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Abstract

The rapid evolution of HIV is constrained by interactions between mutations which affect

viral fitness. In this work, we explore the role of epistasis in determining the mutational fit-

ness landscape of HIV for multiple drug target proteins, including Protease, Reverse Tran-

scriptase, and Integrase. Epistatic interactions between residues modulate the mutation

patterns involved in drug resistance, with unambiguous signatures of epistasis best seen in

the comparison of the Potts model predicted and experimental HIV sequence “prevalences”

expressed as higher-order marginals (beyond triplets) of the sequence probability distribu-

tion. In contrast, experimental measures of fitness such as viral replicative capacities gener-

ally probe fitness effects of point mutations in a single background, providing weak evidence

for epistasis in viral systems. The detectable effects of epistasis are obscured by higher evo-

lutionary conservation at sites. While double mutant cycles in principle, provide one of the

best ways to probe epistatic interactions experimentally without reference to a particular

background, we show that the analysis is complicated by the small dynamic range of mea-

surements. Overall, we show that global pairwise interaction Potts models are necessary for

predicting the mutational landscape of viral proteins.

Introduction

A major challenge in biological research, clinical medicine, and biotechnology is how to deci-

pher and exploit the effects of mutations [1]. In efforts ranging from the identification of

genetic variations underlying disease-causing mutations, to the understanding of the geno-

type-phenotype mapping, to development of modified proteins with useful properties, there is

a need to rapidly assess the functional effects of mutations. Experimental techniques to assess

the effect of multiple mutations on phenotype have been effective [2–5], but functional assays

to test all possible combinations are not possible due to the vast size of the mutational land-

scape. Recent advances in biotechnology have enabled deep mutational scans [6] and multi-

plexed assays [7] for a more complete description of the mutational landscapes of a few

proteins, but remain resource intensive and limited in scalability. The measured phenotypes

depend on the type of experiment and are susceptible to changes in experimental conditions
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making the comparison between measurements difficult [8]. These methodologies are also uti-

lized under externally applied conditions, but how in vitro selection pressures can be extended

to the interpretation of pressures in vivo is not always clear [9].

Potts sequence covariation models have been developed for the identification of spatial con-

tacts in proteins from sequence data [10–19] by exploiting the wealth of information available

in protein sequences observed in nature, and have also been successfully used to infer the fit-

ness landscape and study mutational outcomes in a wide variety of protein families in viruses

to humans [1, 20–29]. The Potts model is a generative, global pairwise interaction model that

induces correlations between residues to all orders, such as triplet and quadruplet correlations.

Given a multiple sequence alignment (MSA) of related protein sequences, the Potts probabilis-

tic model of the network of interacting protein residues can be inferred from the pair correla-

tions encoded in the MSA, and can be used to assign scores to individual protein sequences.

The extent to which sequence scores correlate with experimental measures of fitness can then

be analyzed. The context dependence of a mutation, termed “epistasis”, determines the favor-

ability/disfavorability of the mutation in a given genomic sequence background, and the Potts

model predictions can be used to predict the likelihoods of mutations in a variety of sequence

backgrounds.

The HIV pandemic is the result of a large, genetically diverse, and dynamic viral population

characterized by a highly mutable genome that renders efforts to design a universal vaccine a

significant challenge [30] and drives the emergence of drug-resistant variants upon antiretrovi-

ral (ARV) therapy. Gaining a comprehensive understanding of the mutational tolerance, and

the role of epistatic interactions in the fitness landscape of HIV is important for the identifica-

tion and understanding of mutational routes of pathogen escape and resistance.

In this work, we explore the limits to detecting epistasis and the role of epistatic interactions

between sites in modulating the fitness landscape of HIV with many mutations, focusing on

the drug target proteins, protease (PR), reverse transcriptase (RT), and integrase (IN), as well

as the emerging target protein of capsid (CA). We first show that the evidence for long-range

epistasis is strong (in HIV) based on the analysis of the high-order marginals of the MSA dis-

tribution (up to subsequences of length 14). The observed effects of epistasis in determining

the higher-order mutational patterns, however, differs significantly between drug-resistance-

associated residues, and non-drug-resistance-associated sites due to the higher “evolutionary

conservation” at sites not associated with drug resistance. In contrast to the effects of epistasis

on higher-order marginals, we find, in accordance with the current literature [31], that the evi-

dence for epistasis from experimental measures of HIV fitness, such as viral replicative capaci-

ties, is weak; as both a correlated Potts and a site-independent model (devoid of interactions

between sites) can capture replicative capacities almost equally well. This is primarily because

experimental fitness measurements are generally carried out for single-point (or few-point)

mutations in specific laboratory molecular clones, that are close in sequence to the consensus

sequence. Instead, in the comparison of higher-order marginals, unambiguous signatures of

epistasis are observed. Although double mutant cycle experiments in principle provide the

classic, biophysical way to examine epistasis, we demonstrate with numerical examples that

accurate predictions of double mutant cycles are difficult due to the small dynamic range of

the measurements making them much more susceptible to noise. While fitness measures such

as thermostability, activity, or binding energetics, etc. of a protein generally do not all contrib-

ute to fitness in the same way, we further find that the Potts model provides a more general

representation of the protein fitness landscape capturing contributions from different features

of the landscape, replicative capacities and folding energetics, that are not fully captured by

either measurement on their own.
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Results and discussion

Protein sequence covariation models have been extensively used to study networks of interact-

ing residues for inference of protein structure and function. The Potts model is a maximum-

entropy model based on the observed mutational correlations in a multiple sequence align-

ment (MSA) and constrained to accurately capture the bivariate (pairwise) residue frequencies

in the MSA. A central quantity known as the “statistical” energy of a sequence E(S) (Eq 2,

Methods) is commonly interpreted to be proportional to fitness; the model predicts that

sequences will appear in the dataset with probability P(S)/ e−E(S), such that sequences with

favorable statistical energies are more prevalent in the MSA. P(S) describes the “prevalence”

landscape of a protein and the marginals of P(S) can be compared with observed frequencies

in a multiple sequence alignment. Previous studies have indicated that the Potts model is an

accurate predictor of “prevalence” in HIV proteins [20, 21, 23, 32–36]; “prevalence” is often

used as a proxy for “fitness” with covariation models serving as a natural extension for mea-

sures of “fitness” based on experiments and model predictions have been compared to differ-

ent experimental measures of “fitness” with varying degrees of success [1, 21, 23, 28, 32, 34,

36]. Site-independent models, devoid of interactions between sites have also been reported to

capture experimentally measured fitness well, in particular for viral proteins [1, 31] with stud-

ies (on HIV Nef and protease) implying that the dominant contribution to the Potts model

predicted sequence statistical energy comes from site-wise “field” parameters hi (see Methods)

in the model [28, 36]. In this study, we show that interaction between sites is necessary to cap-

ture the higher order (beyond pairwise) mutational landscape of HIV proteins for functionally

relevant sites, such as those involved in engendering drug resistance, and cannot be predicted

by a site-independent model. The correspondence between model predictions of fitness based

on “prevalences” in natural sequences with experimentally measured “fitness” is however, con-

founded by a number of different factors. Here, we explore comparisons between model pre-

dictions and “fitness” experiments (Fig 1) focusing primarily on three HIV enzymes: Protease

Fig 1. The correspondence between sequence covariation models and sequence statistics in multiple sequence

alignments is very strong across different HIV proteins. The correspondence between either covariation models, or

“prevalences” in multiple sequence alignments, with other experimental measures of “fitness” is less clear and often

inconsistent between different statistics and measures of fitness.

https://doi.org/10.1371/journal.pone.0262314.g001
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(PR), Reverse Transcriptase (RT), and Integrase (IN) that have been targets of antiretroviral

therapy (ART) over the past several decades, as well as viral Capsid (CA), which is fast emerg-

ing as a promising new target for drug therapy.

“Prevalence” landscape of HIV proteins and the role of correlations

between residues

An important statistic of the multiple sequence alignment is the sequence diversity and the

level of conservation in the protein or protein family which is represented in the distribution

of the number of mutations in the constituent sequences. Fig 2 shows the distribution of the

number of mutations (hamming distances) from the HIV-1 subtype B wild-type consensus

sequence in MSAs containing drug-experienced HIV-1 sequences, and distributions predicted

by the Potts and independent models. The Potts model predicts a distribution of mutations

that closely represents the dataset distribution, whereas the independent model predicts a dis-

tribution that differs especially near the the ends of the distribution where the number of

mutations is either very low or very high. This provides support for the importance of epistasis

in these datasets. However, in Fig 9 of S1 File we also show that for some datasets the difference

between the Potts and Independent distributions is small, and so may be a less reliable test of

the importance of epistasis. The importance of pairwise interactions is also apparent through

the fact that the Potts model also accurately predicts the likelihoods and “entrenchment” of

mutations based on the sequence background, as has been verified using aggregate sequence

statistics from the MSA [35].

But the most direct and strongest evidence of the ability of the Potts model to capture epi-

static interactions is seen in its ability to reproduce the higher-order marginals of the MSA,

upto order 14 in Fig 3, much beyond the pairwise marginals which the model is parameterized

to capture. While the prevalence of sequence marginals (subsequence frequencies) can be com-

pared directly with Potts model predictions, this is not possible for predictions for complete

sequence probabilities because most sequences in an unbiased MSA are observed only once

due to the minuscule sample size in comparison to the vast size of sequence space. Only

sequence marginals up to sizes *14 residues, depending upon protein family, are observed

Fig 2. Distribution of the number of mutations (hamming distances) in drug-experienced HIV-1 sequences as captured by the

Potts and independent models. Probabilities of observing sequences with any k number of mutations relative to the HIV-1 subtype

B wild-type consensus sequence as observed in original MSA (black) and predicted by the Potts (blue) and independent (gray)

models are shown for HIV-1 protease (PR) in (A), and reverse transcriptase (RT) in (B), respectively. The independent model

predicted distribution does not accurately capture the distribution of hamming distances in the dataset MSA, especially near the

ends of the distribution with either very low or very high number of mutations, where the epistatic effects can be more significant.

https://doi.org/10.1371/journal.pone.0262314.g002
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Fig 3. Potts model is predictive of higher-order marginals in the sequence MSA. For each subsequence of length 2 to 14, marginal frequencies are

determined by counting the occurrences in the MSA and computed for 500 randomly picked subsequences. They are compared with the

corresponding predictions of marginal probabilities by the Potts model (blue) and a site-independent model (gray). The Spearman ρ2 between the

dataset marginal frequencies and the Potts and independent model predictions for all marginal frequencies above 2% are shown for subsequences

picked at random from different combinations of 36 Protease-inhibitor or PI-associated positions in PR (A), 24 Nucleoside-reverse-transcriptase-

inhibitor or NRTI-associated positions in RT (C), and 31 Integrase-strand-transfer-inhibitor or INSTI-associated positions in IN (E). Shown in (B),

(D), (F), are the same but the subsequences are picked at random from non resistance-associated sites in PR, RT, and IN, respectively. The blue

dashed line represents perfect correlation of ρ2 = 1. In all, the Potts model accurately captures the higher-order marginals in the dataset; the

independent model however gets progressively worse in capturing the higher-order marginals for resistance-associated sites in (A), (C), and (E). The
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with sufficient frequencies such that their marginal counts are a good proxy for the marginal

probabilities predicted by the Potts model. Fig 3 shows the rank-correlation between model

predicted marginal probabilities and marginal frequencies in the MSA for subsequences of

lengths 2–14, with a subsequence being the concatenation of amino acid characters from an

often nonconsecutive subset of residue positions. With further increase in the subsequence

length, data limitations due to finite sampling become more prominent and the observed and

model predicted marginals become dominated by noise. The Potts model’s ability to predict

higher-order marginals, much beyond the pairwise, for drug-resistance associated sites, while

the independent model cannot, provides the most direct evidence of the ability of the Potts

model to accurately capture the long-range epistatic interactions that modulate the “preva-

lence” of amino acid residues at connected sites in the protein. The Potts model is able to accu-

rately predict the higher-order marginal frequencies (which have not been directly fit) at drug-

associated sites with a Spearman ρ2� 0.95 for the longest subsequence (of length 14) in PR,

whereas, the correlation for the independent model deteriorates sharply with subsequence

length (Fig 3A, 3C and 3E) with a Spearman ρ2� 0.34 for the longest subsequence in PR.

The strongly interacting nature of the sites in HIV that are involved in engendering drug

resistance, is also evident from Fig 3A, 3C and 3E, where the role of epistatic interactions

between residues is more pronounced and the site-independent model is not able to capture

the higher-order marginals. In contrast, for residue positions that are not associated with drug

resistance, the site-independent model can sufficiently recover the higher order marginals in

the MSA. Sites in the protein associated with drug resistance, also however, exhibit consider-

ably more variability contributing to their higher site-entropies (Fig 2A of S1 File). The lack of

variability at sites can obscure the effect of correlations. To test for this, we selected protease-

inhibitor associated and non-associated sites with site-entropy distributions similar to that of

the drug-resistance associated sites (Fig 2B of S1 File) and compared their higher order mar-

ginals as predicted by the Potts and site-independent models (Fig 2C and 2D of S1 File, respec-

tively). When marginals are chosen from non-drug associated positions with site entropies

more similar to those of the drug-associated positions, the role of correlations is more appar-

ent. This is suggestive of strong couplings between sites that are likely to co-mutate, allow for

mutations at lesser costs to fitness than the individual mutations alone, resulting in mutational

pathways selected for pathogen escape. Such sets of sites are more likely to be associated with

resistance, as resistance cannot be achieved through selectively neutral mutations at single

sites, in which case drug treatment would likely be ineffective [37].

In contrast to Fig 3A for HIV PR, Fig 3E shows the somewhat improved predictive capacity

of a site-independent model in capturing the higher order sequence statistics for drug-resis-

tance associated positions in HIV IN. This is indicative that correlations between drug-resis-

tance-associated sites appear to play a stronger role in protease than in IN. This is also in line

with the fact that the IN enzyme is more conserved than PR (Fig 1 of S1 File). Amongst the

three drug-target proteins, PR, RT, and IN, the degree of “evolutionary conservation” is con-

siderably higher in IN than in the others. The lack of variability at sites or considerably smaller

site-entropies in IN plays a role in obscuring the effect of correlations, as discussed. Further-

more, the MSA depth for IN is also considerably lower than in PR or RT, which adversely

affects the quality of the Potts model fit, further making the correlated model less distinguish-

able from a site-independent one [38].

role of epistatic interactions is strongly manifested in the effect on drug-resistance-associated positions (DRAPs) (indicating the strong role of

correlations at functional positions within the protein). For residue positions not associated with drug resistance, epistatic interactions between sites

appear to play a less important role and the site-independent model is sufficient to model the higher-order marginals in the MSA.

https://doi.org/10.1371/journal.pone.0262314.g003
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The majority of the literature on HIV discusses drug resistance in relation to correlated

mutations limited to primary/accessory pairs. Fig 3 depicts the effect of correlated mutations

on the “prevalence” landscape of HIV well beyond pairwise interactions, upto the 14th order,

that is captured accurately by the Potts model. This illustrates the existence of correlated net-

works of long-range interactions between sites in HIV, which play an important role in deter-

mining its evolutionary fitness landscape. The entrenchment of primary resistance mutations

in HIV was shown to be contingent on the presence of specific patterns of background muta-

tions beyond the well studied primary/accessory compensatory pairs, and could not be pre-

dicted on the basis of the number of background mutations alone [35], also indicating that

long-range correlations involving many sites can potentially shape the evolutionary trajectory

of the virus.

From sequence covariation to “fitness”

The Potts model predicted statistical energies E(S) have been established to be a good indicator

of the likelihoods (P(S)/ e−E(S)) or “prevalence” of natural sequences in multiple sequence

alignments; prevalence has often been characterized as a proxy for fitness with sequences more

prevalent in the MSA likely to have a fitness advantage over others. But depending on context,

the notion of fitness can entail a variety of experimental measures from replicative capacity

(RC), to protein stability, catalytic efficiency, molecular recognition, drug-resistance values,

etc., each of which may capture different features of the fitness landscape, and can have varying

degrees of correspondence to observed likelihoods in MSAs of natural sequences. In this sec-

tion, we explore the correspondence between measures of fitness based on experimental repli-

cative capacities of HIV mutants and the Potts model predicted likelihoods in an MSA. The

correspondence is confounded by a number of factors such as the reproducibility of experi-

ments, the quality of inferred Potts models, the degree of evolutionary conservation in the pro-

teins amongst others.

Fig 4 shows the correlation between model predicted likelihoods of HIV mutant proteins

and measures of fitness based on/related to replicative capacities for four HIV proteins, PR,

RT, IN, and p24 CA. The independent model generally performs on par or marginally worse

than the Potts model in capturing experimental replicative capacity measurements. Although

the difference is somewhat larger for measurements focusing on only drug-resistance-associ-

ated mutations indicated with “D” in Fig 4 rather than random mutations or mutations at

non-resistance-associated positions indicated with “R”, along the lines of Fig 3 for marginal

statistics, the difference is not as clear as for marginal statistics. It has been suggested that the

independent model performs on par with correlated Potts or advanced machine learning mod-

els in capturing experimental fitness measurements for viral proteins, possibly as a conse-

quence of limited diversity of the sequence alignments or, due to a discrepancy between the

proxy for viral fitness in the laboratory and the in vivo fitness of the virus [1, 9]. Overall, we

find that the evidence for epistasis from measures of fitness based on experimental replicative

capacities is much weaker compared to that available from the higher-order marginal

statistics.

The Potts model is affected by the degree of conservation in the respective proteins which

can, not only affect the quality of the model as reflected in the signal-to-noise ratio or SNR (see

Methods), but also obscure the effect of correlations between sites. To check how the Potts

model predictions may be affected by the quality and sample sizes of the underlying multiple

sequence alignments, we look at the effect of using Potts models built on MSAs that all have

the same depth but contain different sequences (randomly subsampled from a larger dataset)

on the correspondence between experimental and model predictions of fitness (Fig 5). The
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correlation also decreases slightly because MSAs of depth half that of the original (reference

Potts) are used for mutational fitness predictions. Overall, this gives an estimate that the statis-

tical error associated with Potts model predictions of fitness is low. The correspondence

between the predicted fitness based on Potts prevalence and on experiment also depends in

part on which experimental assays are chosen as a proxy for fitness and the extent to which

they can capture phenotypes that are under direct, long-term selection [42], as illustrated in

Figs 3 and 4 of S1 File. Fig 3 of S1 File shows little correlation between two closely related

experimental measures of fitness for HIV PR; one based on replicative capacity [5] and the

other based on selection coefficients [40]. Interestingly, the Potts model predictions correlate

well with one of the datasets. More careful analysis is needed to improve our understanding of

which experimental measures contribute most to the “prevalence” landscape captured by Potts

models.

Effect of epistasis on measurements of fitness and double mutant cycles in HIV. Dou-

ble mutant cycles provide a biophysical means to interrogate epistatis without reference to a

specific sequence background [43]. For a pair of mutations α, β at positions i, j in the protein

respectively, the strength of epistatic interactions can be quantified using the difference

between the sum of the independent mutational effects, DEi
a
þ DEjb, and the effect of the corre-

sponding double mutation, DEijab.

DDEijab ¼ DEijab � ðDEia þ DE
j
bÞ ð1Þ

If ΔΔE 6¼ 0, then the two mutations are epistatically coupled, whereas if ΔΔE = 0, then the

mutations are mutually independent. As fitness is inversely proportional to the Potts energy,

Fig 4. Survey of correlation between sequence-based predictions and experimental measures of “fitness” based on

replicative capacity. Spearman correlation coefficients, ρ between prevalence-based measures of fitness as predicted

by the Potts (blue) and independent (gray) models and experimental measurements related to replicative capacities are

shown across four different HIV proteins: PR, RT, IN, and p24 CA. Experimental data are obtained from [3, 21, 28,

39–41]. Experiments reporting fitness measurements for random mutations are marked with an “R” and experiments

reporting drug-resistance only mutations are marked with a “D”. Correlation is not consistent between different

experiments for the same protein. The Potts model generally (marginally) outperforms the independent model in

capturing experimentally measured replicative capacities or measures related to replicative capacities.

https://doi.org/10.1371/journal.pone.0262314.g004
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ΔΔE> 0 implies that the mutations are beneficial/co-operative to each other and vice versa.

The dynamic range of double mutant cycles is an order-of-magnitude smaller than the predic-

tions/measurements of likelihoods/fitness effects of mutations (ΔEs), shown in Fig 6A. Double

mutant cycle measurements/predictions (ΔΔEs) are therefore, much more susceptible to noise,

and strongly affected by both the quality of the experimental measurements, as well as finite

sampling errors that affect the Potts model fit, making accurate numerical predictions very dif-

ficult. The MSA depth also plays a role in degrading the quality of the Potts model double

mutant cycle predictions, ΔΔEs much faster than the fitness effect of point mutations, ΔEs (Fig

6 of S1 File). The sensitivity and possible interpretation of experimental measurements for

very detrimental mutational changes is crucial for accurate prediction of double mutant cycles.

When experimental replicative capacities for example, of a single and a double mutant(s) are

both zero (the virus is dead), there is no comparative experimental data to inform if and which

mutation(s) are more deleterious. In contrast, the calculated likelihoods from the Potts model

are quantifiable for both.

The correspondence between the ΔΔE values predicted by the Potts model and the equiva-

lent experimental values would provide a strong confirmation of epistasis that can be directly

Fig 5. Error estimate in Potts model predictions of fitness. Figure shows replicative capacity based experimental

fitness measurements (from [21]) compared to Potts model predicted likelihoods of mutations in HIV-1 CA. The Potts

model predicted values shown in “blue circles” correspond to the mean of 3 predictions based on jackknife tests with

error bars indicating the standard deviations. Random values are then picked from within each standard deviation to

represent each Potts model prediction (shown as “orange triangles”) and the corresponding effect on the correlation

coefficient is observed. Spearman rank-order correlation ρ = 0.8 for mean of 3 predictions, and ρ = 0.78 for random

selection of data from within the margin of error. For jackknife tests, three sets of�1024 weighted patient sequences

are subsampled at random from the original MSA of�2200 weighted sequences, and new Potts models are then

inferred based on each set. For comparison, the Spearman rank-order correlation is ρ = 0.85 for the original Potts

model (based on an MSA of 2200 sequences) predictions compared to experimental values (Fig 5A of S1 File).

Figure shows an estimate of the error associated with Potts model predictions of likelihoods of mutants stemming

from sampling of sequences in the MSA and its effect on the correspondence with experimental measures of fitness.

https://doi.org/10.1371/journal.pone.0262314.g005
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experimentally measured; but in practice, such a comparison is often statistically not possible

due to experimental and statistical uncertainties(s). In Fig 6B, we illustrate how error in individ-

ual fitness measurements can cause the double mutant cycle predictions to be unverifiable even

when there exists good correspondence between Potts model and experimental fitness predic-

tions. In this simulated test, the Potts model ΔE predictions for capsid (for mutation datapoints

shown in Fig 4 (column 6) are rescaled to have the same range and scale as experimental repli-

cative capacity values, and are used as simulated replicative capacity values. Varying amounts of

random noise representing experimental error(s) and modelled as Gaussian white noise with

mean 0 and standard deviation η are added to each ΔE value, which are then interpreted as sim-

ulated experimental RC values. The simulated RC values are taken to be the “ground truth”

which are used to evaluate double mutant cycles, to compare to the Potts predictions. The

Spearman rank-order correlation coefficients between the Potts model predicted and simulated

experimental RC values, as well as double mutant cycle values, are then computed for the muta-

tion residue-identities as available in our experimental dataset, and the process is repeated for

varying degrees of noise strength (specified by varying η), representing varying degrees of

experimental uncertainty. The correlation between model predicted and simulated experimen-

tal RC values are shown in Fig 6B. We see that even when the ΔE correlation with the simulated

RC is as high as*0.8 (as is observed for capsid), the corresponding ΔΔE correlation with differ-

ences in Replicative Capacity between double mutants and the corresponding sum of single

mutants is very low,*0.1 and is typically not statistically significant. For a correlation between

model and experimental RC values*0.6 as observed for HIV protease (Fig 4 column 3), the

same result is obtained, namely double mutant cycle analysis can not be used to verify epistatic

interactions for HIV protease (Fig 7A of S1 File). Indeed, the correlation with double mutant

cycles computed from the experimental values in Fig 4 is very low and statistically insignificant

(Fig 7B of S1 File) in agreement with this test. Nevertheless, many of the strongest predicted (by

the Potts model) double mutant cycles in HIV proteins, indeed qualitatively agree with the

effects studied in the literature, especially amongst those involving compensatory pairs of drug-

resistance mutations in HIV drug-target proteins (S2A and S2B Fig, S2A and S2B of S2 File).

Fig 6. (A) The dynamic range of the measurements (experimental) or predictions (model) of the epistatic effects through the use of double mutant

cycles is an order of magnitude smaller than the range of measurements/predictions of the fitness/likelihoods of point mutations. This makes

predictions for double mutant cycles more susceptible to noise. (B) Simulation of the expected correlation of the Potts model prediction to experimental

values for ΔE and ΔΔE as a function of simulated experimental noise η, showing that the the correlation for ΔΔE drops much more quickly. The dotted

section of the curves show where the p-value for the ΔΔE correlation is>0.05, or insignificant, showing that noise can make it impossible to verify ΔΔE
values even when ΔE values are well predicted. The level of noise corresponding to ΔE correlation of ρ� 0.8, as in Fig 4 column 6 for Capsid, is shown

in dashed black.

https://doi.org/10.1371/journal.pone.0262314.g006
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Contribution of the changes in structural stability due to a mutation to the predicted

likelihoods of mutant sequences. In this section, we explore the contribution from changes

in structural stability due to a mutation to its Potts model predicted likelihood(s). To explore

the impact of a mutation on structural stability, we employ a well-known protein design algo-

rithm called FoldX [44, 45], which uses an empirical force field to determine the energetic

effects of a point mutation. FoldX mutates protein side chains using a probability-based rota-

mer library while exploring alternative conformations of the surrounding side chains, in order

to model the energetic effects of a mutation. We observe good correspondence between Potts

model predicted likelihoods and FoldX predicted changes in structural stabilities of mutations

in Fig 7B, and Fig 8B of S1 File for a set of multiple inhibitor-associated mutations (from [28])

in PR. There also exists statistically significant correlation between experimentally measured

replicative capacities of these mutations and their Potts model predicted likelihoods (Fig 7A,

and Fig 8A of S1 File), but the FoldX predicted changes in structural stabilities do not correlate

so well with experimentally measured replicative capacities (Fig 7C, Fig 8C of S1 File). This is

indicative that different measures of fitness such as thermostability, activity, or folding energet-

ics of a protein do not generally contribute to fitness in the same way [1]. While some mea-

sures or properties being tested may only have an indirect context-dependent impact on

fitness, “prevalence” in multiple sequence alignments of thousands of protein sequences may

be more reflective of the overall survival fitness. Fig 7 and Fig 8 of S1 File show that the Potts

model can capture contributions to fitness from both structural stabilities measured by FoldX,

and from other aspects of the viral replicative life-cycle measured by replicative capacity exper-

iments, which are not captured completely by either measurement on its own.

Conclusion

Fitness is a complex concept at the foundation of ecology and evolution. The measures of fit-

ness range from those such as replicative capacity, protein stability, catalytic efficiency, that

can be determined experimentally in the lab to measures stemming from the “prevalence” in

collections of sequences obtained from nature, that can be quantified and compared using pre-

dictions of coevolutionary models which encode mutational patterns in multiple sequence

alignments. For viral fitness measurements, the large majority of studies focus on measures

like selection coefficients or replicative fitness within hosts or cells in culture. Potts models of

sequence co-variation provide a measure of fitness tied to the frequency of sequences appear-

ing after longer in vivo evolutionary times in the virus’ natural environment.

The functions of proteins are defined by the collective interactions of many residues, and

yet many statistical models of biological sequences consider sites nearly independently [31].

While studies [1] have demonstrated the benefits of including interactions to capture pairwise

covariation in successfully predicting the effects of mutations across a variety of protein fami-

lies and high-throughput experiments, for viral proteins, the predictions of mutational fitness

by pairwise or latent-space models often fall short of predictions by site-independent models.

It has been suggested that this could be a consequence of the limited diversity of the sequence

alignments [1] or due to a discrepancy between the proxy for viral fitness in the laboratory and

the in vivo fitness of the virus [9]. Here, we show that the signatures of epistasis are best mani-

fested for viruses like HIV in the comparison of the Potts model predicted and experimental

HIV sequence “prevalences” when expressed as higher-order marginals of the sequence proba-

bility distribution. Gupta and Adami have shown that epistasis in HIV can also be detected

using a different metric, the pairwise mutual information [46]. The approach presented here

goes further and accurately describes the higher order mutational landscape of the virus in

response to external selection pressures such as drug exposure.
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Fig 7. Potts model captures different features of the fitness landscape. Figure shows that the Potts model predicted

ΔEs can capture different features of the fitness landscape that may be orthogonal, and may not correlate well with each

other. (A) Relative fitness (replicative capacity) measurements obtained from deep mutational scanning of HIV-1

variants [28] involving combinations (of three or lesser) of mutations in protease associated with resistance to

(particularly second-generation) inhibitors in clinic, are compared to changes in Potts statistical energies, ΔEs with a
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The model, which is parameterized to reproduce the bivariate marginals in the MSA, also

accurately captures the higher order marginal probabilities (seen in Fig 3A, 3C and 3E, upto

the 14th order) in the MSA for sets of drug-resistance associated positions; whereas, the fidelity

of a site-independent model decreases much more rapidly with the size of the marginal. We

further show that epistatic interactions are particularly important in determining the higher

order mutation patterns of drug-resistance-associated sites in HIV; in clear contrast with non-

drug-resistance-associated positions, as the virus evolves under drug pressure employing the

most strongly interacting positions in mutational pathways.

It has been suggested that the success of models based on sequence covariation at recapitu-

lating high-throughput mutation experiments depends in part on the extent to which experi-

mental assays can capture phenotypes that are under direct, long-term selection [1]. For some

proteins, such as nonessential peripheral enzymes or signaling proteins, the property being

tested in the laboratory may only have an indirect, context-dependent impact on the organism.

We observe higher correlation between Potts model and experiment for the structural protein

Capsid than other enzymatic proteins like PR, RT, or IN. A similar correlation has been

observed for Capsids of other types of viruses [47]. This indicates that changes in CA perhaps

have a more direct effect on the viral lifecycle than enzymatic proteins. However, the evidence

for epistasis from fitness measurements based on replicative capacity experiments remains

weak as both the Potts and independent models often show comparable degrees of correlation

with experiment, and the distinction may not be statistically significant. While double mutant

cycles provide a well established biophysical way to probe epistatic effects without reference to

a particular sequence background, the order-of-magnitude smaller dynamic range makes

accurate quantitative predictions very difficult and we only see weak evidence for epistasis

through double mutant cycles.

Different measures may also contribute to fitness in different ways. In this study, we employ

FoldX to probe the contribution of structural changes and folding energetics due to mutations

to their predicted/observed likelihoods, finding that the Potts model predicted likelihoods of

mutations in HIV correlate well with FoldX predicted changes in free energies. FoldX predic-

tions, however, do not correlate well with experimental replicative capacity measurements.

This is suggestive that the overall fitness landscape predicted by the Potts model includes con-

tributions from many different features, some may even be orthogonal and thus, may not nec-

essarily correlate well with each other.

The evolution of viruses like HIV under drug and immune selection pressures induces cor-

related mutations due to constraints on the structural stability and fitness (ability to assemble,

replicate, and propagate infection) of the virus [48]. This is a manifestation of the epistatic

interactions in the viral genome. The analysis presented here provides a framework based on

sequence prevalence to examine the role of correlated mutations in determining the structural

and functional fitness landscape of HIV proteins, especially under drug-selection pressure.

Spearman rank-order correlation, ρ = 0.66 (p� 0.001). [28] also report statistically significant correlation (|ρ| = 0.46)

with a Potts model inferred using the Adaptive Cluster Expansion (ACE) algorithm. (B) FoldX predicted changes in

folding energies, ΔΔGs (PDB: 3S85) of the mutations also correlate well with Potts predicted changes in statistical

energies, ΔEs for the same (Spearman ρ = −0.57). The HIV-1 protease structure (PDB: 3S85) is used as reference,

repaired using the RepairPDB function in the FoldX suite, and the free energy of mutants is calculated with the

BuildModel function under default parameters. Changes in structural stability due to mutations correlate well with

their predicted likelihoods (estimated by the Potts model ΔEs) as seen here with a Spearman rank-order correlation, ρ
= −0.57 (p< 0.001) between the two. However, FoldX calculations are susceptible to small changes in structure that

can be caused by the presence of small-molecule ligands, etc. For another PDB:4LL3, we still find statistically

significant correlation between the two (ρ = −0.64). (C) Experimental relative fitness measurements however, do not

correlate as well with FoldX predicted changes in folding energies due to the mutations (ρ = −0.36).

https://doi.org/10.1371/journal.pone.0262314.g007
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Epistatic effects are vital in shaping the higher order (well beyond pairwise) “prevalence” land-

scape of HIV proteins involved in engendering drug resistance. Identifying/elucidating the

epistatic effects for key resistance mutations can help in designing better experiments to probe

epistasis and has the potential to impact future HIV drug therapies.

Materials and methods

The Potts Hamiltonian model of protein sequence covariation is a probabilistic model built

from the single and pairwise site amino-acid frequencies in a protein multiple sequence align-

ment, and aimed at describing the probabilities of observing different sequences in the MSA.

To approximate the unknown empirical probability distribution P(S) that best describes a

sequence S of length L with each residue encoded in a Q-letter alphabet using a model proba-

bility distribution Pm(S), we choose the maximum entropy or least biased distribution as the

model distribution. Similar distributions that maximize the entropy, with the constraint that

the empirical univariate and bivariate marginal distributions are preserved, have been derived

in [10, 11, 22, 32, 49]. We follow a derivation of the maximum entropy model in [32, 50],

which takes the form of an exponential distribution:

EðSÞ ¼
XL

i

hiSi þ
XL

i¼1

Xi� 1

j¼1

JijSiSj ð2Þ

PmðSÞ / e� EðSÞ ð3Þ

where the quantity E(S) is the Potts statistical energy of a sequence S of length L; the model

parameters hiSi called “fields” represent the contribution to statistical energy from a residue Si
at position i in S, and JijSiSj called “couplings” represent the energy contribution from a pair of

residues at positions i, j. In this form, the Potts Hamiltonian consists of LQ “field” terms and

L

2

� �
Q2 “coupling” terms. For the distribution Pm/ e−E, negative fields and couplings indicate

favored amino acids. The change in Potts energy for a mutation α! β at position i in S is

given by:

DEðSi
a!b
Þ ¼ EðSi

a
Þ � EðSi

b
Þ ¼ hi

a
� hi

b
þ
XL

j6¼i

JijaSj � J
ij
bSj ð4Þ

In this form, DEðSi
a!b
Þ > 0 implies that residue β is more favorable than residue α at the

given position and vice versa.

While the original model developed by Potts et al. only included nearest neighbor interac-

tions and spin state vectors distributed across a hypersphere [51–53], in contrast, the “spin”

models used in biological physics which correspond to global models of protein sequence-

covariation, are generalizations of the Potts model with each “spin” state representing the

amino-acid character at a given position in the protein, and able to interact with every other

“spin” (“infinite range”). Such spin-models have been well established in the maximum

entropy protein sequence-covariation literature and are often referred to simply as the Potts or

Ising (in case of just two spins or amino-acid residues, wildtype and mutant) model [17, 20–

23, 25, 33–35, 37, 38, 54]. In accordance with the literature, we refer to this model concisely as

simply the Potts model.
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Data processing

HIV protein multiple sequence alignments for protease, reverse transcriptase, and integrase

are obtained from the Stanford University HIV Drug Resistance Database (HIVDB, https://

hivdb.stanford.edu) [55, 56] using the genotype-rx search (https://hivdb.stanford.edu/pages/

genotype-rx.html) (alternatively, downloadable datasets are also available at https://hivdb.

stanford.edu/pages/geno-rx-datasets.html) and filtered using the criteria HIV-1 subtype B

and nonCRF, drug-experienced (# of protease inhibitors or PIs = 1–9 for PR, # of nucleoside

analog reverse transcriptase inhibitors or NRTIs = 1–9 and # of non-nucleoside analog

reverse transcriptase inhibitors or NNRTIs = 1–4 for RT, and # of integrase strand-transfer

inhibitors or INSTIs = 1–3 for IN); and we remove sequences with mixtures or ambiguous

amino acids. Complete sequences with any insertions (’#’) or deletions (’*’) are removed.

Such sequences form a small (<1%) fraction of the MSA and removing them doesn’t signifi-

cantly affect the MSA statistics. MSA columns with more than 1% “dots” (’.’) which represent

unsequenced positions in the sequences are removed to avoid spurious correlations in the

subsequent Potts model built on the MSA. Remaining sequences with any “dots” or unse-

quenced positions are then removed. This resulted in a final MSA size of N = 5710 sequences

of length L = 99 for PR, N = 19194 sequences of length L = 188 for RT, and N = 1220

sequences of length L = 263 for IN. For RT, sequences with exposure to both NRTIs and

NNRTIs were selected due to much lesser number of sequences exposed to only NRTIs or

only NNRTIs being available. Multiple sequence alignments for the p24 Capsid protein are

obtained from the the Los Alamos HIV Sequence Database [57] using the customizable

advanced search interface https://www.hiv.lanl.gov/components/sequence/HIV/asearch/

map_db.comp and selecting for subtype B and nonCRF, etc. Sequences with inserts/deletions

are filtered out. For capsid, drug exposure data and a comprehensive list of drug-resistance

mutations are not yet available; drug-naive sequences are used. The subtype B consensus

sequence is obtained from the Los Alamos HIV sequence database [57] consensus and ances-

tral sequence alignments (https://www.hiv.lanl.gov/content/sequence/HIV/CONSENSUS/

Consensus.html, last updated August 2004). The subtype B consensus sequence is referred to

as the ‘consensus/wild-type’ throughout the text.

It has been previously established that phylogenetic corrections are not required for HIV

patient protein sequences [23, 32] as they exhibit star-like phylogenies [46, 58]. For model

inference, HIV patient sequences, are given sequence weights such that the effective number

of sequences obtained from any single patient is 1. Sequences obtained from different patients

are considered to be independent.

Mutation information

Drug resistance information, including a list of drug-resistance associated mutations are

obtained from the Stanford HIVDB (https://hivdb.stanford.edu/dr-summary/resistance-

notes) and from [59]. Mutations in HIV are generally classified into three categories: primary,

accessory, and polymorphic. Mutations occurring as natural variants in drug-naive individuals

are referred to as polymorphic mutations. Mutations affecting in vitro drug-susceptibility,

occurring commonly in patients experiencing virological failure, and with fairly low extent of

polymorphism are classified as major or primary drug-resistance mutations. In contrast, muta-

tions with little or no effect on drug susceptibility directly but reducing drug susceptibility or

increasing fitness in combination with primary mutations are classified as accessory. For this

work, mutations classified as both primary/accessory are considered as drug-resistance associ-

ated mutations.
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Alphabet reduction

A reduced grouping of alphabets based on statistical properties can capture most of the infor-

mation in the full 20 letter amino acid alphabet while decreasing the dimensionality of the

parameter space leading to more efficient model inference [17, 19, 22]. All possible alphabet

reductions from a Q-letter alphabet to a Q − 1 letter alphabet at a site i are enumerated for all

pairs of positions i, j (j 6¼ i) by summing the bivariate marginals for each of the Q2 possible

combinations and selecting the alphabet grouping that minimizes the root mean square differ-

ence (RMSD) in the mutual information (MI):

MIRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

ij

ðMIijQ � MI
ij
Q� 1Þ

2

s

ð5Þ

The process is then iteratively carried out until the desired reduction in amino acid charac-

ters is achieved. Using the reduced alphabet, the original MSA is then re-encoded and the

bivariate marginals are recalculated. Small pseudocounts are added to the bivariate marginals,

as described in [17, 23, 35] to make up for sampling biases, or to limit divergences in the infer-

ence procedure.

Due to residue conservation at many sites in HIV-1, several studies have used a binary

alphabet to extract meaningful information from sequences ([32, 60, 61]). A binary alphabet

however, marginalizes the information at a site to only the wild-type and mutant residues with

the loss of some informative distinctions between residues at sites acquiring multiple muta-

tions. To strike a balance between loss of information and the reduction of the number of

degrees of freedom, we choose a reduced alphabet of 4 letters. Our 4 letter alphabet reduction

gives a Pearson’s R2 coefficient of 0.995, 0.984, 0.980, and 0.992, for protease, reverse transcrip-

tase, integrase, and p24 capsid protein, respectively between theMI of bivariate marginal dis-

tributions with the full 21 letter alphabet and the reduced 4 letter alphabet, representing

minimal loss of information due to the reduction.

Due to reduction in alphabet, some mutations may not be amenable to our analysis when

comparing to experimental fitness measurements such as replicative capacities, etc. We choose

mutations corresponding to marginals with higher values in the MSA to be more representa-

tive of the model predictions.

Model inference

The goal of the Potts model inference is to find a suitable set of fields and couplings {h, J}
parameters that fully determine the Potts Hamiltonian E(S), and best reproduce the empirical

bivariate marginals.

A number of techniques have been developed for inferring the model parameters previously

[10, 11, 22, 32, 49, 62–66]. The methodology followed here is similar to the one in [32], where,

the bivariate marginals are estimated by generating sequences through a Markov Chain Monte

Carlo (MCMC) sampling procedure, given a set of fields and couplings. The Metropolis crite-

rion for the generated sequence(s) is proportional to their Potts energies. This is followed by a

gradient descent step using a multidimensional Newton search, to determine the optimal set

of Potts parameters that minimizes the difference between the empirical bivariate marginal

distribution and the bivariate marginal estimates from the MCMC sample. The scheme for

choosing the Newton update step is important. A quasi-Newton parameter update approach

determining the updates to JijSiSj and hiSi by inverting the system’s Jacobian was developed in

[32], which we follow here. Although the methodology involves approximations during the

computation of the Newton steps, the advantage of the methodology is that it avoids making
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explicit approximations to the model probability distribution at the cost of being heavily com-

putationally intensive. We have employed a GPU implementation of the MCMC methodology,

which makes it computationally tractable without resorting to more approximate inverse

inference methods. The MCMC algorithm implemented on GPUs has been previously used to

infer accurate Potts models in [17, 23, 35, 38, 54, 67].

The computational cost of fitting L
2

� �
� ð4 � 1Þ

2
þ L � ð4 � 1Þmodel parameters for the

smallest protein in our analysis, PR, on 2 NVIDIA K80 or 4 NVIDIA TitanX GPUs is�20h.

For a more detailed description of data preprocessing, model inference, and comparison with

other methods, we refer the reader to [19] and [17, 23, 38, 54]. A repository containing the

final MSAs is available at https://github.com/ComputationalBiophysicsCollaborative/HIV_

MSAs.

The site-independent model is inferred based on the univariate marginals, or the residue

frequencies, f i
a

(for a residue α at position i) in the MSA alone, giving the “field” parameters as:

hi
a
¼ � ln f i

a ð6Þ

A small pseudo-count is added to the f i
a

to avoid indeterminate logarithms. The indepen-

dent model energies of a sequence S are given as EðSÞ ¼
PL

i h
i
Si

, where i is a position in the

sequence, and L is the length of the sequence.

Prediction of higher order marginals

The Potts model inferred using the methodology described above is generative, allowing for

generation of new synthetic sequences which very closely represent the sequences in the MSA

of protein sequences obtained from HIV patients. For prediction and comparison of the

higher-order marginals, both the Potts and independent models are used to generate new

sequences, and subsequence frequencies (marginals) are compared between the dataset MSA

and the Potts/independent model generated MSAs. For each subsequence of length 2–14, the

process is repeated for 500 randomly picked subsequences and the Spearman correlation coef-

ficient is calculated for all subsequences which appear with a frequency greater than the thresh-

old (to avoid noise).

Statistical robustness of HIV Potts models

Finite sampling and overfitting can affect all inference problems, and the inverse Ising infer-

ence is no exception. In case of the Potts model, the number of model parameters can vastly

outsize the number of sequences in the MSA, yet it is possible to fit accurate Potts models [54]

to those MSAs, as the model is not directly fit to the sequences but to the bivariate marginals of

the MSA. However, finite sampling can affect the estimation of the marginal distributions,

which, in turn, affects model inference. In fact, overfitting in the inverse Ising inference arises

due to the finite-sampling error in the bivariate marginals estimated from a finite-sized MSA.

The degree of overfitting can be quantified using the “signal-to-noise ratio” (SNR), which is a

function of the sequence length L, alphabet size q, number of sequences in the MSA N, and the

degree of evolutionary conservation in the protein. The SNR for Potts models fit to protein

sequences is discussed in more detail in [54]. If the SNR is small, the Potts model is unable to

reliably distinguish high scoring sequences in the data set from low-scoring sequences. If SNR

is close to or greater than 1, then overfitting is minimal and the Potts model is more reliable.

In the analysis presented here, IN has the lowest SNR (0.14 compared to 43.7 for RT, and 21.6

for PR) on account of being one of the more conserved proteins with the lowest number of

sequences in the MSA, and may be more affected by overfitting. Different predictions of the
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Potts model, however are differently affected by finite sampling errors with predictions of ΔEs

which form the basis of Potts model “fitness” predictions among the more robust [54]. The

Potts model is also able to accurately capture the higher-order marginals in the MSA. Thus, we

conclude that the MSA sample sizes used in this study are sufficiently large to construct Potts

models for these HIV proteins that adequately reflect the effect of the sequence background on

mutations.

Protein stability analysis

The changes in folding free energies due to mutations are analyzed using FoldX [44, 45],

which uses an empirical force field to determine the energetic effects of point mutations. The

HIV-1 protease structure (PDB: 3S85) is used as reference, repaired using the RepairPDB func-

tion in the FoldX suite, and the free energy of mutants is calculated with the BuildModel func-

tion under default parameters. For each mutation, the mean of 10 FoldX calculations is used as

the ΔΔG value.

Supporting information

S1 File. Supplementary methods, details and figures. Details of the evolutionary conserva-

tion in different HIV enzymatic proteins and its effect on the observable evidence for epistasis

is given in Section 1. Details on comparison with different experimental measures of fitness

and Potts and independent models, along with comparisons with FoldX predicted changes in

folding energetics due to mutations are given in Section 2, as well as details of why compari-

sons for double mutant cycles are difficult. Details of the weak evidence for epistasis that can

be drawn from hamming distance distributions are given in Section 3.

(PDF)

S2 File. Supplementary figures and tables for double mutant cycles. Figures and tables

showing the distribution of Potts model predicted double mutant cycle effects for all double

mutations indicating the strongest, predicted double mutant cycle effects involving mutations

(at least one amongst the pair) at drug-resistance-associated sites and corresponding literature

references in HIV-1 protease and integrase are given.

(PDF)
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