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BACKGROUND: Clinicians and machine classifiers reliably diagnose pilocytic astro-
cytoma (PA) on magnetic resonance imaging (MRI) but less accurately distinguish medul-
loblastoma (MB) from ependymoma (EP). One strategy is to first rule out the most identi-
fiable diagnosis.
OBJECTIVE: To hypothesize a sequential machine-learning classifier could improve
diagnostic performance by mimicking a clinician’s strategy of excluding PA before distin-
guishing MB from EP.
METHODS: We extracted 1800 total Image Biomarker Standardization Initiative (IBSI)-
based features from T2- and gadolinium-enhanced T1-weighted images in a multinational
cohort of 274 MB, 156 PA, and 97 EP. We designed a 2-step sequential classifier – first ruling
out PA, and next distinguishingMB fromEP. For each step, we selected the best performing
model from 6-candidate classifier using a reduced feature set, andmeasured performance
on a holdout test set with the microaveraged F1 score.
RESULTS:Optimal diagnostic performancewas achieved using 2 decision steps, eachwith
its owndistinct imaging features andclassifiermethod.A 3-way logistic regression classifier
first distinguished PA from non-PA, with T2 uniformity and T1 contrast as themost relevant
IBSI features (F1 score 0.8809). A 2-way neural net classifier next distinguished MB from
EP, with T2 sphericity and T1 flatness as most relevant (F1 score 0.9189). The combined,
sequential classifier was with F1 score 0.9179.
CONCLUSION: An MRI-based sequential machine-learning classifiers offer high-
performance prediction of pediatric posterior fossa tumors across a large, multinational
cohort. Optimization of this model with demographic, clinical, imaging, and molecular
predictors could provide significant advantages for family counseling and surgical
planning.

KEY WORDS: Artificial intelligence, Ependymoma, Machine learning, Medulloblastoma, Pilocytic astrocytoma,
Posterior fossa tumors, Radiomics
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B rain tumors are the most common solid
pediatric tumors, and 45% to 60%
occupy the posterior fossa (PF).1 Medul-
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matrix; IBSI, Imaging Biomarker Standardization
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predictive value; PA, pilocytic astrocytoma; PF,
posterior fossa
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loblastoma (MB), pilocytic astrocytoma (PA),
and ependymoma (EA) make up the majority
of PF lesions with prevalence of 30% to
40%, 25% to 35%, and 10% to 15%, respec-
tively.2 Although all warrant surgery for primary
management and tissue diagnosis, the surgical
approach, optimal extent of resection, and
potential complications can vary by pathology.3
Without a preoperative diagnosis, the neuro-
surgeon must be flexible and occasionally adjust
the surgical strategy based on intraoperative
information. Thus, accurate, early diagnosis
could greatly facilitate preoperative planning,
treatment decisions, and family discussions.
For the most part, experienced neuro-

surgeons and neuroradiologists would not
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require the assistance of machine learning to accurately diagnosis
cerebellar PA on magnetic resonance imaging (MRI). However,
when faced with an atypical presentation, clinicians may mentally
bin imaging features into PA and non-PA categories, and
then for the latter try to refine the diagnosis based on classic
features, eg, foci of calcification or “candle wax” appearance at
4 ventricular outlets for EP, or highly restricted diffusion in
MB. This is not always straightforward, as many PF tumors
lack classical features and have significantly overlapping pheno-
types. Very heterogeneous cases of calcification, hemorrhage,
and cyst formation occur with MB and EP, and a range of
features can occur across the spectrum of MB subgroups. These
nuances leave room for improvement in diagnostic accuracy
and create a potential role for machine learning in assisting
clinicians.2,4,5
Radiomics-based machine learning has shown clinical utility

for management of neurosurgical problems.6-9 However, previous
applications for pediatric PF tumors had limited accuracy
and reproducibility, not only because of small cohorts and
obscure feature extraction methods10-12 but also because of
the failure to adapt machine-learning strategies to the unique
situation, eg, applying a single classifier method to a wide range
of diagnoses. We initially sought to develop such a single-
step, multiclass classifier for pediatric PF tumor and found it
to perform asymmetrically across subgroups, thereby needing
optimization.
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We hypothesized that a sequential radiomic classifier could
improve diagnostic performance by mimicking a clinician’s
strategy of excluding PA before distinguishing MB from EP. We
maximize performance by linking separate classifiers that first
focus on one set of specific features to rule out PA, and then use
a separate set of features to distinguish MB from EP.

METHODS

Study Population
For this multicenter, retrospective study, institutional review board

approval (No. 33821) was obtained at all participating institutions
(Supplementary Table 1, Supplemental Digital Content 1), with
waiver of consent. Stanford Children’s Hospital served as the host insti-
tution, and data-use agreements were obtained at all sites.

We reviewed consecutive imaging spanning July 1997 toMay 2020 for
MB, PA, and EP of patients under 19 yr old, including both gadolinium-
enhanced T1-weighted (T1-MRI) and T2-weighted (T2-MRI) MRI
sequences, and surgical specimen for pathologic confirmation. Patients
were excluded if the MRI was nondiagnostic because of motion or
artifacts.

Feature Extraction and Reduction
The volumetric whole tumor boundary, solid and cystic compo-

nents inclusive, was performed independently on T1-MRI and T2-
MRI using Osirix (Switzerland), with consensus review among experts
(K.Y., R.L., A.J.). From each segmentation, we extracted 1800 (900 each
from T2-MRI and T1-MRI) Image Biomarker Standardization Initiative
(IBSI)-based features13,14 using PyRadiomics (2.2.0.post7 + gac7458e)
in the Quantitative Image Feature Pipeline with configurations in
Supplementary Appendix 1, Supplemental Digital Content 2.15
Pre-processing and extracted features are described in Supplementary
Appendix 2, Supplemental Digital Content 3. A subset of the
data was submitted for sparse regression analysis by a least absolute
shrinkage and selection operator (LASSO) onRStudio 1.2.5033 (Boston,
Massachusetts). LASSO parameters are described in Supplementary
Appendix 2, Supplemental Digital Content 3.

Classifier Model Building
We sought to improve upon a baseline single-stage, 3-way classifier

by constructing a 2-stage model (Figure 1). In the first stage, the best
performing 3-way multiclass algorithm was selected from 6-candidate
classifiers using the initial reduced feature set. In the second stage, feature
reduction by LASSO was repeated for the 2 non-PA pathologies (MB
and EP) given their lower performances from the first stage. The best
performing binary classifier was identified using the new feature set for
the 2 pathologies. In the combined final model, the events classified
as non-PA were submitted for second-stage classification. Classification
performance was assessed for each individual stage as well as for the
combined stages.

Six-candidate classifier models were evaluated for each stage, including
support vector machine, logistic regression (LR), k-nearest neighbor,
random forest, extreme gradient boosting, and neural net (NN). The
cohort underwent resampling to correct for sample imbalance. Training
and test sets were randomly allocated from the total cohort in a
75:25 ratio. Optimal classifier parameters were estimated by grid search
(Supplementary Appendix 3, Supplemental Digital Content 4).
Relative influences of imaging features were calculated with LR based
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FIGURE 1. Workflow for training and testing of a 2-stage classifier, initially with a 3-way classifier and subsequently with a binary classifier, each optimizing over
their respective reduced feature sets obtained by sparse regression analyses. Stage 1 passes the negative class to stage 2 for a more specifically trained binary classifier. EP,
ependymoma; KNN, k-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; MB, medulloblastoma; NN, neural net; PA,
pilocytic astrocytoma; RF, random forest; SVM, support vector machine; XGB, eXtreme gradient boost.

on coefficients used in the weighted sum. Classifier development was
performed using Python 3.8.5.

The final radiomics, multiclass classifier was guided bymaximizing the
F1 score, measured as the weighted average between the precision score
(positive predictive value [PPV]) and recall score (sensitivity). Although
the F1 score applied to binary classification focuses on the positive
data, in multi-class classification, the micro-averaged F1 score provides a
holistic view prediction quality for all classes without restricting analysis
to the positive class. This stems from classification events necessarily
rotating between negative and positive labels as the microaveraging calcu-
lation cycles through binarized subgroups. Additionally, because the F1
score is the harmonic mean of precision and recall, in any multiclass
microaveraged setting, the accuracy, precision, recall, and F1 score are
all equivalent.16

Statistical Analysis
A P-value< .05 was considered statistically significant for all analyses.

We calculated sensitivity, specificity, PPV, negative predictive value
(NPV), F1 score, and area under the receiver operating character-
istic curve (AUC) for each classifier, using the microaverage to pool
performance over all samples. Confidence intervals were obtained by
bootstrapping of the test sets for 2000 random samples.

RESULTS

Patient Cohort
A total of 535 patients met the inclusion criteria: 278 (52.0%)

MB, 160 (29.9%) PA, and 97 (18.1%) EP (Supplementary

Table 2, Supplemental Digital Content 5). Average age at
diagnosis was 88.0, 111.6, and 95.4 mo, respectively.

First-Stage Classifier Model: PA vs Non-PA
LASSO regression identified 61 relevant IBSI features, with

27 from T1-MRI and 34 from T2-MRI (Supplementary Table
3, Supplemental Digital Content 6), including 2 shapes, 16
first order, 19 gray level co-occurrence matrix (GLCM), 7 gray
level run length matrix (GLRLM), and 17 gray level size zone
matrix (GLSZM). Among the 6 classifier models, LR had the
best performance (F1 score 0.7388, AUC = 0.9013) (Supple-
mentary Table 4, Supplemental Digital Content 7). The binary
performance comparison for each pathology was PA vs non-
PA (F1 score 0.8809), MB vs non-MB (F1 score 0.7768),
and EP vs non-EP (F1 score 0.4761; Table 1). For discerning
PA from non-PA, the sensitivity, specificity, PPV, NPV, and
accuracy were 0.8222, 0.9775, 0.9487, 0.9157, and 0.9477,
respectively. The top 3 relevant features for LR training were T2
uniformity (first-order intensity), T1 contrast (GLCM texture),
and T2-information measure of correlation-2 (GLCM texture;
Figure 2; Supplementary Table 5, Supplemental Digital
Content 8).

Second-Stage Classifier Model: MB vs EP
The second LASSO feature reduction over only MB and EP

images identified 39 features, with 21 from T1-MRI and 18
from T2-MRI (Supplementary Table 3, Supplemental Digital
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TABLE 1. Binarized and Overall Performance Metrics of the Individual LR on the Holdout Test Set for the 3-Way Classifier Assessing MB, PA, and
EP

Sensitivity Specificity PPV NPV Accuracy F1 score AUC

EP vs non-EP 0.5172 0.8190 0.4411 0.8600 0.7313 0.4761 0.7671
PA vs non-PA 0.8222 0.9775 0.9487 0.9157 0.9477 0.8809 0.9890
MB vs non-MB 0.7833 0.8108 0.7704 0.8219 0.7761 0.7768 0.8909
Microaverage 0.7388 0.8694 0.7388 0.8694 0.8258 0.7388 0.9013

AUC, area under the receiver operating characteristic curve; EP, ependymoma; MB, medulloblastoma; NPV, negative predictive value; PA, pilocytic astrocytoma; PPV, positive
predictive value.

FIGURE 2. A, Bar plot of the top 15 features of the first stage, reduced feature set and their relative influence as calculated by LR, trained to distinguish MB, PA,
and EP. Density plots of the top 3 features, including B, T2 uniformity, C, T2 contrast, and D, T2 informational measure of correlation.

Content 6), including 4 shapes, 9 first orders, 13 GLCM, 8
GLRLM, and 5 GLSZM. Among the 6 classifier models, NN
had the best performance (F1 score 0.9189) (Table 2). Sensi-
tivity, specificity, PPV, NPV, accuracy, and AUC were 0.9189,

0.7000, 0.9189, 0.7000, 0.8723, and 0.9243, respectively. The
top 3 relevant features included T2 sphericity (shape), T1 flatness
(shape), andT2 skewness (first-order intensity) (Figure 3; Supple-
mentary Table 5, Supplemental Digital Content 8).
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TABLE 2. Binarized and Overall Performance Metrics of the
Individual NN Classifier on the Holdout Test Set for the 2-Way
Classifier AssessingMB and EP

Metric Score

Sensitivity 0.9189
Specificity 0.7000
PPV 0.9189
NPV 0.7000
Accuracy 0.8723
F1 score 0.9189
AUC 0.9243

AUC, area under the receiver operating characteristic curve; NPV, negative predictive
value; PPV, positive predictive.

Sequential Model
Finally, the 2 classifiers were performed sequentially such that

the output of the initial LR classifier containing non-PA was fed
to the NN classifier. The metrics for the combined model were
sensitivity 0.9179, specificity 0.9589, PPV 0.9179, NPV 0.9589,
accuracy 0.9452, and F1 score 0.9179 (Table 3). Accuracy for the
final model was compared to the no information rate and found to
be better than random guessing for all sub-groupings (P< .0001).

DISCUSSION

Preoperative diagnosis of pediatric PF tumors may pose
challenges because of similar clinical presentations and atypical
or overlapping image features. Although gross total resection
remains the intent of surgery when morbidity is acceptable,

FIGURE 3. A, Bar plot of the top 15 features of the second stage, reduced feature set and their relative influence as calculated by LR, trained to distinguish MB, PA,
and EP. Density plots of the top 3 features, including B, sphericity, C, T2 flatness, and D, T2 skewness.
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RADIOMICS OF POSTERIOR FOSSA PEDIATRIC TUMORS

TABLE 3. Binarized and Overall Performance Metrics of the Final Sequential Classifier, First Using a LR 3-Way Classifier Followed by a Neural
Network Binary Classifier, on a Hold-Out Test Set AssessingMB, PA and EP

Sensitivity Specificity PPV NPV F1 score Accuracy (95% CI) NIR

EP vs Non-EP 0.8965 0.9714 0.8965 0.9714 0.8965 0.9552 (0.9179-0.9851)a 0.2164
PA vs Non-PA 0.8666 0.9775 0.9512 0.9354 0.9069 0.9402 (0.8955-0.9776)a 0.3358
MB vs Non-MB 0.9666 0.9189 0.9062 0.9714 0.9354 0.9402 (0.8955-0.9776)a 0.4478
Micro-Average 0.9179 0.9589 0.9179 0.9589 0.9179 0.9452 (0.9030-9801) –

Accuracy for binarized metrics is compared to the no information rate.
CI, confidence interval; EP, ependymoma; MB, medulloblastoma; NIR, no information rate, NPV, negative predictive value; PA, pilocytic astrocytoma; PPV, positive predictive value.
aP < .0001 compared to NIR.

intraoperative findings may alter the risk-benefit profile and
require important decisions under pressure. Moreover, the
pathology-specific morbidity of the procedure becomes apparent
only after the surgery is underway. Given the important ramifica-
tions a preliminary pathological diagnosis, some pediatric neuro-
surgeons stop the procedure to discuss the findings and goals of
surgery with the family.3
Although diagnosis will continue to rely on tissue specimens

for the near future, increasing confidence in a relevant machine-
learning classifier is desired. Its value will depend on a well-
rounded performance across various metrics and for all compo-
nents in the differential. Here we demonstrated how multiple
radiomic models can be sequentially incorporated in a rational
design to greatly improve precision.

Model Design and Performance
Radiomics-based, multiclass classifiers have traditionally

focused on a single-stage model encompassing a single set of
inputs and outputs.10,11 Moreover, many studies are often
reduced to the representation of a single summary metric such
as the AUC. Although our first-stage 3-way classifier produced
a robust microaveraged AUC, the microaveraged F1 score was
lower. When the full cohort was binarized, the performance
metrics of EP vs non-EP were appreciably poorer than those for
PA vs non-PA.
The unbalanced performance prompted our interest to develop

a superior and more practical classifier that improves upon the
weaker and more challenging MB and EP differentiation. Thus,
the second-stage NN classifier was designed to re-evaluate the
complete, original PyRadiomics feature list for a new set of
LASSO-reduced features and address 2 limitations of a single-
stage classifier. First, variables that may have been important for
classifying PA were no longer necessary, and second, previously
discarded variables from the first stage could become relevant
again. In this second stage, we see that F1 score performance
is substantially higher than those from binarized subgroupings
in the first stage. The AUC for this binary performance was
consistent with pilot work by Dong et al,12 who classified 51

patients for MB and EP but without a test set to rule out
overfitting.
Regarding metrics reporting, traditionally the AUC is reserved

for binary classifiers, as it provides a visual representation of the
tradeoffs between sensitivity and specificity when predicting a
positive class based on a probability threshold. Thus, although
a generalized, microaveraged AUC has been described, the metric
is a derived value. It becomes removed from the underlying binary
tradeoff it is intended to portray and can differ from other classical
metrics.17 Therefore, we elected to optimize over the microav-
eraged F1 score, which factors the precision and recall values
across subgroups.Nevertheless, the F1 score remains an important
tool for assessing weakness as evidenced by values in the first-stage
binarization performances. For instance, the less populous EP
decision-making exhibited a weaker F1 score that was penalized
by its underlying precision and recall. The higher micro-averaged
F1 score was likely compensated for by the stronger PA and MB
performances. Collectively, these helped to motivate a need for
our stronger, 2-stage model.
In summary, we see that the sequential model involving a

first-stage LR classifier followed by a second-stage NN classifier
that mimics human decision strategy, greatly improves the overall
performance (Figure 4). Zhou et al10 previously described a
smaller cohort with a microaveraged AUC of 0.92 and accuracy
of 0.74. Our first-stage AUC performance already matched that
reported by the author; however, our micro-averaged F1 score
and accuracy score were substantially higher. When the overall
model was binarized, EP vs non-EP and MB vs non-MB had
a 42.0% and 15.8% improvement in their respective F1 scores.
Meanwhile, the microaveraged F1 score also improved 17.9%.
For the clinician, these ultimately translate into a higher precision
(PPV) and recall (sensitivity). Therefore, the final classifier avoids
erroneous labeling by limiting false positives while still detecting
most of the positive samples.

Feature Interpretation
An important contribution of radiomics is its ability to preserve

feature descriptions throughout the machine-learning pipeline,
thereby avoiding the “black-box” classification seen with deep
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FIGURE 4. Model prediction probability output from automated 2-stage algorithm. PA, EP, and MB are shown in columns 1, 2, and 3, respectively.
In the first step, the model outputs probability for PA. In the second step, the model outputs probability for EP or MB. Some cases are straightforward.
For example, the model prediction probability is very high on classic hemispheric PA with cyst and enhancing nodule (pink arrows). Some PA tumors
have atypical features (∗), including darker T2 signal, or more irregular or hemorrhagic appearance that might mimic MB or EP. Nevertheless, the model
correctly identifies PA pathology, albeit at a slightly lower probability. Once deemed not-PA, tumors are automatically routed to second step to distinguish
EP vs MB. Some EP and MB tumors demonstrate classic features, such as extension along Luschka and deformation around the brainstem (yellow arrows)
or midline/hemispheric location, characteristic of EP and MB, respectively. However, some EP and MB tumors show overlap in features on human visual
inspection. Model probability prediction outputs for EP and MB are shown.
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learning.6 Consequently, a radiomics approach allows significant
features to be reviewed for model validation as well as informing
future human performance. We examined the most important
features contributing to our 2 stages and saw how known, quali-
tative radiographic elements for PA, MB, and EP are also quanti-
tatively captured.
Among the 3 classes studied here, PA is the most distin-

guishable on routine MRI because of characteristically high
T2 signal due to its low cellular density and frequent cystic
component.2,4,5 Our first-stage model similarly prioritized this
T2 signal by ranking T2 uniformity, a measure of signal
homogeneity, as its most important variable (Figure 2; Supple-
mentary Figure 1, Supplemental Digital Content 9). The
predictive value of this feature is visibly appreciable on the corre-
sponding density plot by the strong separation between PA and
the other 2 tumors. As suspected, MB and EP strongly overlapped
for T2 uniformity, thereby explaining why it was not preserved
in the second-stage feature set. Additionally, we saw PA occupy
a broader and larger distribution for T1 contrast, which can be
expected given their avid contrast enhancement.5 Specifically, the
bright voxels for PA can juxtapose with the nonenhancing cystic
components and lead to higher contrast values relative to MB and
EP.
The second-stage binary classifier shows how MB and EP can

be further distinguished when in the absence of PA.We confirmed
that T2 sphericity and T1 flatness (computationally the inverse of
true flatness) are greater for MB than for EP (Figure 3; Supple-
mentary Figure 2, Supplemental Digital Content 10). This
suggests that MB embodies a more spherical conformation than
EP, perhaps attributable to how each tumor tends to occupy their
local anatomic compartments. The histopathological origination
of MB and EP has been attributed to the cerebellar vermis and
fourth ventricular floor, respectively.18 Because EP adapt to the
surrounding ventricle or cistern, classically extending through
the fourth ventricle apertures, they may display a greater surface
area for a given tumor volume.2,18 Meanwhile, the T2 sphericity
and T1 flatness values are less informative about PA. Converse
to the first feature set, we see the distribution of values for PA
strongly overlap with either of the other tumors. Thus, removal
of PA from the second stage enabled us to recover imaging
predictors that would have been overlooked in a single-stage
classifier.

Limitations
As with other retrospective and radiomic studies, our work is

subject to several limitations. Additional imaging sequences such
diffusion-weighted imaging (DWI)/apparent diffusion coeffi-
cient, although known to have predictive information among PF
pediatric tumors, could not be included because of low sample
size and uneven distribution across tumor types. Also, many
DWI scans were nondiagnostic because of dental artifacts; and
a large number of the T1 and T2 MRI scans in our cohort
represented preoperative navigation protocols that lacked DWI.

As another limitation of radiomics, texture analysis was strictly
derived from the isolated tumor volume and did not incor-
porate many common qualitative elements identifiable to human
readers such as degree of anatomic laterality, additional neuro-
axis involvement, and perilesional edema.2,18 Awareness of these
additional predictors suggests that the accuracy featured in our
work can only further improve when incorporated into human
workflow.

CONCLUSION

This study demonstrates how a staged, radiomics-based
machine-learning model can assist a clinician in the preoper-
ative diagnosis of PA, MB, and EP. A micro-averaged F1 score
of 0.9179 was achieved; however, the binarized F1 scores for each
individual tumor type were also high performing. This was made
possible after the set of features most important for distinguishing
PAs were identified separately from that most important for MB
and EP. Future work can continue to incorporate additional image
sequences, semantic features, and clinical variables to improve
performance.
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Supplemental Digital Content 9. Supplementary Figure 1. Distinctive
radiomic features of PA.Overall, quantitative features of brightness of gadolinium-
enhanced T1-MRI and uniformity derived from T2-MRI were selected as most
contributory features that distinguished from MB or EP. A, Despite variations
in the volume of tumor enhancement, higher levels of brightness, or higher
tissue contrast calculated from gadolinium-enhanced T1MRI, were unique to PA
tumors. Examples of bright enhancement characteristic of PA are shown, whether
well-circumscribed (white arrows) or ill-defined (black arow) along margins of
enhancement. B, Similarly, lower uniformity in pixel distribution within the
tumor measured on T2-MRI-characterized PA.
Supplemental Digital Content 10. Supplementary Figure 2. Distinctive
radiomic features of PF MB and EP. Shape-based features calculated from both
T1 MRI and T2 MRI were robust features that distinguished MB and EP.

For example, spherical or rounder morphology (green contour) was character-
istic of MB compared to EP, which tended to envelope the brain, deform,
and insinuate along CSF spaces, resulting in more irregular contours (yellow
outline). Texture features extracted from filtered images are difficult to resolve
by human eye. For example, based on one such texture feature (eg, t1_wavelet-
LLL_GLCM_Correlation), EP tended to show less correlation between tumor
voxels, potentially reflecting a more complex phenotype of EP on gadolinium-
enhanced T1-MRI. Macroscopic examples of complex tumor patterns of EP are
shown (within the tumor volume outlined in yellow), including irregular and rim-
like as well as amorphous, nodular, and curvilinear enhancement. In comparison,
despite a wide range, from solid to faint or no enhancement, MB tended (tumor
contained within the green outline) to display less complex or irregular patterns
of tumor enhancement.

COMMENT

T his is a well-written and timely article on the application of Radionics
for pediatric brain tumor diagnosis. There have been a number of

recent of publications using a machine learning approach to aid diagnosis
of posterior fossa tumors utilizing various imaging sequences. This article
is unique in that it is the first multi-center, international study using
machine learning to differentiate the most common pediatric posterior
fossa tumors. Furthermore to aid the development of their model they
only utilized the most common MR sequences ie. T1 with contrast and
T2 weighted imaging. Their approach was to exclude pilocytic astro-
cytoma before attempting to differentiate ependymoma from medul-
loblasta which mimics the clinical sieve approach to these tumors.
Correctly they integrated multiple machine learning approaches as there
is no single algorithm or method that can single-handedly work with
great efficiency and accuracy. Using Radiomics-based machine learning
with a three-way logistic regression classifier they firstly distinguished
pilocytic astrocytoma with T2-Uniformity and T1-Contrast emerging as
the most relevant Image Biomarker Standardization Initiative features.
Once a tumor was established as a non pilocytic astrocytoma, a two-
way neural net classifier was used to distinguish medulloblastoma from
ependymoma with T2-Sphericity and T1-Flatness as most relevant ISBI
features. Furthermore the authors machine performance for MB versus
EP is welcome as a recently published multi institutional study reported
significant accuracy problems with the diagnosis of ependymoma
(though they only used T2 weighted imaging).1

The Machine learning-assisted model as described will hopefully be
(in the future when fully developed to include other imaging data such as
DWI) useful for individual patient prognostication and facilitate preop-
erative strategy planning and discussions with family.

Cormac G. Gavin
London, United Kingdom
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