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Abstract

Background: There is strong evidence that epigenetic age acceleration is associated with 

increased risk of later-life diseases and all-cause mortality. However, there is currently limited 

evidence that suggests accelerated epigenetic age is associated with dementia risk.

Objective: This study aims to clarify whether epigenetic biomarkers of accelerated aging can 

predict dementia risk, which is an important consideration as aging is the greatest risk factor for 

the disease.

Methods: DNA methylation was measured in peripheral blood samples provided by 160 

participants from the ASPirin in Reducing Events in the Elderly study, including 73 pre-

symptomatic dementia cases and 87 controls matched for age, sex, and smoking and education 

status. Epigenetic age was calculated using Horvath, Hannum, GrimAge and PhenoAge DNA 

methylation clocks, and age acceleration (the disparity between chronological age and epigenetic 

age) was determined.

Results: There was no difference in age acceleration between dementia cases and controls. In 

males, only Hannum’s intrinsic epigenetic age acceleration was increased in pre-symptomatic 

dementia cases compared to controls (Δ +1.8 years, p = 0.03).

Conclusion: These findings provide no strong evidence that accelerated epigenetic aging 

measured in peripheral blood can predict dementia risk.
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1. INTRODUCTION

Aging is the primary risk factor for dementia [1], however it remains unclear whether 

biological markers of aging are also associated with dementia risk. The epigenome is the 

overarching control of the genome without altering the genetic code by dynamic molecular 

modifications and includes DNA methylation, histone modifications, and microRNA levels 

[2–4]. Patterns of DNA methylation, which is a covalent attachment of a methyl group 

to cytosine by DNA methyltransferases [5], can control gene transcription by blocking or 

attracting DNA transcription factors [6]. Aberrant epigenetic signatures measured in blood 

have been associated with disease states [7]. While cancer has been a major focus [8], 

there is growing evidence that they are implicated in age-related diseases, such as heart 

disease [9], and neurodegenerative disorders, such as dementia [10]. It is now well accepted 

that there are age-related changes to epigenetic mechanisms. Indeed, the most promising 

biomarker of aging is the ‘epigenetic clock,’ in which biological age can be determined by 

measuring DNA methylation at specific sites across the genome [11].

There are several different epigenetic age measures, or ‘epigenetic clocks’, which are 

based on the correlation between chronological age and methylation. The two most 

widely used measures of epigenetic age are Horvath’s and Hannum’s epigenetic clocks, 

in which methylation levels at specific genomic sites (353 [12] and 71 [13] methylation 

Fransquet et al. Page 2

Curr Alzheimer Res. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sites, respectively) are highly correlated with chronological age. The measurable difference 

between chronological age and epigenetic age, known as age acceleration (AgeAccel), gives 

an estimation of how much the older (or younger) individual is biologically compared 

to their actual chronological age. There are also estimates of age acceleration which 

control blood cell composition, and the ‘intrinsic epigenetic age acceleration’ calculated 

with Horvath’s clock (IEAA.Horvath), and Hannum’s clock (IEAA.Hannum). A separate 

measure using Hannum’s clock, ‘extrinsic epigenetic age acceleration’ (EEAA), takes 

into account age related changes to cell composition by controlling weighted average 

age-associated cell counts. Measures of age acceleration, and intrinsic and extrinsic 

age measures, are associated with age-related morbidity and mortality [14], as well as 

environmental, lifestyle and health factors, such as lower levels of education and higher 

body mass index [15].

Horvath’s and Hannum’s epigenetic clocks are built directly on the association between 

DNA methylation and age, whereas more recent epigenetic age measures, such as PhenoAge 

and GrimAge predict life span by incorporating other age and health-related biological 

measures. These were created on the premise that clinical biomarkers of all-cause mortality 

and health-related outcomes are often more accurate at estimating remaining life-span 

than actual age [16]. PhenoAge is an epigenetic clock that factors in methylation at 

513 methylation sites, as well as chronological age, and nine biomarkers of aging, such 

as levels of albumin, creatinine, and the inflammatory marker C-reactive protein [17]. 

PhenoAge is a better predictor of long-term mortality risk than both Horvath and Hannum 

epigenetic clocks. GrimAge is a measure of life-span (time to death), calculated using 

DNA methylation-based estimations of levels of morbidity and mortality associated plasma-

based proteins and smoking pack-years. GrimAge acceleration has been shown to be more 

accurate in predicting time to disease, such as coronary heart disease and cancer, than 

accelerated PhenoAge [18].

Not only do measures of epigenetic age have the potential to represent an increased risk of 

dementia, but studies of the epigenetic clock and dementia could aid in understanding the 

age-related biological mechanisms that drive dementia risk. Our previous systematic review 

and meta-analysis, which found that age acceleration was associated with an increased 

risk of all-cause mortality, included only two studies on dementia [14]. A small study 

involving only 11 dementia cases found that Horvath’s epigenetic age was associated with 

incidental dementia [19]. A larger study including 335 Parkinson’s disease participants 

reported increased age acceleration (AgeAccel Horvath and EEAA) associated with the 

disease [20]. No study was stratified by sex, which is an important consideration given the 

clear sex differences in disease prevalence [21, 22] and epigenetic age acceleration [23]. Our 

systematic review did not include the more recently developed measures of PhenoAge or 

GrimAge. However, PhenoAge has been positively correlated with amyloid load, neuritic 

plaques, and neurofibrillary tangles, the primary neuropathology of Alzheimer’s disease 

[17]. Also, the acceleration of GrimAge has been associated with measures of cognition and 

brain health, including lower cognitive functioning and vascular lesions in the brain in older 

age [24].
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The primary aim of this study is to determine whether there is an association between 

accelerated epigenetic aging and pre-symptomatic dementia and to determine whether this 

differs between males and females. A secondary aim is to assess whether age acceleration 

changes over time with the manifestation of clinical symptoms by investigating intra-

individual change in age acceleration from the pre-symptomatic time-point to dementia 

diagnosis.

2. MATERIALS AND METHODS

2.1. Study Sub-Sample

Included in this analysis were 160 participants from the ASPirin in Reducing Events 

in the Elderly (ASPREE) cohort, previously characterised in detail [25]. The ASPREE 

study was approved by Monash Human Research Ethics Committee (2006/745M), and all 

participants gave informed written consent. This DNA methylation sub-study was approved 

by The Alfred Human Ethics Committee (Project 448/16). The study was conducted in 

accordance with the Declaration of Helsinki 2008 revision, NHMRC Guidelines on Human 

Experimentation, the federal patient privacy (HIPAA) law, the International Conference of 

Harmonisation Guidelines for Good Clinical Practice, and the Code of Federal Regulations.

All participants in this sub-sample were self-identified as white Australians and provided 

blood samples at baseline; for inclusion in ASPREE, the individuals needed to score > 77 

out of 100 on the Modified Mini-Mental State Examination (3MS) [26, 27], a screening 

for general cognition. In addition to the 3MS, other cognitive assessments included Symbol 

Digit Modalities Test (SDMT) [28], the Controlled Oral Word Association Test (COWAT) 

[29], and the Hopkins Verbal Learning Test-Revised (HVLT-R) [30, 31]. Participants 

without serious health complications, such as cardiovascular disease, uncontrolled high 

blood pressure, or major conditions likely to cause death within five years were included in 

the study. Participants were aged between 70 and 92 years old.

2.2. Dementia Adjudication

Over the five-year follow-up period, individuals were diagnosed with dementia by a 

specialist panel of neurologists, neuropsychologists, and geriatricians, who adjudicated 

on the basis of the Diagnostic and Statistical Manual for Mental Disorders, American 

Psychiatric Association (DSM-IV) criteria [32]. In the sample of 160 baseline participants, 

73 were adjudicated as having dementia within an average of 3.7 years of follow-up, and 

87 controls remained cognitively healthy over this period. Cases and controls were matched 

for age, sex, smoking status, education status, and baseline cognitive function. At 3-years 

follow-up, 49 of these participants provided further blood samples, including 25 participants 

with an adjudicated dementia diagnosis and 24 controls who remained cognitively healthy.

2.3. Epigenetic Clock Measures

DNA extracted from peripheral blood samples was run on the Illumina MethylEPIC 

array at the Australian Genome Research Facility (https://www.agrf.org.au/)). Programming 

platform ‘R’ version 3.5.1 was used to modify data for use in Horvath’s online “New 

DNA Methylation Age Calculator” (https://dnamage.genetics.ucla.edu/new), following user 
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manual instructions and suggestions (https://dnamage.genetics.ucla.edu/important-hints). 

EPIC data was normalized using the preprocessNoob method [33]. Beta values from 

the EPIC data set were restricted to probes available as measured by 450K array, as 

expected by the online calculator. Missing probes (33,124 probes, Supplemental File 1) 

had methylation values filled in as ‘NA’ to complete the data set. To obtain measurements 

of epigenetic aging, sample beta values, as well as a sample annotation file including 

sample, age, sex, and tissue type, were uploaded to the calculator. Before submitting the 

data, options “Normalise data” as well as “Advanced Analysis” were selected, but the 

“Fast Imputation” option remained unselected. Output from the calculator used in this study 

included epigenetic age estimated by Horvath, Hannum, PhenoAge, and GrimAge clocks, 

as well as age acceleration residuals (epigenetic age measures regressed on chronological 

age) of all clocks and measures of age acceleration adjusted for estimated cell proportions 

(IEAA) and age-associated cell composition (EEAA).

2.4. Statistical Analysis

STATA 15 was used for all analyses. Correlation between epigenetic age measures and 

chronological age, as well as the correlation between age acceleration measures, were 

firstly examined. T-tests were used to compare epigenetic age and age acceleration between 

pre-symptomatic dementia cases and controls. Logistic regression was used to determine 

the association between age acceleration and case-control status, adjusting for possible 

covariates, such as sex, smoking status, education level, and baseline cognitive test scores 

(3MS, SDMT, COWAT, and HVLT-R). As females have a higher risk of dementia [21], and 

sex-specific differences in epigenetic aging have been reported previously [23], sex-stratified 

analysis was also undertaken. Secondary analysis examined the association between age 

acceleration and dementia cases at the point of diagnosis in a smaller sub-group. Paired 

t-tests were used to compare age acceleration measured in blood collected during pre-

diagnosis at the time of inclusion and blood collected during post-diagnosis at the time of 

follow up (average 3 years difference).

3. RESULTS

3.1. Age Measure Correlations

Measures of Horvath, Hannum, GrimAge, and PhenoAge age estimates were all correlated 

with chronological age (r = 0.8 to 0.60, p < 0.0001), with GrimAge being the most highly 

correlated (Supplementary Table 1). Correlations between baseline chronological age and 

epigenetic age estimates, stratified by dementia status, can be seen in Fig. (1). GrimAge 

was most highly correlated with chronological age in both controls (r = 0.79, Fig. 1g) 

and dementia (r = 0.8, Fig 1h). Most measures of age acceleration were highly correlated 

with one another, the strongest being between AgeAccel Hannum and EEAA (r = 0.96, 

p < 0.0001), and all others ranging from r = 0.89, p < 0.0001 to r = 0.21, p = 0.007 

(Supplementary Table 2). The only exceptions were from AgeAccelGrim and IEAA.Horvath 
(r = 0.11, p = 0.19), and AgeAccelGrim and IEAA.Hannum (r = 0.1, p = 0.22).
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3.2. Participant Characteristics

Participant characteristics are shown in Table 1. The only characteristic which differed 

between cases and controls was baseline COWAT (p = 0.03). Pre-symptomatic dementia 

cases were on average biologically older than controls (from 1.1 to 1.7 years difference), 

which is concordant with the difference in chronological age (Table 2).

3.3. Age Acceleration

Compared to controls, individuals with pre-symptomatic dementia did not have accelerated 

epigenetic aging for any of the measures examined. Similar results were observed in cases 

at the time of dementia diagnosis compared with controls (Supplementary Table 3). When 

stratifying by sex, there was a significant association with Hannum’s intrinsic epigenetic 

age acceleration and pre-symptomatic dementia in males (n = 31 cases (IEAA.Hannum = 

+1.12), n = 37 controls (IEAA.Hannum = −0.70), Δ +1.82 years, p = 0.03), but not in 

females (Fig. 2., Supplementary Table 4). This remained significant in logistic regression 

analysis after adjusting for smoking status, batch effects (methylation array chip), education 

level, and baseline 3MS, SDMT, COWAT, and HVLT-R (OR:1.21, SE:0.11, Adj. p = 0.035).

The change in age acceleration within individuals was then compared between pre-

symptomatic dementia cases (at baseline) and at the time of diagnosis (3-years follow-

up) (Supplementary Table 5). Three age acceleration measures, AgeAccel.Horvath, 

AgeAccel.Hannum and EEAA, in dementia participants, were significantly different 

between baseline at pre-symptomatic and post dementia diagnosis (three years after). All 

showed an increased epigenetic age acceleration at baseline and a decreased epigenetic 

age acceleration at diagnosis, reflecting a decrease in age acceleration over time 

(AgeAccel.Horvath: Δ−2.10, p = 0.003, AgeAccel.Hannum: Δ−1.41, p = 0.01, and EEAA: 

Δ−1.71, p = 0.03). Only AgeAccel.Horvath (Δ−1.61, p = 0.03) differed between controls 

at baseline and the same control participants at follow-up, which also decreased over time 

(Δ−1.61, p = 0.03).

4. DISCUSSION

We found no evidence of accelerated epigenetic aging measured in blood in individuals with 

pre-symptomatic dementia compared to controls. This suggests that despite age being the 

greatest risk factor for dementia, it is not directly associated with DNA methylation markers 

of biological aging. The only significant finding was a slight increase in IEAA.Hannum 
for males with dementia versus controls, but given the lack of consistency, this could be 

a chance finding. While correlations were significant between all epigenetic age measures 

and chronological age, the correlation coefficients of Horvath, Hannum, and PhenoAge 

were low relative to GrimAge (r = 0.80). This suggests that GrimAge measures may 

more reliably predict age than the other epigenetic clocks in this population comprised 

of participants aged over 70 years old who were relatively healthy, without cardiovascular 

diseases. However, we found no evidence that GrimAge was predictive of dementia. Indeed, 

GrimAge is considered a measure of time-to-death rather than chronological age per se and 

uses DNA methylation-based estimations of plasma-based proteins (adrenomedullin, beta-2-

microglobulim, cystatin C, growth differentiation factor 15, leptin, plasminogen activation 
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inhibitor 1, and tissue inhibitor metalloproteinase 1) and smoking pack-years [18]. This 

contrasts with the Horvath’s and Hannum’s clocks, which use the correlation between DNA 

methylation at specific probes and age.

Only a couple of studies have investigated whether dementia is associated with increased 

epigenetic age or age acceleration. The first measured AgeAccel Horvath, IEAA. Horvath 
and EEAA in 508 Caucasians and 84 Hispanics, including 335 with Parkinson’s disease 

[20]. They observed that AgeAccel Horvath and EEAA were associated with disease status 

after adjusting for exposure to organophosphate (pesticide), cumulative smoking pack-years, 

education, coffee intake, and ethnicity. Almost all individuals in our study had probable 

or possible Alzheimer’s Disease [34], which could help account for the divergent findings, 

given these are two different diseases with differing etiology. A smaller study compared 

Horvath’s epigenetic age between participants with dementia (n = 11) and controls (number 

unclear) [19]. After controlling for chronological age and gender, this study observed that 

epigenetic age was associated with dementia status (p = 0.03). However, our findings are 

in agreement with the most current study of epigenetic aging and late-life dementia [35]. 

The study by Sibbett et al. measured age acceleration at a baseline time point comparing 

differences between incidental dementia (n = 109, average time to dementia 9.7 years) and 

controls (n =379) who either remained without dementia before death (average time to death 

= 7.8 years) or survived beyond the last date of data collection (average time = 17.8 years). 

That study also found no evidence of age acceleration associated with dementia incidence 

after adjusting for age, sex, smoking status, as well as diseases, such as cardiovascular 

disease, cerebrovascular disease, hypertension, and diabetes, and APOE ɛ4 status [35].

Although our primary findings differed, something of note in the Degerman study mentioned 

above was the disparity between epigenetic age and chronological age in older individuals 

[19]. Participants’ chronological age (average 57.9 years) and epigenetic age (average 57.1 

years) were correlated at baseline (r = 0.69). After 15 years of follow-up, however, when 

participants were between 70 to 80 years (average 72.8), the average epigenetic age was 

considerably younger (average 69.5 years) than chronological age. This trend is similar 

to that observed in our paired analysis of age acceleration, where AgeAccel.Horvath, 

AgeAccel.Hannum and EEAA were significantly decreased at 3-years follow-up compared 

to the same participants at baseline. This has also been reported previously in another study, 

including both blood and brain tissue from Alzheimer’s Disease (n = 61) and controls (n = 

31) [36]. They observed that age acceleration slows down or reverses in older individuals. 

Indeed, epigenetic age algorithms are not as linear in older populations, with epigenetic 

age appearing to be younger in comparison to chronological age in individuals above 80 

years old [37]. As our sample of participants was between 70 and 92 years old, it could 

also partly explain our findings. A further explanation could be that DNA methylation at 

Horvath and Hannum clock-specific probes respond to the pathophysiology associated with 

the clinical presentation of the disease, similar to what is seen in the prenatal environment, 

where epigenetic age will become decelerated at birth in response to adverse conditions [38].

A source of possible variation between other epigenetic age studies and ours is in the 

cell estimation used in the calculation of IEAA measures, which adjust for estimated cell 

type. The IEAA measures calculated in this study used cell estimation based on the older 
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450K methylation array, however, updated cell estimations for EPIC, the array used in this 

study, differ, as they are derived using cell sorted DNA run on the EPIC array [39]. This 

may also affect IEAA.Hannum, which was observed in our study to be slightly increased 

in men pre-symptomatic for dementia compared to controls. Furthermore, epigenetic age 

measures by Horvath and Hannum are generated using an older epigenetic array than used 

in this study. The Illumina EPIC array used in this study measures ~850,000 methylation 

probes across the epigenome [40]. Although most EPIC probes overlap (93.3%) with the 

450K array (~450,000 probes) was used to calculate Horvath and Hannum epigenetic age 

measures [41], there were still 33,124 probes missing from the EPIC array that are present 

in the 450 K array. This results in 19 missing probes from Horvath’s 353 methylation site 

clock and six missing from Hannum’s 71 site clock. However, a previous study found that 

the lack of probes generally does not affect Horvath and Hannum clock outcomes [42]. 

These differences, however, do not affect measures of GrimAge and PhenoAge. GrimAge 

was purposefully built using probes that were available on both the EPIC and 450K arrays to 

ensure future compatibility [18], and PhenoAge builds on probes available on the three most 

recent generations of Illumina Arrays (Epic, 450K and 27K) [17]. This highlights the need 

for updated epigenetic age algorithms based on the EPIC, which outperform older clock 

algorithms, as studies will increasingly start to use the EPIC array.

4.1. Study limitation

A potential limitation of this study is the small sample size, which may have limited power 

to detect associations if they were present. One recent study suggests that a small sample 

size is subject to confounding by estimated blood cell compositions when compared to 

larger studies [43], however, this study is similar in size relative to the aforementioned 

studies in the field. As previously mentioned, a general limitation to epigenetic aging 

studies, particularly using older populations, is that the correlation between age and 

epigenetic age does not have a linear relationship with chronological age in those past 80 

years old [37]. This suggests the need for ‘older aging’ epigenetic clocks to be developed. 

Another limitation is that although some methylation sites are strongly conserved across 

brain and blood tissue [44], the sites used in measuring the epigenetic clocks do not 

necessarily reflect age-related changes in the brain. Thus, for use in age-associated brain 

diseases, future efforts should be made to specifically compare brain aging and associated 

methylation sites. Progress is being made in this field, for example, the recently published 

‘cortical DNAm age clock,’ which can accurately predict brain age based on 347 cortical 

methylation sites [45, 46]. However, this signature still needs to be measurable in blood, if it 

is to be used as an easy to access biomarker of brain aging.

CONCLUSION

There is no evidence that peripheral blood-based accelerated epigenetic aging, measured 

using Horvath, Hannum, GrimAge, and PhenoAge epigenetic clocks, is predictive of 

dementia risk. Furthermore, our study provides an important addition to the current 

evidence. Together, this suggests that biological aging does not drive dementia risk. Updated 

clock algorithms for specific use in observing biological age differences associated with 

dementia should be considered. More generally, blood-based DNA methylation biomarkers 

Fransquet et al. Page 8

Curr Alzheimer Res. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for dementia remain a promising area of research, with the potential for early diagnostics 

and better risk prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LIST OF ABBREVIATIONS

3MS Modified Mini-Mental State Examination

AgeAccel Age Acceleration

AgeAccelGrim Age Acceleration Calculated Using GrimAge Epigenetic 

Clock

AgeAccel Hannum Age Acceleration Calculated Using Hannum’s Epigenetic 

Clock

AgeAccel Horvath Age Acceleration Calculated Using Horvath’s Epigenetic 

Clock

AgeAccelPheno Age Acceleration Calculated Using PhenoAge Epigenetic 

Clock

APOE Apolipoprotein E

ASPREE ASPirin in Reducing Events in the Elderly Cohort

COWAT Controlled Oral Word Association Test

DSM-IV Diagnostic and Statistical Manual for Mental Disorders 

version 4

EEAA Extrinsic Epigenetic Age Acceleration

EPIC Illumina MethylEPIC array

HVLT-R Hopkins Verbal Learning Test Revised
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IEAA.Horvath Intrinsic Epigenetic Age Acceleration Calculated Using 

Horvath’s Epigenetic Clock

IEAA.Hannum Intrinsic Epigenetic Age Acceleration Calculated Using 

Hannum’s Epigenetic Clock

SDMT Symbol Digit Modalities Test
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Fig. (1). 
Correlations between estimated epigenetic age (y-axis) and chronological age (x-axis) at 

baseline. a) Horvath DNAmAge vs. chronological age in control participants (n = 87); b) 
Horvath DNAmAge vs. chronological age in dementia participants (n = 73); c) Hannum 

DNAmAge vs. chronological age in control participants (n = 87); d) Hannum DNAmAge 

vs. chronological age in dementia participants (n = 73); e) PhenoAge vs. chronological age 

in control participants (n = 87); f) PhenoAge vs. chronological age in dementia participants 

(n = 73); g) GrimAge vs. chronological age in control participants (n = 87); h) GrimAge 

vs. chronological age in dementia participants (n = 73); Solid line represents a perfect 

correlation between age and epigenetic age (r = 1), dotted line represents correlation 

between age and estimated epigenetic age. All correlations are p < 0.0001. (A higher 
resolution / colour version of this figure is available in the electronic copy of the article).
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Fig. (2). 
Hannum’s intrinsic epigenetic age acceleration in controls vs. pre-symptomatic dementia, 

stratified by sex; Left: Male controls (n = 37, IEAA.Hannum = −0.70) vs. pre-symptomatic 

dementia participants (n = 31, IEAA.Hannum = +1.12), p = 0.03; Right: Female controls 

(n = 50, IEAA.Hannum = +0.35) vs. pre-symptomatic dementia participants (n = 42, 

IEAA.Hannum = −0.31), p = 0.43; Error bars represent standard deviation.
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