CMSA) procedure.4 We also intro-

duce a second parameter, power_adaptive, which can be used to

put less penalizition on variants with the largest marginal ef-

fects;44 we try three values here (0 the default, 0.5, and 1.5) and

the best one is also chosen within the CMSA procedure.

LDpred2-auto
Using the individual-level data from the training set in the UK Bio-

bank, we run a linear regressionGWAS using function big_univLin-
14 The American Journal of Human Genetics 109, 12–23, January 6, 2
Regof Rpackagebigstatsr,19 accounting for the samecovariates as in

the penalized regression above. As LD reference,weuse the one pro-

vided inPrivé et al.32 based onUKBBdata for European ancestry.We

use these summary statistics and this LD reference as input for

LDpred2-auto. LDpred2 assumes a point-normal mixture distribu-

tion for effect sizes,whereonly aproportionof causal variants p con-

tributes to the SNP heritability h2. In LDpred2-auto, these two

parameters are directly estimated from the data.32We use the sparse

option in LDpred2-auto to also obtain a vector of effects that is

potentially sparse, i.e., effects of some variants are exactly 0. Also

note that, as we use linear regression for all phenotypes, we use

the total sample size instead of the effective sample size

ð4 =ð1 =ncase þ1 =ncontrolÞÞ for binary phenotypes as input to

LDpred2. Thismeans that heritability estimates fromboth LD score

regression and LDpred2-auto must be transformed to the liability

scale using both the prevalence in theGWASand in the population;

this can be performed using function coef_to_liab from R package

bigsnpr. For simplicity, we assume here that the prevalence in the

population is the same as the prevalence in the training set.

New formula used in LDpred2
We also slightly modify the formula used in Privé et al.;32 we have

previously used

se
�bg j

�2 ¼�
�y � bgj

�Gj

�T�
�y � bgj

�Gj

�
ðn�K�1Þ �GT

j
�Gjz�yT �y

n �G
T
j
�Gjz

varðyÞ
nvarðGjÞ;

where bgj is the marginal effect of variant j, and where �y and �Gj are

the vectors of phenotypes and genotypes for variant j residualized

from K covariates, e.g., centering them. The first approximation

expects bgj to be small, while the second approximation assumes

the effects from covariates are small. However, we have found

here that some variants can have very large effects, e.g., one

variant explains about 30% of the variance in bilirubin log-con-

centration. Then, instead we compute

�
�y � bgj

�Gj

�T�
�y� bgj

�Gj

�
¼ �yT�y � 2bg j

�G
T

j
�y þ bg2

j
�G

T

j
�Gj

¼ �yT�y � bg2
j
�G

T

j
�Gj;

which now gives

ðn�K�1Þse�bgj

�2 ¼ �yT �y � bg2
j
�G

T

j
�Gj

�G
T
j
�Gj¼�yT �y

�G
T
j
�Gj�bg2

j z
varð�yÞ

varðGjÞ�bg2

j ;

finally giving (note the added term bg2
j )

sd
�
Gj

�
z

sdð�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nse

�bgj

�2 þ bg2
j

q : (Equation 1)

Figure S23 shows that the updated formula Equation 1 is better; we

now use it in the code of LDpred2, and also recommend using it

for the QC procedure proposed in Privé et al.32

Using more than HapMap3 variants in LDpred2
Here we also run LDpred2 using more than HapMap3 variants,

based on a set of 8Mþ variants (see above). However, LDpred2

cannot be run on 8M variants because the implementation is

quadratic with the number of variants in terms of time and
022



Table 1. Overview of sets of individuals used in this study

Set UK1 UK2 UK3 Poland Italy Iran India China Caribbean Nigeria Ashkenazi Jewish

Training 1 367,063 24,061 – – – – – – – – –

Test 1 – – 20,000 4,136 6,660 1,200 6,331 1,810 2,484 3,924 1,709

Training 2 367,063 – – 4,136 6,660 1,200 6,331 1,810 – 3,924 –

Test 2 – – 20,000 – – – – – 2,484 – –

In total, 439,378 unrelated individuals are used here. Most analyses in this paper use UK1 þ UK2 (391,124 individuals) as training set and the other groups as test
sets. Secondary analyses in section ‘‘Training with a mixture of ancestries’’ involve multiple ancestry training and keep only the UK3 and Caribbean groups as test
sets; UK2 is removed from the training so that sample size from training 2 is the same as training 1 (391,124 individuals). Note that the names of the first eight
ancestry groups we define here refer to the country names from the UK Biobank (field 20115) that we use to define the centers of each ancestry group; therefore,
these groups also include individuals from nearby countries. For example, the ‘‘United Kingdom’’ ancestry group also includes many individuals who self-identify
as Irish, and the ‘‘India’’ ancestry group also includes many individuals who self-identify as Pakistani (Note A).
memory requirements. Thus, we employ another strategy consist-

ing in keeping only the 1Mmost significant variants. To correct for

winner’s curse, we employ the maximum likelihood estimator

used in Zhong and Prentice45 and Shi et al.:46

Z¼Z� þ fðZ� � ZthrÞ � fð � Z� � ZthrÞ
FðZ� � ZthrÞ þFð � Z� � ZthrÞ;

where f is the standard normal density function,F is the standard

normal cumulative density function, Z is the Z-score obtained

from the GWAS, Zthr is the threshold used on (absolute) Z-scores

for filtering, and Z� is the corrected Z-score that we estimate and

use. As input for LDpred2, instead of using b (along with SEðbÞ
and N), we use b� ¼ b$Z�=Z where Z ¼ b=SEðbÞ. This is now imple-

mented in function snp_thr_correct of package bigsnpr.
Performance metric
Here we use the partial correlation as the performance metric,

which is the correlation between the PGS and the phenotype after

they have been both residualized using the covariates used in this

paper, i.e., sex, age, birth date, deprivation index, and 16 PCs. To

derive 95% confidence intervals for these correlations, we use

Fisher’s Z-transformation. We implement this in function pcor

of R package bigstatsr and use it here.
Results

Overview of study

Here, we use the UK Biobank (UKBB) data only.5 We first

infer nine ancestry groups in the UKBB. Then we use

391,124 individuals of Northwestern European ancestry

to train polygenic scores (PGSs) for 245 phenotypes (about

half being diseases; see categories in Figure S1) based on

UKBB individual-level genotypes and phenotypes, and

we assess portability of these PGSs in the remaining indi-

viduals of diverse ancestries (Table 1). As additional ana-

lyses, we also investigate using more variants than the

HapMap3 variants used in the main analyses, and we train

models using a mixture of multiple ancestries. To derive

PGSs in this study, we use two different methods, penal-

ized regression and LDpred2-auto, and finally compare

them.
The Am
Ancestry grouping

We investigate various approaches to classify individuals in

ancestry groups based on principal component analysis

(PCA) of genome-wide genotype data. Detailed results

can be found in the corresponding Note A; we recall

main results here. First, we show that (squared) Euclidean

distances in the PCA space of genetic data are approxi-

mately proportional to FST between populations, and we

therefore recommend using this simple distance. We also

provide evidence that using only two PCs, or even four

PCs, is not enough to distinguish between some less-

distant populations, and we recommend using all PCs visu-

ally capturing some population structure. Then, we use

this PCA-based distance to infer ancestry in the UK Bio-

bank and the POPRES datasets. We propose two solutions

to do so, either relying on projection of PCs to reference

populations such as the 1000 Genomes Project, or by

directly using internal data only. We show that these

solutions are simple, robust, and effective methods for

inferring global ancestry and for grouping genetically ho-

mogeneous individuals.

Here, we first use the second solution presented in Note

A, relying on PCs computed within the UK Biobank and in-

dividual information on the countries of birth, for infer-

ring the first eight ancestry groups presented in Table 1.

These groups were chosen on the basis of being distant

enough from the other groups, and including enough indi-

viduals (e.g., >1,000) to draw meaningful conclusions.

Note that the names of the ancestry groups we define

here refer to the country names from the UK Biobank (field

20115) that we use to define the centers of each ancestry

group; therefore, these groups also include individuals

from nearby countries. For example, the ‘‘United

Kingdom’’ ancestry group also includes many individuals

who self-identify as Irish, and the ‘‘India’’ ancestry group

also includes many individuals who self-identify as Pakis-

tani (Note A). Then, for inferring the ‘‘Ashkenazi Jewish’’

ancestry group, we use the first solution, projecting

UKBB individuals onto the PCA space of a reference dataset

composed of many Jewish and non-Jewish individuals.43

We identify a ninth group of 1,709 unrelated individuals,

which is entirely non-overlapping with the other eight

groups previously defined (Material and methods). This
erican Journal of Human Genetics 109, 12–23, January 6, 2022 15



Figure 1. The first eight PC scores of the UK Biobank (field 22009) colored by the homogeneous ancestry group we infer for these
individuals
Only 50,000 individuals are represented at random. ‘‘NA’’ means that the corresponding individual is not categorized in any of the nine
ancestry groups.
group is largely overlapping with the 1,719 presumably

British Jews identified from IBD segments in Naseri

et al.47 (personal correspondence with the authors).

Finally, we run ADMIXTURE (with k ¼ 8 and k ¼ 5) on

200 individuals from each of the nine ancestry groups

defined here.24 The results are consistent with the PCA

analysis (Figure 1), e.g., showing that the Caribbean group

we define is mostly composed of admixed individuals with

mostly African ancestry and some small percentage of Eu-

ropean ancestry (Figure S2). Moreover, the other groups we

define have distinct ADMIXTURE profiles (consistently

with being distinct on PCA), except for the ‘‘United

Kingdom’’ and ‘‘Poland’’ ancestry groups, which cannot

be distinguished based on this analysis.

Portability of polygenic scores to other ancestries

Figure 2 presents the results when fitting penalized regres-

sion using a training set composed of Northwestern Euro-

pean individuals from the UK Biobank (‘‘United Kingdom,’’

hereinafter also referred to as ‘‘the UK individuals’’ or ‘‘the

UK’’ for simplicity purposes) and testing in nine different

ancestry groups from the same cohort (Table 1). Averaged

over 245 phenotypes, compared to prediction performance

in individuals of Northwestern European ancestry, relative

predictive ability in terms of partial-r2 (Material and
16 The American Journal of Human Genetics 109, 12–23, January 6, 2
methods) is 93.8% in the ‘‘Poland’’ ancestry group (North-

east Europe), 85.6% in ‘‘Italy’’ (South Europe), 72.2% in

‘‘Iran’’ (Middle East), 64.7% in ‘‘India’’ (South Asia), 48.6%

in ‘‘China’’ (East Asia), 25.2% in the ‘‘Caribbean,’’ 18% in

‘‘Nigeria’’ (West Africa), and 85.7% for the Ashkenazi Jewish

group.As a follow-upanalysis to ensure that thisdrop inper-

formance in other ancestries is not due to differences in

imputation quality across ancestries, we perform the same

analysis for 83 of the continuous phenotypes using high-

quality genotyped variants only (Material and methods)

instead of the (mostly imputed) HapMap3 variants; results

are highly consistent (Figure S3). We also run the previous

follow-up analysis while removing third-degree relatives,

which leaves us with 349,991 individuals for training

(instead of 391,124) and 43,631 for testing (instead of

46,545); results are practically unchanged (Figure S4). These

results are also very similar when using LDpred2-auto

instead of penalized regression for training predictive

models for all phenotypes (Figure S5). A few phenotypes

deviate from this global trend, e.g., prediction of bilirubin

concentration ranges between 0.537 and 0.619 (partial-r)

for all ancestries except for ‘‘China,’’ for which it is 0.415

(95% CI: 0.374–0.453, see Material and methods). In

contrast, for example for hair and skin color, partial correla-

tions decrease quickly and are not significantly different
022
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Figure 2. Partial correlation and 95% CI in the UK test set versus in a test set from another ancestry group
Each point represents a phenotype and training has been performed with penalized regression on UK individuals (training 1 in Table 1)
and HapMap3 variants. The slope (in blue) is computed using Deming regression accounting for standard errors in both x and y, fixing
the intercept at 0. The square of this slope is provided above each plot, which we report as the relative predictive performance compared
to testing in the ‘‘United Kingdom’’ ancestry group.
from0 for both ‘‘China’’ and ‘‘Nigeria,’’ while of 0.420 (95%

CI: 0.409–0.432) for ‘‘darker hair’’ in the ‘‘United Kingdom’’

ancestry group (Figure 2). Overall, relative predictive perfor-

mancedecreases approximately linearlywithPCdistance to

the training set (Figure 3). A similar pattern is observed

when computing PCA based on more balanced ancestry

groups, as recommended in Privé et al.20 (Figure S6).

Using more than HapMap3 variants?

We investigate some of the outlier phenotypes in Figure 2,

especially the ones from blood biochemistry which have

some variants with large effects.We hypothesize that using

a denser set of variants could improve tagging of the causal

variants with large effect sizes, resulting in an improved

prediction in all ancestries. We focus on ‘‘total bilirubin,’’

‘‘lipoprotein(a)’’ (lipoA), and ‘‘apolipoprotein B’’ (apoB).

We perform a localized GWAS which includes all variants

around the most significant variant (hereinafter denoted

as ‘‘top hit’’) from the GWAS in the training set 1 (UK indi-

viduals and HapMap3 variants only) in each of the first

eight ancestry groups defined here. More precisely, we

include all variants with an imputation INFO score larger

than 0.3 and within a window of 500 kb from the

HapMap3 top hit in the UK; there are approximately 30K

such variants for all three phenotypes. For bilirubin, the

overall top hit is a HapMap3 variant and explains around

30% of the phenotypic variance (Figure S8). Effects from

the three top hits are fairly consistent within all ancestry
The Am
groups (Figure S9) explaining why genetic prediction is

highly consistent in all ancestries, except for ‘‘China’’

(Figure 2), for which these variants are rarer. For lipoA, re-

sults are very different across ancestries; HapMap3 variants

are far from being the top hits for the UK individuals,

where the top HapMap3 variant explains 5% of pheno-

typic variance compared to 29% for the (non-HapMap3)

top hit (Figure 4). Note that this top hit is more than 200

kb away from the HapMap3 top hit from the UK group.

Moreover, the three top hits for lipoA do not have very

consistent effect sizes across ancestries (Figure S10). Finally,

for apoB, effects from the three top hits, which are not part

of HapMap3 variants, are fairly consistent across ancestries

and explain up to 8.5% of the phenotypic variance (Figures

S11 and S12).

We then investigate whether the use of a larger set of var-

iants than the HapMap3 set is beneficial; we use more than

8M common variants (Material and methods) and apply

LDpred2-auto after restricting to the 1M most significant

variants and applying winner’s curse correction (Material

and methods). Except for lipoA for which we get a large

improvement in predictive accuracy compared to using

HapMap3 variants only, it is not beneficial for the other

seven phenotypes analyzed here (Figure 5). Remarkably,

while the partial correlation for lipoA is about 75% in the

UK test set when using this prioritized set of variants, it

is still not different from 0 when applied to the ‘‘Nigeria’’

group. For height and BMI, estimated SNP heritability is
erican Journal of Human Genetics 109, 12–23, January 6, 2022 17
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Figure 3. Relative variance explained compared to the UK
versus PC distance from the UK
PC distances are computed using Euclidean distance between geo-
metric medians of the first 16 reported PC scores (field 22009) of
each ancestry group. Relative performance values are the ones re-
ported in Figure 2. The slope and standard errors are computed
internally by function geom_smooth(method ¼ ‘‘lm’’) of R pack-
age ggplot2.
reduced when using this set of most significant variants

only, and all these variants are estimated to be causal,

i.e., the estimate of the proportion of causal variants p is

1 (Table S1). As height and BMI are very polygenic traits

(p is estimated to be �2% and �4%, respectively, when us-

ing HapMap3 variants), contribution from less significant

causal variants is missed due to this thresholding selection.

For the three binary phenotypes of breast cancer (phecode:

174.1), prostate cancer (185), and coronary artery disease

(411.4), although heritability estimates are larger when us-

ing this set of prioritized variants (Table S1), predictive ac-

curacy does not improve compared to when using

HapMap3 variants (Figure 5).

Training with a mixture of ancestries

We hypothesize that using individuals from diverse ances-

tries could improve tagging of the causal variants, resulting

in an improved prediction in all ancestries. Indeed, power

improvements for both association and prediction have

been reported when using even a small set of individuals

from different ancestries.11,48,49 Here we use all ancestry

groups except for the Caribbean and Ashkenazi for

training penalized regressions; we remove the same num-

ber of UK individuals to keep the same training sample

size as before (training 2 in Table 1). We recall that Carib-

bean individuals are mostly admixed between African, Eu-

ropean, and Native American ancestries,50 which are

almost all represented here in the training set 2. In

Figure S13, we investigate nine phenotypes of interest,

either because they are highly studied diseases or are out-

liers in Figure 2: breast cancer (phecode: 174.1), prostate

cancer (186), type 2 diabetes (250.2), hypertension (401),
18 The American Journal of Human Genetics 109, 12–23, January 6, 2
coronary artery disease (411.4), skin tone, total bilirubin

concentration, lipoprotein(a) concentration, and years of

education. We predict in the test sets from the UK and

the Caribbean (test set 2); overall, the predictive perfor-

mance is highly similar when using this multi-ancestry

training compared to when using only UK individuals, in

both the UK and the Caribbean target samples. Prediction

is only improved for lipoprotein(a) concentration when

the mixed ancestry training data is used in application to

the Caribbean target data (Figure S13). Discrepancies be-

tween our results and results from Márquez-Luna et al.51

and Cavazos and Witte11 may be explained by the fact

that we use the exact same sample size when training

with multiple ancestries (by removing some UK individ-

uals; see Table 1), whereas these studies use extra (non-Eu-

ropean) individuals, making it hard to know if the

improved predictions come from using non-European in-

dividuals, or just from using more individuals. We also

run the newly developed PRS-CSx method49 using individ-

uals from training 2, deriving the GWAS summary statistics

from the UK Biobank individual-level data (as for LDpred2-

auto). PRS-CSx provides lower predictive performance

than using the penalized regression on training 2 for

both the UK and Caribbean test sets, except when predict-

ing years of education for both sets as well as ‘‘darker skin’’

and coronary artery disease (phecode 411.4) in the

Caribbean test set (Figure S13). Predictive performance of

PRS-CSx is particularly lower for traits with large effects

(bilirubin and lipoprotein(a) concentrations) and moder-

ate effects (breast and prostate cancers; phecodes 174.1

and 185).

Comparison of predictive models

Penalized regression and LDpred2-auto provide approxi-

mately similar predictive performance across all traits

and ancestries considered here (Figure S14); there are

only four pairs of phenotype-ancestry (out of nearly

2,000 pairs) for which 95% CIs for partial-r from penalized

regression and LDpred2 are not overlapping: ‘‘615: endo-

metriosis’’ in the ‘‘China’’ ancestry group with 0.065

(0.0074 to 0.122) versus �0.051 (�0.108 to 0.0068);

‘‘hard falling asleep’’ in UK with �0.0349 (�0.742 to

0.0045) versus 0.071 (0.031 to 0.110); height in UK with

0.634 (0.626 to 0.643) versus 0.613 (0.605 to 0.622); and

log-bilirubin in ‘‘Nigeria’’ with 0.546 (0.523 to 0.569)

versus 0.475 (0.449 to 0.500). For prediction in UK

ancestry, penalized regression tends to provide better pre-

dictive performance than LDpred2 for phenotypes for

which partial-r > 0.3, and LDpred2 tends to outperform

penalized regression for phenotypes harder to predict

(Figure S14).

Bothmethods allow for fitting sparse effects, i.e., some re-

sulting effects are exactly 0. Sparsemodelsmaybe beneficial

because they may be more easily implemented. The sparse

option in LDpred2-auto provides similar performance as

LDpred2-auto without this option (Figure S15). Sparsity of

resulting effects follows a very different pattern for
022



Figure 4. Zoomed Manhattan plot for lipoprotein(a) concentration
The phenotypic variance explained per variant is computed as r2 ¼ t2=ðnþt2Þ, where t is the t-score from GWAS and n is the degrees of
freedom (the sample size minus the number of variables in the model, i.e., the covariates used in the GWAS, the intercept, and the
variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within a 500 kb radius around the top
hit from the GWAS performed in the UK training set and on the HapMap3 variants, represented by a vertical dotted line.
penalized regression compared to LDpred2-auto-sparse.

Indeed, penalized regression tends not to include variants

if it is uncertain that they have a non-zero effect, i.e.,

when effects are very small and prediction is difficult

(Figure S16). In contrast, LDpred2-auto-sparse tends not to

discard variants, only when h2 is large enough it sets lots

of effects to 0 if p is small (Figure S17). Finally, running

each penalized regression model takes between a few mi-

nutes and a few days depending on the number of non-

zero effects in the resulting model (Figure S18). In contrast,

LDpred2-auto should take the same computation time for

all phenotypes; it completedunder 7h formost phenotypes

(Figure S19).
Discussion

In this paper, we have conducted an extensive assessment

of PGS portability across ancestries using hundreds of phe-

notypes. Our analysis demonstrates a canonical relation

between genetic distance and predictive performance for

most phenotypes. The reported poor portability is in agree-

ment with three previous studies;9,52,53 we show a relative

predictive performance compared to Europeans of �18%

for Africans (versus 22%, 42%, and 24%), �49% for East

Asians (versus 50%, 95%, and 64%), and �65% for South

Asians (versus 60%, 62.5%, and 72%). However, our results

also provide a significant addition to the current literature
The Am
in many ways. First, we show that the portability issue re-

mains strong even when PGSs are derived and applied in

the same cohort. Second, the presented results are aver-

aged over 245 phenotypes, which is much more than

what has been typically used, and should capture a broad

range of the phenotypic spectrum. Portability results are

highly consistent across most phenotypes (with a few ex-

ceptions) and could therefore be used to predict the ex-

pected loss of accuracy for other phenotypes. Third, we

provide this result at a finer scale than the usual continen-

tal level by proposing a simple, robust, and effective

method for grouping UKBB individuals in nine ancestry

groups. This allows us to show, for example, that predictive

performance already decreases within Europe with only

�94% for Northeast Europe and �86% for South Europe

of the performance reached within Northwest Europe.

We showcase two methods for deriving polygenic scores

when large individual-level datasets are available. Although

LDpred2-auto is a method based on summary statistics, it

provides good predictive performance compared to penal-

ized regression, when applied to individual-level data.

Moreover, portability results shown here are similar when

using either the individual-level penalized regression or

the summary statistics based LDpred2 method. Fitting of

penalized models is relatively fast when using 1M

HapMap3 variants. We have also tried fitting penalized

regression using 8M variants (>3 TB of data); this was

possible but took several days for the phenotypes we tried,
erican Journal of Human Genetics 109, 12–23, January 6, 2022 19
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Figure 5. Predictive performance with LDpred2-auto for eight phenotypes, when using either HapMap3 variants or the 1M most
significant variants
One phenotype shown in each panel. Bars represent the 95% confidence intervals. Phecode 174.1: breast cancer; 185: prostate cancer;
411.4: coronary artery disease. HM3, HapMap3; top1M, the 1M most significant variants out of more than 8M common variants (see
Material and methods).
so we have not investigated this further. To the best of our

knowledge, we use the most efficient penalized regression

implementation currently available. Recently, Qian et al.7

proposed snpnet, a new R package for fitting penalized re-

gressions on large individual-level genetic datasets, but we

have found it to be much less efficient than R package big-

statsr on UKBB data (Note B). As for LDpred2, it currently

cannot be run using 8M variants, but we show how to use

a subset of 1M prioritized variants out of these 8M. Using

thisnewset of variantsprovides a large improvement inpre-

dicting lipoprotein(a) concentration (lipoA), but not for the

other seven phenotypes studied in this analysis. This

improvement for lipoA is not surprising given that the top

HapMap3 variant explains 5% of phenotypic variance

compared to 29% for the (non-HapMap3) top hit (Figure 4).

Here we use only the UK Biobank data to fit polygenic

scores. We do not use external information such as func-

tional annotations; those could be used to improve the her-

itability model assumed by predictive methods in order to

improve predictive performance.54 Moreover, we do not

use external summary statistics, which means that poly-

genic scores derived from large GWASmeta-analyses would

probably outperform the ones we derived here. Neverthe-
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less, Albiñana et al.55 have shown that an efficient strategy

to improve predictive ability of polygenic scores consists in

combining two different polygenic scores, one derived us-

ing external summary statistics and another one derived us-

ing internal individual-level data. Therefore, the polygenic

scores we derived here could be combined with polygenic

scores derived using external summary statistics; we will

release these PGSs publicly and share them in databases

such as the PGS Catalog and the Cancer-PRSweb.56,57
Data and code availability

The UK Biobank data are available through a procedure described at

https://www.ukbiobank.ac.uk/using-the-resource/. All code used for

this paper is available at https://github.com/privefl/UKBB-PGS/tree/

main/code. Links to the codeused for theNotesA andB are provided

there. Code to reproduce our nine ancestry groups is available at

https://github.com/privefl/UKBB-PGS#code-to-reproduce-ancestry-

groups.

We have extensively used R packages bigstatsr and bigsnpr19 for

analyzing large genetic data, packages from the future frame-

work58 for easy scheduling and parallelization of analyses on the

HPC cluster, and packages from the tidyverse suite59 for shaping
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and visualizing results. We have also used R package deming for

fitting Deming regressions.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.11.008.
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Web resources

bigsnpr, tutorial on LDpred2, https://privefl.github.io/bigsnpr/

articles/LDpred2.html

bigstatsr, tutorial on penalized regressions, https://privefl.

github.io/bigstatsr/articles/penalized-

regressions.html

PGS Catalog, effect sizes of PGSs derived here, https://www.

pgscatalog.org/publication/PGP000263/

UK Biobank, quality control information on genetic variants,

https://biobank.ctsu.ox.ac.uk/crystal/crystal/auxdata/ukb_snp_

qc.txt

UKBB-PGS, description of the 245 phenotypes used in this study,

https://github.com/privefl/UKBB-PGS/blob/main/phenotype-

description.xlsx

UKBB-PGS,other informationonthephenotypes (e.g., sample sizes),

https://github.com/privefl/UKBB-PGS/blob/main/phenotype-

info.xlsx
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