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Abstract

During normal aging, the brain undergoes structural and functional changes. Many

studies applied static functional connectivity (FC) analysis on resting state functional

magnetic resonance imaging (rs-fMRI) data showing a link between aging and the

increase of between-networks connectivity. However, it has been demonstrated that

FC is not static but varies over time. By employing the dynamic data-driven approach

of Hidden Markov Models, this study aims to investigate how aging is related to spe-

cific characteristics of dynamic brain states. Rs-fMRI data of 88 subjects, equally dis-

tributed in young and old were analyzed. The best model resulted to be with six

states, which we characterized not only in terms of FC and mean BOLD activation,

but also uncertainty of the estimates. We found two states were mostly occupied by

young subjects, whereas three other states by old subjects. A graph-based analysis

revealed a decrease in strength with the increase of age, and an overall more inte-

grated topology of states occupied by old subjects. Indeed, while young subjects tend

to cycle in a loop of states characterized by a high segregation of the networks, old

subjects' loops feature high integration, with a crucial intermediary role played by the

dorsal attention network. These results suggest that the employed mathematical

approach captures the complex and rich brain's dynamics underpinning the aging

process.
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1 | INTRODUCTION

In the last decades, rs-fMRI has been widely used to study the spatio-

temporal network organization of spontaneous brain activity. Across

different brain regions, rs-fMRI BOLD signals exhibit temporal syn-

chronization (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995) which

gives rise to resting state networks (RSNs), composed of distributed

regions that demonstrate coherent activity (Beckmann, DeLuca,

Devlin, & Smith, 2005; Fox, Snyder, Vincent, Corbetta, &

Raichle, 2005).

rs-fMRI studies have investigated the effects of aging in healthy

subjects, showing that the brain undergoes both structural and func-

tional alterations (Betzel et al., 2014; Damoiseaux, 2017;

Ferreira, 2013; Wang, Su, Shen, & Hu, 2012). The undoubtedly
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strongest result found among rs-fMRI studies performed at the net-

work level, is a reduced functional segregation (Chan, Park, Savalia,

Petersen, & Wig, 2014; Song et al., 2014) and increased between-

network connectivity (Betzel et al., 2014) which underlines the ten-

dency of RSNs to reorganize in a more integrated topology (Bagarinao

et al., 2019) with the increase of age. Specifically, several works

reported a weaker within-network functional connectivity (FC) with

age in the default mode, (Andrews-Hanna et al., 2007; Betzel

et al., 2014; Damoiseaux et al., 2008; Geerligs, Renken, Saliasi,

Maurits, & Lorist, 2015; Song et al., 2014; Tomasi & Volkow, 2012;

Varangis, Habeck, Razlighi, & Stern, 2019; Zonneveld, 2019),

ventral-attention (Andrews-Hanna et al., 2007; Betzel et al., 2014;

Tomasi & Volkow, 2012; Zonneveld, 2019) and executive networks

(Betzel et al., 2014; Geerligs et al., 2015; Varangis et al., 2019).

Regarding sensorimotor and visual networks, the results were quite

inconsistent among studies. Indeed, within the sensorimotor net-

work, many groups found a FC increase (Song et al., 2014;

Tomasi & Volkow, 2012), other a decrease (Zonneveld, 2019) or

even no changes (Geerligs et al., 2015). FC was found to be

increased with older age within the visual network in (Betzel

et al., 2014; Chan et al., 2014; Yan et al., 2011), decreased in

(Zonneveld, 2019), or to remain stable across age (Geerligs

et al., 2015; Varangis et al., 2019).

Although these studies have investigated how RSNs are distrib-

uted across the lifespan, they assume that FC is stationary. However,

recent research has proven that even in resting conditions, FC among

brain networks varies over time bringing to a dynamic reconfiguration

during the rs-fMRI scan (Allen et al., 2014; Hutchison et al., 2013).

With the purpose of overcoming traditional approaches based on

static FC, many methods have been introduced to study dynamic FC

(dFC) (see Lurie et al., 2020 for a review). Focusing on approaches

which aim to identify FC states directly from the measured data, we

can distinguish two main methods: sliding windows followed by clus-

tering (Allen et al., 2014) and Hidden Markov Model (HMM; Vidaurre,

Smith, & Woolrich, 2017).

To our knowledge, only a few studies (Chen et al., 2019; Tian, Li,

Wang, & Yu, 2018; Xia et al., 2019) have investigated the relationship

between aging and dFC. Both studies are based on sliding windows

followed by clustering approach in healthy subjects. Despite using

comparable populations and the same methodological approach, the

three studies reached conflicting results. Specifically, a different num-

ber of states were identified: three in Tian et al. (2018) and five in the

other two studies. In addition, concerning the dwelling time (i.e., the

duration of each state throughout the scanning time) and the number

of transitions between states as a function of age, Chen and col-

leagues did not find any differences in the dwelling time, whereas

both in Tian et al. (2018) and Xia et al. (2019), significant differences

were reported. In particular, Tian and colleagues observed a positive

correlation between age and the dwell time of the “loose interaction

state,” characterized by an overall weak connectivity, whereas Xia and

colleagues found a positive correlation between dwelling time and

age. The number of transitions between states was found to be

mostly negatively correlated with age in Xia et al. (2019), whereas in

Chen et al. (2019) an opposite direction was observed. Given the dis-

cordant results of previous studies, in this work, we attempt to under-

stand the properties of dFC states in young and old people using the

model-based method of HMM. This method overcomes the limita-

tions of clustering and sliding-window approaches regarding the selec-

tion of the optimal window size and clustering dimensionality

(Hutchison et al., 2013; Rousseeuw, 1987), but raises the problem of

the choice of the model order, which, however, can be chosen quanti-

tatively (Rezek & Roberts, 2005). In addition, HMM allows to capture

the heterogeneity of the time-dynamic variation of the FC by consid-

ering in the same framework of analysis the variability between indi-

viduals in a population. In this context HMM uses temporally

concatenated resting state fMRI data to determine, in a full probabilis-

tic approach, the time-varying neural processes represented as dis-

crete brain states and their transition over time. Although its

mathematical complexity, in recent years, HMM has been applied for

characterizing brain states in healthy subjects during rest (Vidaurre

et al., 2017) and tasks (Vidaurre et al., 2018), as well as in patients

(Cao, 2019; Kottaram et al., 2019; Van Schependom et al., 2019),

demonstrating its ability to exploit and summarize the richness of the

rs-fMRI data. Given these premises, in this study, we investigated the

developmental trajectories of brain states employing resting state data

of 88 healthy subjects, equally divided in young and old. We first

applied an independent component analysis (ICA) to obtain a whole-

brain high-resolution functional parcellation, then we used the time

courses of these components within the HMM framework and we

estimated the model parameters. Contrary to previous studies based

on sliding window and correlation techniques, the choice of the num-

ber of states in the model was based on a quantitative approach: after

introducing a new index to quantify the precision of the estimates,

the goodness of the fit and the precision were assessed as the model

order varied. Finally, to investigate the effects of aging on dynamic

properties of brain states, we characterized the age-relation of tempo-

ral variability and organization of the states, using temporal metrics,

derived from single-subject sequences of visited states, and a graph-

theory approach.

This study was divided into two parts: (1) methodological consid-

erations related to the application of HMM and (2) assessment of the

differences in brain states properties between young and old subjects.

2 | MATERIAL AND METHODS

2.1 | Participants

Magnetic resonance imaging (MRI) data from 88 healthy partici-

pants from the publicly available MPI-Leipzig Mind-Brain–Body

dataset (Arno Villringer, 2020; Mendes et al., 2019) were analyzed.

The data selection was performed after excluding from the original

dataset consisting of 318 subjects, 10 subjects due to scanner arti-

facts or unavailability of rs-fMRI data or corrupted structural scans

or failure of the pre-processing stages. Inclusion criteria were:

(1) no SKID diagnoses; (2) no drug abuse; (3) mean framewise
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displacement smaller than 0.3 mm (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012). Subjects were then divided into two

groups: the young group (Y: n = 44; 20 females, 24 males; age

range = 20–25 years) and the old group (O: n = 44; 22 females,

22 males; age range = 60–80 years).

2.2 | Data acquisition

Full details on MRI data are provided in (Mendes et al., 2019). In brief,

data acquisition was performed with a 3T Siemens Magnetom Verio

scanner, equipped with a 32-channel head coil. The protocol included

a T1-weighted 3D magnetization-prepared 2 rapid acquisition gradi-

ent echoes (MP2RAGE; TR = 5,000 ms, TE = 2.92 ms, TI1 = 700 ms,

TI2 = 2,500 ms, first flip angle = 4�, second flip angle = 5� ,

FOV = 256 � 240 � 176 mm, voxel size = 1 � 1 � 1 mm, multiband

acceleration factor [MBAccFactor] = 3), rs-fMRI scans (TR =

1,400 ms, TE = 39.4 ms, flip angle = 69�, FOV = 202 � 202 mm,

voxel size = 2.3 � 2.3 � 2.3 mm, volumes = 657, MBAccFactor = 4)

and two spin echo acquisitions (TR = 2,200 ms, TE = 52 ms, flip angle =

90�, FOV = 202 � 202 mm, voxel size = 2.3 � 2.3 � 2.3 mm). During

rs-fMRI scans, the subjects were asked to keep their eyes opened and to

lie down as still as possible.

2.3 | MRI data pre-processing

A structural pre-processing was applied on the pseudo-T1w image,

obtained by multiplying the T1w 3D-MP2RAGE image with its second

inversion time image. The pipeline included bias field correction

(N4BiasFieldCorrection [Tustison et al., 2010]), skull-stripping (MASS

[Doshi, Erus, Ou, Gaonkar, & Davatzikos, 2013]) and nonlinear dif-

feomorphic registration (Avants et al., 2011) to the symmetric

MNI152 2009c atlas (Fonov et al., 2011).

Pre-processing of rs-fMRI data included slice timing (Smith

et al., 2004), distortion (TOPUP [Andersson, Skare, &

Ashburner, 2003]) and motion correction (MCFLIRT [Jenkinson, Ban-

nister, Brady, & Smith, 2002]) and nonlinear registration to the sym-

metric MNI atlas (Fonov et al., 2011) passing through the single

subject pseudo-T1w image (boundary-based registration [Greve &

Fischl, 2009]). As a second step, the GIFT toolbox (http://

trendscenter.org/software/gift/) was used to decompose the func-

tional pre-processed data into independent components (ICs) and thus

to reduce their dimensionality. To obtain a high-resolution functional

parcellation of the main RSNs, we performed a group spatial-ICA, set-

ting the number of ICs to 180. Among these, those related to banding

artifacts, vascular or noise components were discarded, resulting in a

set of 46 components (M = 46). The ICs were manually classified by

visual inspection of both the spatial maps and the source power spec-

tra, in accordance with (Damaraju et al., 2014; Griffanti et al., 2014).

The RSNs were grouped into 11 functional domains: visual (VIS), sen-

sorimotor (SMN), auditory (AUD), cingolo-opercularis (CON), dorsal-

attention (DAN), fronto-parietal (FPN), default-mode (DMN),

cognitive-control (CCN), frontal (FRN), cerebellum (CER), and basal

ganglia (BG).

The group-information guided ICA (GIG-ICA) back-reconstruction

algorithm (Du & Fan, 2013) was used to estimate the subject-specific

spatial maps and time series of each independent component.

The following steps were performed on the time courses of the

46 ICs as additional denoising step: (1) despiking, applied with the

icatb_despike_tc function of the GIFT toolbox, (2) multiple regression

of the six head motion parameters, their temporal derivatives, mean

WM and mean CSF signals (Jo et al., 2013), (3) high-pass filtering (cut-

off frequency = 1/128 Hz). No global signal regression was applied.

2.4 | Part 1: Methodological considerations related
to HMM

2.4.1 | Hidden Markov Model—Overview

Following the approach previously described by Vidaurre et al. (2017),

we applied HMM to the time courses of the 46 ICs. Prior to running

the inference, the subject-specific time courses were standardized, so

each IC has mean equal to zero and SD equal to one. Then, the stan-

dardized time series of both the populations of young and old subjects

were temporally concatenated, yielding a data matrix of dimensions

88 subjects � 46 ICs � 657 time points. Stacking all subjects together

allowed us to make the model inference at the group-level. The HMM

was inferred using the HMM-MAR toolbox (Vidaurre et al., 2016),

available in MATLAB in a public repository (https://github.com/

OHBA-analysis/HMM-MAR).

2.4.2 | Hidden Markov Model—Inference

The HMM describes the data (IC time series) as a hidden sequence of

K states, where K must be set a priori. A multivariate Gaussian obser-

vation model assumes that the probability of the data at time point t

(Xt) given a certain state k at time point t (St), follows a multivariate

Gaussian distribution with mean activity μk ([M � 1] vector) and preci-

sion Ωk ([M � M] matrix):

Xt j St ¼ k�N μk ,Ωkð Þ

Since the inference is performed on the demeaned and standard-

ized ICs time courses, μk describes a change away from the grand-

average zero activity level. Two ICs that both have a positive or nega-

tive μk, are therefore functionally connected. For each state, the

observational model is hence parametrized by these two variables.

Another property of the state sequence resides in the transition

probability between states, represented by the matrix Θl,k, that

describes how likely is to be in specific state k at time point t, if we

were in state l at time point t�1. Finally, the probability of each state

being active at the initial time point must be estimated. Given that the

HMM was applied to the data concatenated across subjects, the
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parameters describing the states were defined at the population level,

whereas the probability of each state being active at each time point

was subject-specific and described by:

Gamma¼Pr St ¼ kð Þ¼Σ lΘl,kPr St�1 ¼ lð Þ

An analytical approach, defined within the Variational Bayes

(VB) framework, was employed to obtain an approximation of the model

posterior distributions. As described in (Vidaurre et al., 2016), this VB

approach infers the parameters of the model alternating a variational

expectation-step and maximization-step. The first step deals with the

estimation of the hidden states probabilities and the second step esti-

mates the model parameters. The aim of the VB inference is to minimize

a cost function, called Free Energy (FE), which includes three terms: the

average log-likelihood (avLL, i.e., how well the model fits the data), the

Kullback–Leibler divergence (how divergent are the approximate poste-

rior distributions from the priors) and the negative entropy, computed

for the distribution of the hidden states. The number of repetitions of

the initialization algorithm was set to 5 and out of these, the best in

terms of FE was used as starting point for the inference run. Since there

is not a gold standard to perform the initialization of the hidden states

probabilities, we tried both a random initialization and an initialization

with a mixture of Gaussian models. Given the nonlinear nature of the VB

algorithm, and therefore the possibility of reaching a local minimum of

the cost function, 200 realizations of the model were performed for each

of the two types of initializations. Then, the 200 realizations were sorted

on the basis of the FE and the one with the lowest value of FE was cho-

sen. This procedure was performed for the two different initializations

and the best realization in terms of FE was kept. Further analysis, pres-

ented in Supporting Information, was then performed to ensure that the

type of initialization did not lead to a large variation in the estimates

results.

2.4.3 | Hidden Markov Model—Choice of
model size

In the HMM framework, the number of states (K) assumed to model

the signal dynamics must be specified before running the inference.

Given the dimensionality of our dataset, we fit the model with a num-

ber of states from 2 to 8 and evaluated for each model order the fol-

lowing indices: the FE and the avLL, as indices of fit goodness; the

AIC (Hero Akaike, 1973) and the Bayes Information Criterion (BIC;

Schwarz, 1978) as parsimony indices.

In addition, for each model order and for each IC within each

state, we assessed the uncertainty of the μk estimates, by evaluating

its coefficients of variation (CVs), defined as:

CVk ¼100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag Ωkð Þ

p �1

The CV value ranges from 0 to 100, where 0 represents no

uncertainty.

To summarize the uncertainty associated with the μk estimates as

the model order K increased, for each K, we computed the average and

the SD of the CV inside each state. Then, for each K, the ratio between

the CV's mean SD and CV's average value across states was evaluated.

Therefore, the choice of the number of states was made taking

into account not only the FE, avLL, AIC, and BIC, but also the CV's

ratio index. Moreover, after fixing the model order, to highlight the

less and more precise μk estimates, we also computed the ΔCV,

defined as the distance between each IC's CV and the average CV

(CV) among ICs within the same state:

ΔCV¼CVICm �CV m¼1, ::,M

2.5 | Part 2: Differences between young and old
subjects

2.5.1 | Hidden Markov Model—Chronnectome

In addition to the HMM estimates, the model allows to obtain for

each subject the probability of each state being active at each time

point, Gamma: This probability was then exploited as input to the

Viterbi algorithm, to find the most likely sequence of states for each

subject.

To describe subject-specific temporal characteristics of brain

states, three metrics, that defined the so called “chronnectome,” were

evaluated starting from the Viterbi path:

• the fractional occupancy (FO), defined as the proportion of time

that each subject spends in each state,

• the lifetime (LT) of each state, defined as the duration of the visits

to that particular state,

• the switching rate (SR), defined as the frequency of transitions

between different states.

These subject-specific metrics were then averaged between

young and old subjects and, given their non-Gaussian distribution, a

two-sample Kolmogorov–Smirnov (K–S) test followed by multiple

comparison correction (False Discovery Rate-FDR, α = .05) was

applied for statistical testing of differences between the two groups.

Finally, to investigate the relation between SR and behavior, we

performed a logistic regression analysis to predict individual SR from

the pattern of behavioral scores covering different domains (see

Supporting Information for further details).

2.6 | Brain states graph metrics

To detect the network organization of the estimated brain states, firstly

the states Pearson's correlation matrices were derived from the

corresponding covariance matrices Σk (Σk = Ωk
�1). Then, a graph theory-

based approach was exploited to summarize the FC properties. Two

metrics were used: the strength (STR) to describe FC global properties,
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and the local efficiency (EL) to quantitatively investigate the behavior at

the local level. The computation was performed with the Brain Connec-

tivity Toolbox (BCT; Rubinov & Sporns, 2010). Before evaluating the

graph measures, a proportional threshold approach (Achard &

Bullmore, 2007) was applied to FC of each state. The 20% of the stron-

gest edges were retained ensuring equal density across states.

A two-sample K-S test followed by multiple comparison correc-

tion (FDR, α = .05) was applied to test for significant differences

between states graph metrics. This analysis allowed us to characterize

the topological properties of the states FC at the whole brain level,

but it was blind to graph measures differences at the level of single

RSNs. For this reason, to compare STR and EL across RSNs, we intro-

duced two novel measures, nSTR and nEL, that were evaluated for

each graph metric within each of the 11 functional domains (i), nor-

malizing each measure specific for one state with respect to those

computed across all the states:

nSTR¼ STRk,i�STRall,i

std STRall,ið Þ nEL¼ ELk,i�ELall,i
std ELall,ið Þ k¼1 :6; i¼1 :11

Furthermore, to investigate the organization of RSNs in each state

at the functional module level, we applied the Louvain's community

detection algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008)

on the thresholded FCs. Given the non-deterministic nature of the algo-

rithm, we repeated the community assignment 50,000 times. Then, to

obtain the most representative modularity, we first created for each

state and each of the 50,000 iterations, the corresponding modular

matrix, assigning to each node the index of the module in output by the

function, then, from these 50,000 matrices, we computed the mode

matrix and a binary matrix indicating the assignments which were pre-

sent in more than 95% of the realizations. The final modular matrix of

each state was hence obtained by multiplying the binary and the mode

matrix. Further analyses on the integration and segregation of RSNs

based on the modularity matrices are reported in Supporting Informa-

tion. To quantify the similarity of the community assignment obtained

for each state, after binarizing the modular matrices, we computed the

Sorensen-Dice similarity coefficient between each pair of states matrices

both considering the intra-domains connections (intra-Dice) and consid-

ering the inter-domains ones (inter-Dice).

The schematic workflow followed for the analysis is reported in

Figure 1. A glossary table is reported in Supporting Information.

3 | RESULTS

3.1 | Part 1: Methodological considerations related
to HMM

3.1.1 | Choice of initialization algorithm

After testing the two initialization algorithms with different model

orders, we detected negligible differences: the results obtained for

F IGURE 1 Scheme of the processing workflow employed for the analysis. Starting from the data (matrix of dimensions 88 subjects � 46
independent components (ICs) � 657 time points) a Hidden Markov Model with six states was inferred
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the μk estimates and for Gamma were not affected by this choice.

Therefore, the HMM-MAR initialization (i.e., the toolbox default

option) was employed for further analysis and the results presented in

the following sections are based on this type of initialization adopted.

Further comparisons of the interplay between the initialization algo-

rithm and the model orders are reported in Supporting Information.

3.1.2 | Choice of the model order

Table 1 reports the values of the indices evaluated for the choice of

the model order. The FE had a decreasing trend as the number of

states increased, showing no negative peaks, thus it was not informa-

tive for model selection purposes. Both AIC and BIC were not infor-

mative too, as they suggest the lowest order (K = 2). The avLL always

assumed negative values. This is also the reason why, when

implementing AIC and BIC formula, both the indices suggested the

lowest order. However, the avLL showed a non-monotonous trend,

with a maximum peak value reached for K = 6, corresponding to the

maximization of the log-likelihood in the tested range of K.

To investigate if the model with six states led to reliable estimates

of the parameters, we also quantified the CVs of the estimates as the

model order increases and then we computed the ratio between the

SD of the CVs and their average value, obtained by averaging across

ICs and states. As shown in the last column of Table 1, among differ-

ent model orders, the ratio was almost comparable, and, as expected,

showed an increasing trend as K increased. In terms of homogeneity

within each state, the configuration with K = 6 resulted the best.

Thus, considering avLL and the reliability of the estimates through the

CVs, we set K equal to 6.

3.1.3 | Group-level characteristics of brain states

Mean activation (μk)
For each brain state (henceforth referred to as S1, S2, S3, S4, S5, and

S6), Figure 2 shows the spatial distribution of the μk estimates at the

whole-brain level. For visualization purposes, the spatial map of each

state was thresholded by setting the lower threshold to half of the

maximum absolute mean value and the higher one to the maximum

absolute mean value, respectively for positive and negative μk values

in that particular state. Negative activations are displayed in blue-scale

and positive activations in red-scale. The highest positive values in S1

are associated with the AUD and CON domains, whereas the negative

with the VIS and DAN (Figure 2a). In S2, the SMN, AUD, and CON

show higher positive deviations from the average, whereas the DMN,

FRN, and CER higher negative ones (Figure 2b). S3 highlights positive

values for the DMN, FRN, and CER, whereas negative values are asso-

ciated with SMN, AUD, DAN (Figure 2c). In S4, positive values are

associated with the AUD, FPN, FRN, and CER, whereas negative

values with the BG (Figure 2d). S5 shows positive values associated

with AUD, CON, FPN, CCN, and FRN and negative values associated

with DMN, CER, BG (Figure 2e). S6 highlights positive values for the

DAN, CER and for most ICs of the VIS and DMN. Negative mean

values are associated with the AUD, CON, FRN, BG (Figure 2f).

Further details on μk estimates are provided in Figure S1, where for

each IC and brain state we show the associated mean activation value.

Reliability of the states

To quantify the precision of the μk estimates presented above, we

computed the CVs. Figure 3 shows the spatial distribution of the

ΔCVs in green scale and, for a better comparison between the six

states, the color bar values range from �35 to 35% with respect to

the average CV value within each state. Ranking the most reliable

states in terms of CVs, resulted in S4 (CV=47.6%), S3 (CV=51%), S5

(CV=51.5%), S1 (CV=53%), S6 (CV=60.4%), and finally S2

(CV=70.4%). Overall, when comparing the reliability across states and

within functional domains, the μk values associated with the DAN

show the highest reliability, whereas those associated with FRN, CER,

and BG are the least reliable in all the states with CVs above the aver-

age level, as shown in Figure 3 in bright green. These results imply

that the DAN network is, among all, the most reliable, in terms of pre-

cision of the estimates, in its representation within each state.

Although CV values of all the SMN components were over the aver-

age in S1, S2, and S6, for all the other functional domains the trend of

the CVs could not be summarized among states. Further details on

the CVs patterns across RSNs are provided in Figure S2, where for

each IC and brain state we show the associated CV.

TABLE 1 Different indices for the
choice of the model order obtained after
the inference at the group level (i.e.,
combining young and old subjects
together) are reported

Model order FE avLL AIC BIC SD/mean

2 2767676 �18285 276680 1352976 0.17

3 2746036 �21496 403162 2017627 0.19

4 2734664 �28209 536653 2689307 0.19

5 2725354 �27130 654562 3345422 0.19

6 2717131 �26139 772651 4001735 0.19

7 2709337 �29693 899836 4667162 0.20

8 2702429 �28785 1018101 5323687 0.20

Note: In the first column the lowest free energy value, obtained among the 200 realizations is reported.

Starting from this value, we computed the average log-likelihood (second column), Akaike (third column),

Bayes Information Criterion (fourth column), and ratio between the SD and mean values computed on

the averaged CVs within a state (fifth column). The two indices that were informative for the model

selection are marked in bold.
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3.2 | Part 2: Differences between young and old
subjects

3.2.1 | Subject-specific temporal characteristics

Transition probabilities matrices

In Figure 4, the probabilities of transition, without considering the

probabilities of persistence in the same state (i.e., the diagonal of the

Θk matrix), are reported for the two groups separately. Particularly for

the young subjects (Figure 4a,b), the probabilities are higher among

S6 and S1 (prob = 0.56), S4 and S1 (prob = 0.48), S1 and S6

(prob = 0.45). Whereas for the old subjects (Figure 4c,d), the transi-

tion probabilities are higher among S2 and S3 (prob = 0.63), S6 and

S3 (prob = 0.49), S3 and S2 (prob = 0.47). Interestingly, both the

dynamic of the transitions is characterized by the presence of one

loop, composed by different states through the young and old, but

with the same behavior, that is, when a young subject reaches S1, he

seems to circle between S6 and S1 in a closed loop, while, when and

(a)

(b)

(c)

(d)

(e)

(f)

F IGURE 2 Each panel shows the axial view of the spatial distribution of the mean BOLD activation (μk) estimates, obtained for each brain
state. Since the HMM was inferred at the population level, that is, concatenating the IC time courses of young and old participants, the μk values
are group-level estimates. Color bar values range from half of the maximum absolute mean value to the maximum absolute mean value,
respectively for positive and negative μk values obtained in each state. ICs with mean activation values out of these bounds are not displayed.
Negative values are displayed in blue-scale, whereas positive values in red-scale. The spatial distributions are overlaid to the MNI atlas, shown in
gray scale. The labels S1, S2, and so forth refer to State 1, State 2, and so forth
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old subject reaches S3, he holds in a circle between S2 and S3. As

highlighted in the corresponding spatial maps, the first set of loops

(Figure 4b) involved mainly occipital and parietal regions, while the

second set (Figure 4d) frontal regions.

Chronnectome

The differences between the two groups are evident when comparing

the aforementioned state-relevant temporal metrics. In Figure 5a, we

show the fractional occupancy distribution, obtained for the two

groups in each brain state. On average, the time spent from the young

subjects in S1 was 39% of total rs-acquisition and in S4 28%. While

the old subjects spent 20% of the time in S2, 39% in S3 and 12% in

S5. Instead, S6 was characterized in equal proportion by both the

groups: 18% by young and 19% by old. The K–S test pointed out sta-

tistical differences (p-value < .01) between groups: young subjects

spend more time in S1 and S4, whereas old subjects in S2, S3, and S5.

Instead, the time spent in S6 did not significantly differ between

young and old.

(a)

(b)

(c)

(d)

(e)

(f)

F IGURE 3 Spatial distribution of the distance between each IC's CV and the average CV among ICs within the same state (ΔCVs) obtained
for each brain state. Since the model was inferred at the population level, that is, concatenating the IC time courses of young and old participants,
these maps represent group-level estimates. Positive values represent an increment in CV with respect to the mean value of the CVs obtained in
each state. Therefore, bright colors are associated with more uncertain ICs. The spatial distributions are overlaid to the MNI atlas, shown in gray
scale. The labels S1, S2, and so forth refer to State 1, State 2, and so forth
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F IGURE 4 In Panels (a) and (c), the transition probabilities from one state (y-axis) to another (x-axis), for the young and O, are reported.
Finally, Panels (b) and (d) show the three top most likely transition probabilities and links
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F IGURE 5 In Panels (a) and (b), the distribution in different states of fractional occupancy and mean LT, respectively, is reported in blue for
the young subjects and in red for the old subjects. The bottom and top edges of each box indicate the 25th and 75th percentiles. The outliers are
represented by the “+” symbol. In each boxplot, the solid line indicates the median, so for example, the median value of the FO for young
subjects in S1 is 39%
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In Figure 5b, the distributions of the mean lifetime, ranging

from seconds to tens of seconds, are represented by boxplots. For

this metric, statistical differences between groups were found in

S1 (p-value = 1e�07), S2 (p-value = 1.6e�04), and S3

(p-value = 1.7e�04).

Lastly, we evaluated for each subject his switching rate among

states and then we computed the median value for the young and the

old groups, respectively equal to 0.10 Hz and 0.11 Hz. No statistical

difference was found between the two groups.

3.2.2 | Brain states graph metrics

In Figure 6, we report the states FC matrices, from which, after pro-

portional thresholding, we computed the STR, EL, and modularity indi-

ces. Since the FC matrices were obtained at the group-level, without

distinction between the two subgroups of young and old subjects, the

graph metrics and modularity indices are representative of the whole

population.

The states did not differ in terms of global properties of the asso-

ciated graph: no statistically significant difference was found in the

node strength distribution. Nonetheless, for this metric, S4 and S5

resulted to have the highest values (on average: STRS1 = 4.1, STRS2 =

4.02, STRS3 = 3.93, STRS4 = 4.73, STRS5 = 4.46, and STRS6 = 3.73).

On the contrary, statistically significant differences (p-value <0.01)

were found at the local level, where the local efficiency of states S4

and S5 was significantly greater than in states S2, S3 (on average:

ELS1 = 0.36, ELS2 = 0.34, ELS3 = 0.34, ELS4 = 0.42, ELS5 = 0.38, and

ELs6 = 0.33).

In Figure 7, we report the results of the analysis carried out at the

functional domain level, for the STR and the EL measures, respec-

tively. Taking into account only the extreme values exceeding ±1.5SD,

we found that in S1 the STR of DMN was significantly higher than in

the remaining domains; in S4 the same happened for the VIS domain

and in S5 in FPN domain, whereas negative deviations from the aver-

age (i.e., low STR) were found for S2 in FPN and for S6 in CON. Con-

sidering the EL, we found only positive deviations and in particular for

S4 in AUD, CON and CCN, for S5 in FRN. Taken together, these

results confirmed our hypothesis that moving to a more detailed char-

acterization of the graph represented by the specific domains, a better

description of the states in terms of STR and EL is possible. In particu-

lar, we were able to capture specific properties, especially for three

states (S1, S4, and S5), that presented more integrated behavior in dif-

ferent functional domains. Furthermore, this analysis confirmed the

added value of the information provided by the BOLD activation

parameter (μk), with others derived from a deeper investigation of

some properties of the nodes at the graph-level. In fact, even if some

functional domains did not exhibit a high BOLD activation, they

resulted to play a crucial role at the graph-level. For example, while

the DMN showed low BOLD activation in S1, it was the only domain

F IGURE 6 Each panel represents the FC matrix associated to a particular brain state (S1, S2, etc.). In both the x- and y-axis, we have the
46 ICs, divided in the 11 functional domains. Warm colors represent high positive correlations values between ICs, whereas cool colors represent
high anti-correlations values. We grouped together states mostly populated by young subjects (blue box) and by old subjects (red box)
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to present the highest STR, suggesting its potential role of hub in that

particular state.

In Figure 8, for each state, we depict the modular organization

derived from multiple repetitions of the Louvain's community detec-

tion algorithm. Instead of the classical graph representation for the

module assignment, we arrange the results in a matrix form to better

highlight the assignment of each IC to a specific module and how this

relates to the assignment of the other ICs. In the same figure, we also

report the states modularity index, obtained by averaging across the

50,000 realizations. Even if no differences were found in this metric,

we can notice a trend in our results, in particular, S5 assumes the low-

est value of modularity, reflecting a situation of integration between

networks, whereas S1 shows the highest value, reflecting a segrega-

tion of the networks, which is confirmed by the number of detected

communities that resulted to be 4 for this state and 5 for all the

others. Interestingly, even if S5, an old-specific state, followed by S4,

a young-specific state, presented a low modularity in comparison to

the others, they also exhibited the highest values for STR and EL, as

reported before.

A detailed description of the results of intra/inter Dice computa-

tion to detect integration/segregation of the RSNs is provided in

Supporting Information.

We summarize the main findings for each state:

• S1: state with the highest segregation of the RSNs; loss of segrega-

tion of the FPN; DAN completely segregated; BG highly inte-

grated; CER highly integrated.

• S2: loss of segregation of the DMN; DAN completely integrated

with VIS; CER completely segregated; BG highly integrated.

• S3: DAN integrated with many ICs of cognitive RSNs; CER highly

integrated.

• S5: state with the highest integration between RSNs, especially for

VIS, DAN, and CER; DMN completely segregated.

• S6: DAN completely segregated; CER highly integrated; BG

completely segregated.

4 | DISCUSSION

In this article, we have explored the effects of normal aging in the spa-

tiotemporal organization of brain states, carrying out a data-driven

analysis based on HMMs. After modeling the ICs time courses

obtained at the whole-brain level, we implemented a novel method to

select the optimal order of HMM in a quantitative manner by

balancing the model complexity with the precision of the hidden

parameter estimates. Then, we derived six states and characterized

them by evaluating the properties of FC matrix of each state, and the

VIS SMN AUD CON DAN FPN DMN CCN FRN CER BG
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F IGURE 7 In Panels (a) and (b), we show the normalized values of the strength (nSTR) and local efficiency (nEL) for the states, colored
differently, and in the functional domains. Given that, after proportional thresholding of the FC matrices, the local efficiency resulted to be 0 for
the basal ganglia (BG) in all the states, in Panel (b) no values of nEL are reported for the BG. The labels S1, S2, and so forth refer to State 1, State
2, and so forth
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mean level of BOLD activation of each RSN. In contrast to other

approaches, one of the advantages of using this method is in that it

allows the quantification of the CVs, an index about how uncertain

the estimates of specific brain regions are.

At the temporal scale, the states were described by the most fre-

quent transition patterns between them. In this way, we could derive

the time spent in each state, the average duration of the state visits,

and the frequency of transitions between different states. These met-

rics were compared between young and old subjects to investigate

possible links between aging and temporal dynamics of brain states.

From this analysis, we could observe that two states, namely, S1 and

S4, were mostly occupied by young subjects, while three states,

namely, S2, S3, and S5, by old subjects. The remaining state, S6, was

populated in equal proportion by the two groups. Moreover, given the

extensive literature supporting the theory of increasing functional

integration between networks with increasing age, we conducted a

graph-based analysis that allowed us to distinguish states character-

ized by high network segregation rather than high integration. In par-

ticular, we found that old-specific states exhibited an overall more

integrated topology with respect to a more segregated in young-

specific states.

The findings reported are not expected to be driven by arousal

differences between young and old subjects. Indeed, a recent study

(Daneault et al., 2021) has found no statistically significant differences

in FC between young and old people and no interaction with age

when comparing wakefulness and N1 during 100 minutes of eye-

closed acquisition. It is of note that the subjects employed in our

study were asked to keep their eyes-open for the entire duration of

the acquisition and this should prevent N1 stage (Gu, Han, &

Liu, 2019). However, even if we assume that some of them fell into a

N1 sleep stage, it does not foresee significant differences in FC

between young and old, based on (Daneault et al., 2021).

4.1 | Model order choice

The choice to adopt HMM instead of others approaches to study

dynamic FC, was driven by the possibility to select the model order in

a quantitative way, exploiting the principle of parsimony that seeks to

balance the goodness of the fit with the precision of the estimates. In

fact, relying only on the free energy cost function, the optimal model

would not be found, since with the increase of the model order, the

free energy decreased, without showing minimum values able to lead

us in the model selection. In contrast with free energy results, AIC and

BIC indices showed their maximum value for model order equal to

2. To find the optimal model, it was therefore necessary to introduce

and evaluate other indices for different model orders, which are the

average log-likelihood, as indicator of the goodness of the fit, and the

F IGURE 8 Each figure represents the modular organization of a brain state (S1, S2, etc.) obtained as explained in the main text. Different
colors are representative of a distinct community. In both the x- and y-axis, we have the 46 ICs, divided in the 11 functional domains. In the title,
we also report the mean modularity value, obtained across the 50,000 realizations, together with the minimum and maximum values. We grouped
together states mostly populated by young subjects (blue box) and by old subjects (red box)

1140 MORETTO ET AL.



CVs, as indicators of reliability of the estimates. To our knowledge,

this is the first study that attempts to solve the model selection issue,

making a compromise between the free energy, which pushes

towards a hyper parameterized model and indices of parsimony that

push towards a simplification of the model, also adding information

about uncertainty of the estimates.

4.2 | Group-level characteristics of brain states

At the spatial level, we obtained the maps of the mean level of BOLD

activation, which allow us to distinguish high activation states (S1, S2,

S3, and S6) from baseline states (S4 and S5) in which the RSNs pre-

sent a mean level of activation. Almost all the spatial maps here pres-

ented show patterns in line with a previous work (Vidaurre

et al., 2018) that employed UK Biobank data and inferred 8 states,

indicating that even with our small sample size, HMM application

leads to reproducible results. Comparing our results with (Vidaurre

et al., 2018), we observed a match between: S2 and the SMN state;

S3 and the DMN; S6 and the VIS state. The only exception was for

the primary visual that in our case are mapped in another state. This

mismatch can be explained not only by the different sample sizes, but

also by the different age of the sample and the different number of

inferred states.

The choice of the HMM for the study of the dynamic connec-

tivity, also allowed us to quantify the uncertainty of the estimates

through the CVs. Thanks to the introduction of this index in the

study, we were able to distinguish areas associated with higher

uncertainty, such as FRN, CER, and BG, that were also consistent

across brain states. As these three functional domains were found

to be associated with worse CVs, the conclusions drawn about

these domains in specific states should thus be taken with caution.

From a physiological standpoint these results are not unexpected,

as the BOLD signal in the basal ganglia and cerebellum has a quite

different underpinning structure in comparison with cortical

regions, both in terms of neuroreceptors (Palomero-Gallagher &

Zilles, 2018) and iron content (Cherubini, Péran, Caltagirone, Saba-

tini, & Spalletta, 2009).

4.3 | Subject-specific temporal characteristics

In line with the study of Xia et al. (2019), we found that the occupancy

of the two groups in each state was statistically different: S1 and S4

populated mainly by young subjects, whereas S2, S3, and S5 by old

subjects. This finding suggests a clear separation between occurring

patterns of mean BOLD activations as well as FC in young people

rather than in elderly.

Even if no significant differences were found in the SR, we can

note a positive trend with increasing age. This result is well in line with

previous studies, which observed an increased SR in healthy elderly

subjects (Malagurski, Liem, Oschwald, Mérillat, & Jäncke, 2020) or a

significant association between aging and SR increase in less

performant older adults with low cognitive performances (Cabral

et al., 2017).

Moreover, in relation to the transition probabilities between

states, we found for young subjects a main loop between S1 and S6

with high probability to remain in S1, the state with the highest segre-

gation of RSNs, and on the other hand for old subjects, a main loop

between S2 and S3, two very integrated states, where the DAN

serves as a bridge for the integration between RSNs of different func-

tional domain.

4.4 | Brain states graph metrics

The graph-based analysis carried out on the sparse FC matrices,

pointed out very interesting results, both considering the entire net-

work or specific domains. Previous studies (Andrews-Hanna

et al., 2007; Damoiseaux et al., 2008) suggested that the DMN com-

ponents undergo a FC modification during aging. This result was con-

firmed by our analysis conducted at the functional domain level.

Indeed, young-specific states had a much higher strength in the DMN

with respect to old-specific states.

Many deviations from the average level were also found in the

two baseline states: S4 exhibited the highest strength values in the

VIS, and also local efficiency values in the AUD, CON, and CCN.

Instead, S5 revealed higher strength in the FPN and local efficiency in

the FRN. The other two old-specific states, S2 and S3, did not show

strongly above average behaviors, in fact both the strength and the

local efficiency were in general below the average level, with a signifi-

cant decrease of strength for S2 in the FPN. This network plays a cen-

tral role in the executive functions, attentional processes and working

memory, and many studies found an increased functional activity in

the FPN during cognitively demanding tasks (Fox, Corbetta, Snyder,

Vincent, & Raichle, 2006; Smith et al., 2009), but also a positive corre-

lation between ageing and weaker within network connectivity

(Betzel et al., 2014) and decreased local efficiency (Geerligs

et al., 2015). Moreover, many groups detected an altered activation of

the FPN both in mild cognitive impairment and Alzheimer disease

(Agosta et al., 2012; Wang et al., 2012) that led to an impairment of

the performances during cognitive tasks (Yetkin, Rosenberg, Weiner,

Purdy, & Cullum, 2006; Zanchi et al., 2017). Therefore, we suppose

that the weak strength and local efficiency of the FPN in S2, could be

associated with a cognitive decline due to age progression.

In general, in literature, an increased FC between RSNs in elderly

has been reported (Betzel et al., 2014; Chan et al., 2014; Geerligs

et al., 2015; Song et al., 2014) and it is hypothesized that this change

is due to a loss of modularity and segregation between networks

(Chan et al., 2014; Song et al., 2014). Our modularity analysis revealed

that while S1, a young-specific state, was mostly characterized by a

greater segregation of the networks, S5, populated only by the elderly,

was the one that presented more integration between networks. The

intra-Dice results highlighted loss of segregation in the CCN for S1,

S4, and in the FPN for S1. This loss of FPN integrity together with the

interaction between the BG and many ICs of cognitive domains could
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shed light on the compensatory role of the BG for the maintenance of

general cognition.

Interestingly, in line with previous studies (Chong et al., 2019;

Damoiseaux et al., 2008) that reported the association between older

age and lower functional integrity in the DMN, we detected a loss of

integrity of the DMN only for the old-specific S2.

In summary, we found that young-specific states presented low

segregation in the FPN and CCN, and high integration of the DMN,

while old-specific states an overall more-integrated topology, espe-

cially between the DAN and many other domains, but also different

patterns of integration rather than segregation of the DMN. The orga-

nization of RSNs in a more integrated-topology is confirmed by a pre-

vious study (Bagarinao et al., 2019), which performed analysis at the

network-level and found a decrease in the shortest path length and an

increase in global efficiency with age (Song et al., 2014, p. 201).

4.5 | Limitations

This study is not exempt from limitations. First, we inferred HMM to

the time series of all the subjects together, without distinction

between young and old, thus obtaining parameters estimates at the

group-level. An alternative approach would have been to fit the model

separately for the two groups and thus to describe properties specific

to the population of interest. However, this would have significantly

increased the number of parameters to be estimated and, with the rel-

atively low sample size at disposal, no such reliable estimates would

have been obtained. Moreover, it would not have allowed a direct

comparison between state metrics of the two different models.

Regarding limitations, some might raise the issue that movement

may affect the results. However, we found low values of FD in both

the groups (on average 0.11 mm for young people and 0.17 mm for

old people) and the pre-processing we followed through ICA included

discarding motion-related components and a subsequent despiking

step on the IC's time courses. Thus, we cannot find any reason to sup-

port that our findings are driven by motion differences between

young and old people.

5 | CONCLUSIONS

In this study, we performed a whole-brain dynamic FC analysis,

through Hidden Markov Models, to characterize brain states in the

healthy aging population. This approach embeds the entire population

heterogeneity in the model and allows to decode the dynamics of the

time-varying FC and to capture the individual transitions between

brain states. We selected the best model in an automatic and mathe-

matically reliable way and, to our knowledge for the first time, we pro-

vided a tool to quantify the uncertainty of the estimates. The results

showed that different states and within them specific brain regions,

have distinct levels of accuracy, therefore caution must be paid in the

physiological interpretation of the results. Indeed, among the six

inferred states, we found the DAN associated to the most accurate μk

estimates, while the FRN, CER, and BG to the least ones. Moreover,

we found that the time spent in each state was different among

groups, in fact in terms of fractional occupancy, a clear separation

between states was observed. This allowed us to define young-

specific states rather than old-specific states. The graph-based and

modularity analysis revealed an overall more integrated networks

topology in old-specific states. We also found an increase in

strength with increasing age in the DMN, which can be explained

by the highly integrated topology of this network in young-specific

states. On the contrary, in old-specific states, the DMN was found

to be highly segregated or to lose its integrity. Furthermore, we

observed that the transitions between states were not random, but

more likely to occur between specific states and following prefer-

ential paths. For young subjects, these paths were characterized by

states at high segregation of the networks. On the contrary, old

subjects fell in a loop of states where the networks were very inte-

grated, and the DAN acted as a connecting point for the network

communication.

Although previous studies assumed the stationarity of FC during

the resting acquisition, our results instead suggested a continued tran-

sition between states, characterized by different patterns of connec-

tivity between networks. Therefore, static approaches cannot be

sufficient to capture the rich dynamics governing transient brain

states in the aging population.
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