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Contemporarymodels of categorization typically tend to sidestep the problem of how information is initially
encoded during decisionmaking. Instead, a focus of this work has been to investigate how, through selective
attention, stimulus representations are “contorted” such that behaviorally relevant dimensions are accentu-
ated (or “stretched”), and the representations of irrelevant dimensions are ignored (or “compressed”).
In high-dimensional real-world environments, it is computationally infeasible to sample all available
information, and human decision makers selectively sample information from sources expected to provide
relevant information. To address these and other shortcomings, we develop an active sampling model,
Sampling Emergent Attention (SEA), which sequentially and strategically samples information sources
until the expected cost of information exceeds the expected benefit. The model specifies the interplay of two
components, one involved in determining the expected utility of different information sources and the other
in representing knowledge and beliefs about the environment. These two components interact such that
knowledge of the world guides information sampling, and what is sampled updates knowledge. Like human
decision makers, the model displays strategic sampling behavior, such as terminating information search
when sufficient information has been sampled and adaptively adjusting the search path in response to
previously sampled information. The model also shows human-like failure modes. For example, when
information exploitation is prioritized over exploration, the bidirectional influences between information
sampling and learning can lead to the development of beliefs that systematically differ from reality.
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At its heart, category learning involves extracting key patterns
that capture the essence of our experiences, and allow us to make
accurate inferences about the external world. Two fundamental
challenges for psychological research are to understand how this
knowledge is acquired, and once acquired, how it can be flexibly
used to guide successful interactions with the external world.
Although successful categorization models differ in how categories
are represented in memory (e.g., as flexible clusters, exemplars, or
prototypes; Love et al., 2004; Nosofsky, 1986; Smith & Minda,
1998), they tend to sidestep the question of how sensory information
is encoded, but assume that the representations considered during

deliberation are available to the decision maker, and can be modu-
lated by selective attention based on their behavioral relevance
(Figure 1A). Attention plays a key role in allowing these models
to capture the flexibility by which humans are able to organize
stimuli into categories (Shepard et al., 1961). These attentional
weights provide key information about how different sources of
information are organized during decision making.

Leading contemporary categorization models, therefore, tend to
treat category decisions as “single-step” decision problems; in which
agents make decisions about the final choice, but not about what
information to sample. Although it is plausible that decision makers
encode all relevant stimulus information from the low-dimensional
stimuli typically considered in the laboratory,1 in high-dimensional
environments, encoding all available sensory information is ineffi-
cient, and can impair learning. This reflects a fundamental computa-
tional constraint (known as the curse of dimensionality), which affects
bothmachine-learning algorithms (Hastie et al., 2009; Li et al., 2017)
and human decision makers (e.g., Bulgarella & Archer, 1962; Edgell
et al., 1996; Pishkin et al., 1974; Vong et al., 2019).

To be able to interact efficiently in high-dimensional environments,
humans actively sample information from sources expected to provide
behaviorally relevant information (e.g., Cook et al., 2011; Markant
et al., 2015; Markant & Gureckis, 2014; Nelson & Cottrell, 2007;
Yang et al., 2016). This is apparent, not only for decisions involving
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the collection of discrete samples of information across extended
periods of time2 but also are reflected in subtle patterns of eye
movements during decisions of relatively short duration (i.e., less
than 3 s; Blair et al., 2009; Rehder & Hoffman, 2005a). This partially
reflects fundamental constraints of extrafoveal visual acuity, which
drive decision makers to integrate sensory information through a series
of saccades to different locations. As expectations about ones environ-
ment can change based on the values of incoming sensory information,
approaches that treat categorization decisions as single-step problems
tend to ignore attentional effects that can occur within individual
trials (Blair et al., 2009; Gottlieb, 2018; Gottlieb & Oudeyer, 2018).
Through experience, decision makers learn to selectively attend to

behaviorally relevant stimulus features (Shepard et al., 1961). When
observations are drawn randomly (as in typical laboratory experi-
ments), participants tend to gain equivalent experience with all possible
stimulus configurations. When participants are free to select the stimuli
from which they learn, however, they tend to selectively sample
information to test specific hypotheses (this is known as hypothesis-
dependent learning bias; Markant & Gureckis, 2014). This can facili-
tate learning when the generated hypotheses closely resemble the true
structure of the environment, but can otherwise impair learning. Hu-
mans often show a bias for testing simple hypotheses, for example, and
this can impede learning (and/or lead to the development of inaccurate
beliefs) when the true structure of the world is complicated.
Here, we develop a computational model, Sampling Emergent

Attention (SEA), designed to reflect this effect. The model actively

selects information as a function of its goals and its current beliefs,
and learns to selectively sample information sources expected to
provide behaviorally relevant information.3 Leading contemporary
models of categorization (e.g., Kruschke, 1992; Love et al., 2004;
Nosofsky, 1986), in contrast, tend to sidestep the question of how
information is initially sampled. Rather than investigating how
decision makers choose what information sources should be sam-
pled, these models emphasize questions related to how stimulus
information is organized. A particular focus of these models is to
understand how, through selective attention, stimulus representa-
tions are contorted such that representations of behaviorally relevant
stimulus dimensions are accentuated (or “stretched”), and repre-
sentations of irrelevant dimensions are ignored (or “compressed”).
We therefore describe these models as treating categorization
decisions as “single-step” decision problems (Figure 1A), as deci-
sions are made about the final choice, but sequential intratrial active
sampling behavior (Figure 1B) is not considered.

SEA consists of two interacting components; each of which can
be considered normatively optimal in its own right. The first
component reflects the decision maker’s beliefs and expectations

Figure 1
Two Views of Attention

(A)

(B)

Note. (A) Contemporary categorization models tend to sidestep questions related to how decision makers
sample information from the world. Instead, their emphasis is on howmultidimensional stimulus representations
are are “contorted” by selective attention (e.g., Kruschke, 1992; Love et al., 2004; Nosofsky, 1986). In the
example on the left, three stimulus dimensions (Size, Color, and Shape) are equally attended. On the right, “Size”
is given greater attentional weight than “Shape” or “Color”. (B) Active sampling requires decisions, not only
about the appropriate final choice but also about what samples should be selected. In the category structure
depicted at left (Blair et al., 2009), the optimal sampling strategy is to first sample Dimension 1, and then,
depending on its value, sample either D2 or D3 (gray rectangles denote informative samples). This temporally
ordered sequence is illustrated at right. It is never necessary to sample all three dimension if D1 is sampled first.

2 For example, when making a diagnosis a doctor might initially conduct a
blood test, and then choose an additional test once the results are known.

3 Throughout the article, we use the terms “information sources”, “fea-
tures”, and “dimensions” interchangeably. “Information source” has a more
general connotation than stimulus “dimensions” or “features.” “Dimension”
tends to emphasize a geometric connotation, while “feature” does not.
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about the environment, and the second estimates the value of different
information states. Interactions between the two components allow the
model to select samples that maximize expected utility. Whereas
contemporary categorization models often include attentional param-
eters that “contort” stimulus representations along perceptually sepa-
rable stimulus dimensions (Figure 1A; Garner, 1976),4 the proposed
model reconceptualizes attention as the expected gain in utility from
sampling particular information sources. Despite this fundamental
difference, SEA predicts classic behavioral effects associated with
selective attention (Nosofsky et al., 1994; Shepard et al., 1961). Its
active sampling behavior additionally closely resembles patterns of
human eye movements (e.g., Blair et al., 2009; Rehder & Hoffman,
2005a).5 Finally, like human learners, SEA can also develop inaccu-
rate beliefs about the world when it fails to balance demands for
exploration and exploitation (Rich & Gureckis, 2018).

Optimal Experiment Design and Human Information
Sampling

Several groups have used the principles of optimal experimental
design (OED; Fedorov, 1972, 2010; MacKay, 1992) to investigate
whether humans strategically sample information to test specific
hypotheses. Although the calculations underlying OED can be
computationally prohibitive for cognitively limited human decision
makers, these studies indicate that, despite being susceptible to
perceptual (Itti et al., 1998; Yamada & Cottrell, 1995; Zhang et al.,
2008) and decisional (Klayman, 1995) biases, we are often able to
select information samples that resolve uncertainty about specific
hypotheses. This effect is apparent both during the performance of
traditional categorization tasks (Markant et al., 2015; Markant &
Gureckis, 2014), and during naturalistic behavior. Preschool chil-
dren, for instance, spontaneously conduct “experiments” to test
specific causal hypotheses about the objects they are playing
with (Cook et al., 2011). Hypothesis-dependent sampling strategies
have also been identified through study of human eye movements.
During categorization, for instance, we tend to selectively fixate on
stimulus locations that resolve uncertainty about the potential cate-
gory label (Nelson &Cottrell, 2007; Yang et al., 2016). During visual
search, we similarly tend to fixate on locations expected to maximize
information about the target location (Najemnik & Geisler, 2005).
To select useful information sources to sample, a decision maker

must be able to simulate future events. This capacity for preposter-
ior analysis6 involves predicting the probability and utility of future
states. When diagnosing a patient, for instance, doctors must have
sufficient knowledge of human pathology to identify plausible
diagnoses. They must also be able to use this knowledge to select
medical tests that efficiently differentiate between the most probable
diagnoses. To reflect the fact that some some results can be more
informative than others,7 full preposterior analysis aggregates infor-
mation about both the probability and usefulness of each expected
result. In practice, this forward-search process can be computation-
ally prohibitive for large problems, necessitating an approximation
to the full preposterior search performed by SEA.

What Is a “Useful” Question?

A number of different sampling norms have been used to define the
usefulness of sampling a particular dimension (see Nelson, 2005).
Disinterested sampling norms seek to maximize decision accuracy.

One way to define the usefulness of a particular medical test, for
instance, would be the degree to which it is expected to improve the
probability of making a correct diagnosis.8 In contrast, situation-
specific sampling norms maximize reward rather than accuracy, and
may be preferable when payoffs are asymmetric (i.e., when the
maximization of accuracy differs from the maximization of reward;
Meder & Nelson, 2012). For example, incorrectly diagnosing a
malignant tumor as benign can be more costly than incorrectly
diagnosing a benign tumor as malignant.

Utility-sensitive decision makers should also consider the costs
associated with sampling each information source. Invasive medical
tests (e.g., a biopsy), for example, can be more informative than
noninvasive tests (e.g., an X-ray). As a result, doctors must determine
whether the benefits of a particular test are outweighed by its cost. A
purely exploitative decision maker should stop deliberating and commit
to a choice when the expected gain in value from a particular test is
outweighed by its cost. An exploratory decision maker, however, might
be willing to tolerate a small cost to learn about the environment. Agents
must, therefore, carefully balance demands for exploration and exploita-
tion when learning about a domain, or risk developing inaccurate beliefs
(as depicted in Figure 2). Althoughmedical decisions are often extended
in time, we face the same challenges when making rapid decisions
(i.e., deciding what information should be sampled), even about which
eye movements to make, as evaluated in category learning experiments.

Self-Termination and Branching

As its beliefs are updated after observing each sample, SEA can
display “branching” and “self-termination.” Branching involves
changes in sampling strategy based on the values of the incoming
information. Self-termination occurs when decision makers decide
to commit to a choice, rather than selecting additional samples.

Such decisions aboutwhen to commit to a choice are a fundamental
component of many temporally extended decisions (Figure 1B).
Decision makers may fail to capitalize on transient opportunities
for reward (or accrue excessive costs associated with deliberation) if
they wait too long before committing to a choice. Conversely, if they
respond too quickly, they may fail to collect enough evidence to
support a desirable level of accuracy. We propose that the depth of
forward search, which varies from myopic search to full preposterior
analysis (Figure 1B), can be adjusted based on contextual demands
on response timing. As clusters are “activated” based on the observed
features, and the cluster representations predict the appropriate
final choice (e.g., the category label), as more information is

4 In the model, nonperceptually separable dimensions are effectively
treated as a single information source, as it is not possible to sample one
without the other.

5 However, as SEA considers only the expected utility of each stimulus
feature with regards to the final choice, it is not influenced by factors such as
perceptual salience, which are known to influence human eye movements
(Rehder & Hoffman, 2005b). Perceptual salience could be included as an
independent factor that increases the likelihood of sampling or could instead
be reflected in the cost of sampling a feature.

6 Raiffa (1961) describes terminal analysis as the selection of an appro-
priate action after an experiment has been performed, and preposterior
analysis as the selection of appropriate experiments.

7 A positive blood test for a specific pathogen, for example, can be more
informative than a null result.

8 This particular example corresponds to the probability gain sampling
norm, which provides a compelling account of human information search
(Nelson, 2005; Nelson et al., 2010).
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accumulated/sampled, inferences about the correct response become
more accurate (assuming that clusters reflect relevant aspects of the
environment).
Several models have been proposed to address the question of

self-termination. “Integrate-to-bound” models, such as the Sequen-
tial Probability Ratio Test (SPRT;Wald &Wolfowitz, 1948) and the
Drift Diffusion Model (DDM; Ratcliff, 1978), for example, operate
by collecting evidence for competing hypotheses over time (in the
form of a log-likelihood ratio), and committing to a choice when the
strength of the cumulative evidence exceeds a predefined threshold.
In typical implementations of these models, the threshold remains
stationary during deliberation, and is chosen to balance the trade-off
between accuracy and deliberation cost. Unlike SEA, however,
these models act as passive observers, as they do not select the
samples from which they learn.
In contrast, SEA selects samples sources of information through

consideration of its beliefs about the environment, and updates these
beliefs following the observation of each sample. Incidentally, the
calculations involved in this procedure provide a principled way to
define the termination criterion. Although a purely exploitative deci-
sionmaker should commit to a choice when the expected gain in utility
for each sample is outweighed by its cost, an exploratory decision
maker may be willing to bear some sampling cost to learn about the
environment. Whereas the DDM and SPRT define the termination
criterion to balance demands for accuracy with missed opporunity
costs, in SEA the termination criterion is calculated with regards to

expected information gain, and a heuristic that strives to balance the
trade-off between exploration and exploitation.9

Because SEA strives to sample the most informative information
source at each step, successive samples tend to become less infor-
mative. Concurrently, costs associated with deliberation tend to
accrue. The likelihood of committing to a final choice, therefore,
tends to increase with the number of samples observed. The
dynamic nature of this decision boundary resembles that of some
integrate-to-bound models (e.g., Cisek et al., 2009; Niyogi &
Wong-Lin, 2013; Standage et al., 2013; Thura et al., 2012), which
have been developed to account for modulation of the speed-
accuracy trade-off during decision making. In both frameworks,
the collection of additional information (which can be perceptual
and/or mnemonic) generally improves decision accuracy, but also
tends to increase costs associated with deliberation. However,
whereas integrate-to-bound models tend to describe the decision
process as the diffusion of a variable through time, SEA tracks
expected information gain in conjunction with the accruing costs
associated with collecting information samples. SEA additionally
proposes that the depth of decision planning (i.e, ranging from
myopic to full-preposterior forward search) influences the trade-off
between decision accuracy and cost.

Figure 2
Bidirectional Influences of Information Sampling and Learning

Note. In this example, a decision maker has learned to categorize stimuli, which vary according to three dimensions
(one that is highly informative, one that is moderately informative, and one that is irrelevant), into two categories
(denoted by blue crosses and red circles) by actively sampling information from the external world (110 stimuli,
randomly drawn from this imaginary world, are illustrated at the right). Their knowledge of the world (depicted as two
probability distributions at left) reflects the samples that have been observed. In this example, the decision maker has
learned that the “highly important” dimension predicts the category label, but has not learned that the “moderately
important” dimension mediates this relationship. As a result, this learner would be unable to classify all stimuli
accurately. Characteristics of the external world (e.g., costs associated with sampling each dimension, or costs
associated with incorrect choices), as well as characteristics of the learner (e.g., some learners might show a stronger
bias for simple hypotheses) influencewhat is ultimately learned. See the online article for the color version of thisfigure.

9 As this partially observableMarkov decision process (POMDP) can only
be solved for relatively simple problems (Knox et al., 2012), nonheuristic
approaches are often computationally intractable.
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As discussed above, although leading contemporary models
provide a compelling account for how decision makers organize
information during decision making, they tend to sidestep questions
relating to how decision makers choose information sources to
sample, how they sequentially update their representations during
deliberation, and how they terminate this deliberative process (for
experimental evidence of sequential processing during human
categorization, see: Milton &Wills, 2004; Wills et al., 2015). There
are, however, a few notable exceptions. The Exemplar-Based
Random Walk model (EBRW; Nosofsky & Palmeri, 1997), for
example, sequentially retrieves items from memory until the avail-
able evidence exceeds a decision threshold. The EBRW does not,
however, selectively encode stimulus information, but rather ini-
tially encodes all stimulus representations considered during the
decision. Similarly, the extended generalized context model
(EGCM-RT; Lamberts, 2000) stores representations of individual
exemplars, but sequentially encodes stimulus feature values. As the
feature values are encoded, the similarity between the stimulus and
exemplars stored in memory is updated. This process resembles
the sequential sampling problem faced by human learners, but
information sampling is not strategic (i.e., it does not reflect previ-
ously retrieved information). In addition, the EGCM-RT will
consider all stimulus features instead of self-terminating.

The Proposed Model

Here, we introduce a novel model of categorization, SEA, which
is designed to treat decision making as an active sampling problem
(in which decisions are made, not only about the final choice
(Figure 1A), but also about what information to sample; Figure 1B).
It combines two normatively motivated components. The first is a
concept-learning component that reflects the decision maker’s
knowledge of the world. The second is a utility-sensitive sampling
component that calculates the expected utility of particular states.
The two components interact to perform preposterior analysis.
These interactions allow the model to selectively sample from
information sources that are expected to be useful for differentiating
a set of “active” hypotheses.
Strategically sampling learners, such as SEA, can easily learn

representations that deviate from reality (Figure 2; Rich & Gureckis,
2018). This can happen when the learner fails to balance demands for
exploration and exploitation. For instance, when a number of costly
experiences with a stochastic variable are encountered early in training,
a cost-sensitive decision maker may choose to avoid it, and never learn
that it actually yields net long-term gain.10 To encourage exploration of
undersampled information sources, SEA can include exploration bo-
nuses for undersampled information sources. As the partially observ-
able Markov decision process (POMDP) can only be solved for
relatively simple problems (Knox et al., 2012), this mechanism can
be seen as a heuristic linking the concept-learning and utility-sensitive
sampling components.
Although category learning with feedback is typically treated as a

supervised learning task, the present work recasts it as a problem in
which the agent learns to traverse a series of probabilistic states
(i.e., information samples) while minimizing sampling costs and
maximizing reward (similar to reinforcement learning; Kaelbling
et al., 1996; Sutton, 1990). Although SEA will initially sample
uniformly across dimensions, it will gradually learn to sample
selectively from dimensions expected to provide useful information.

The resulting representational structure is efficient, in that it mini-
mizes both the amount of information encoded across experiences,
and the amount of information considered during individual
decisions.

In SEA, the effects of selective sampling emerge with learning,
and so sampling strategies change as the model learns about the
environment. These bidirectional interactions between information
sampling and concept-learning result in high-density representa-
tions along dimensions SEA believes are useful, and low-density
representations along dimensions SEA deem irrelevant (reflecting
the relative sampling frequency of these dimensions). This is
analogous to the effects shown in Figure 1A, which are captured
by “single-step” categorization models, which sidestep the infor-
mation sampling stage of decision making, and selectively weight
dimensions through attentional processes (e.g., Kruschke, 1992;
Love et al., 2004; Nosofsky, 1986). In both frameworks, behavior-
ally relevant stimulus dimensions have greater influence on the final
choice than do irrelevant dimensions.

Active sampling can lead to a self-enforcing pattern of belief
updating, where beliefs about the world influence the information
that is sampled from it, and this information is used to update beliefs.
This can have important consequences on learning efficiency. When
decision makers are free to select the stimuli from which to learn,
they often learn more efficiently than when stimuli are presented in a
predetermined order (Castro et al., 2009; Gureckis & Markant,
2009; Markant & Gureckis, 2010, 2014; Markant et al., 2015).
This effect, however, depends on the structure of the problem being
learned (Enkvist et al., 2006; Markant & Gureckis, 2010, 2014).
Bidirectional interactions between information sampling and learn-
ing can also determine what concepts are ultimately learned. One
example is the blocking effect (Kamin, 1969), wherein after learning
that a particular dimension is informative, a decision maker will tend
to exploit this knowledge rather than continue to explore other
information sources. To avoid these kinds of “knowledge traps”
(Rich & Gureckis, 2018), decision makers must successfully bal-
ance demands for exploration and exploitation (Kaelbling et al.,
1996; Sutton & Barto, 1998).

Model Overview

In this section, we present SEA, and its potential variations.
SEA’s information-value component determines which (if any)
features should be sampled. Its learning component provides the
information-value component with the probabilities required to
determine the sampling policy, and is updated based on the
information sampled. Below, we specify these components, out-
line their interactions, and consider model variants that incorpo-
rate mechanisms that reflect the constraints of human decision
makers.

Concept-Learning Component

The concept learning component we use is closely related
to the Rational Model of Categorization (RMC; 1991b;

10 Development of inaccurate representations can also be driven by
similarity between information sources. For instance, information sources
that resemble others that impose high costs might be avoided. They can also
result from learned selective attention (e.g., “blocking”; Kruschke & Blair,
2000).
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Anderson & Matessa, 1990), although any generative probabilistic
model would also likely be appropriate. The RMC incrementally
learns to sort stimuli into appropriate clusters, and can make near-
optimal use of past information during learning and prediction.
Here, we provide an overview of the RMC. Additional details can be
found in the original articles.
The RMC is a flexible clustering model, which learns to parcelate

representational space into clusters based on its experience with the
normative characteristics of the task environment. Formally, the
probability that any unobserved stimulus dimension, Fi, will take a
particular value, j, can be inferred by weighting the prediction of
each cluster, P(Fi = j|k), by the probability of the cluster given the
observed features, P(k|FO):

PðFi = jjFOÞ =
X

k

PðFi = jjkÞPðkjFOÞ: (1)

where P(Fi = j|k) is calculated using Equation 2, and P(k|FO) is
estimated using Equation 3. By this notation (which we will use
throughout the article) the subscript, O, denotes the index of the
observed features of a given stimulus, and i denotes the index of
the considered feature. For instance, given a stimulus (including
both observed and unobserved dimensions) defined as vector
F = [2, 1, 1, 2], if the second feature was under consideration,
and the third and fourth features were known, then i would be
2, O would be [False, False, True, True], and FO would be
[?, ?, 1, 2].
For each dimension, discrete feature values are assumed to be

distributed according to a Dirichlet density characterized by
dimension-value parameters αj, and dimension-wide parameters,
α0 (where α0 = Σj αj). The Dirichlet distribution allows the data to
determine the number of clusters (as in SUSTAIN; Love et al.,
2004), and allows for a potentially infinite number of clusters.
However, between one and three clusters per category is typical.
These desirable characteristics of the Dirichlet distribution have led
to it being used in many categorization models (e.g., Anderson,
1991a; Griffiths et al., 2007).
Across learning, SEA tracks the number of items in cluster k with

the same value, j, on feature i in Cij. The posterior is also Dirichlet-
distributed, and the probability that a feature will take a particular
value within a cluster is as follows:

PðFi = jjkÞ = αj + Cij

αo +
P
j
Cij

: (2)

As Cij becomes populated through experience, it exerts stronger
influence on P(Fi = j|k) relative to the prior. The prior parameters
(the α’s), therefore play an important role during early learning, as
they allow SEA to appropriately estimate its uncertainty when few
samples have been observed. After a single trial, for example, it
would be erroneous to infer that all future objects will display the
observed values.
Bayes’ theorem can be used to calculate the last term in Equation 1,

P(k|FO). This term represents the probability (or “activation”) of each
cluster given the observed features:

PðkjFOÞ =
PðFOjkÞPðkÞP
k PðFOjkÞPðkÞ

, (3)

where P(FO|k) is calculated using Equation 2, and P(k) represents the
prior probability that any stimulus will be assigned to cluster k. This
probability is calculated as follows:

PðkÞ = cnk
ð1 − cÞ + cn

, (4)

where c denotes the coupling probability (a parameter that determines
the probability that two objects come from the same category), nk is
the number of items already assigned to cluster k, and n is the total
number of stimuli observed. The prior probability that a stimulus will
be assigned to a novel cluster is as follows:

Pð0Þ = ð1 − cÞ
ð1 − cÞ + cn

: (5)

As no clusters have yet been created on the first trial, the model
will start with a single cluster with each feature initialized with a
uniform probability of occurring (as in Equation 5). With greater
experience, the model will incrementally learn a single partition of
stimuli into clusters.11 Although the fully normative solution would
be to consider all possible partitions of stimuli into clusters
(Anderson, 1991a), this approach is intractable for all but the
simplest problems.12 The incremental approach may also be
more psychologically valid (Love et al., 2004). With the parameters
set as in the simulations described below, the model tends to sample
all features before selectively sampling from those expected to
provide useful information.

Combining Concept-Learning With a Utility-Sensitive
Sampling Norm

When facing a choice with an uncertain outcome, the expected
utility of a particular action, a, can be calculated by weighting the
utility of each resulting state by its probability. In a category learning
experiment, for example, one category label may be more probable
than the other, but yield lesser reward. The action-utility function
shown in Table 1 corresponds to a contingency table in which two
states (or categories), sp and sq, are mutually exclusive and exhaustive
(i.e., P(sp ∪ sq) = P(sp) + P(sq) = 1), and the decision maker must
choose the appropriate action (ap or aq; in a categorization experiment,
this corresponds to the category label). The table depicts a hypotheti-
cal action-utility function reflecting the utility for two actions: ap and
aq. For this particular example, maximizing utility is equivalent to
maximizing accuracy, as correct responses are rewarded with 100
utility units, and incorrect responses are awarded zero units. The table
could be expanded to include more than two actions and states.

For the action-utility function shown in Table 1, the expected
utility, EðUÞ of action ap can be calculated as follows:

EðUðapÞÞ = UðapjspÞPðspÞ + UðapjsqÞPðsqÞ: (6)

For example, if P(sp) = 0.7, and P(sq) = 0.3, the expected utility
of choosing ap would be 70 and that of aq would be 30. In this case,

11 This process is similar to that of infinite mixture models (Rasmussen,
2000) and Dirichlet-process mixture models (Neal, 2000).

12 Tractable approximations based on particle filters have been developed
(e.g., Brown & Steyvers, 2009; Daw & Courville, 2008; Sanborn et al.,
2006). Markov Chain Monte Carlo methods (MCMC; Andrieu et al., 2003)
can also be used to sample the space of category partitions.
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the utility-maximizing action would be to choose ap. As mentioned,
payoffs can also be asymmetric. For instance, if the lower-left entry
in Table 1 was −1,000, there would be a high penalty associated
with ap when state sq holds, and the optimal choice would switch
to aq.
The above examples describe problems involving a single feature

with two possible values (sp and sq). Real-world decisions typically
require decision makers to integrate evidence across multiple fea-
tures, which often have more than two possible values. When
diagnosing a tumor, for instance, it might be necessary to consider
results from blood tests as well as from CT-scans or MRI. Categori-
zation tasks are often designed to reflect this aspect of real-world
decisions; participants must integrate information across relevant
stimulus features.
In SEA, as in Anderson’s RMC (1991b; Anderson & Matessa,

1990), the category label is treated like any other cluster feature, and
Equation 1 can be used to calculate the probability of each label,
given the observed feature values. The value of action, a, given the
observed features, FO,

13 can be estimated by summing over states, s,
and subtracting the costs associated with sampling each observed
feature, ℒo:

14

EðUðajFOÞÞ =
X

s

UðajsÞPðsjFOÞ −
X

o∈O
ℒo, (7)

where P(s|FO) is provided by Equation 1, andU(a|s) was introduced
in Equation 6. Before learning about the environment, a uniform
prior (resulting from Equations 4 and 5) drives probabilistic sam-
pling of each stimulus feature.
The estimated utility of the current state, FO, can be estimated by

maximizing over possible actions:

EðUðFOÞÞ = argmaxa∈ActionsðEðUðajFOÞÞÞ: (8)

As discussed, real-world decisions often require decision makers
to decide what information should be sampled. This is important, as
the information that is sampled can influence the final choice. The
results of a blood test, for instance, can influence a doctor’s decision
about whether to suggest chemotherapy for a patient. To estimate the
utility of a test that reveals the value of an unknown feature
(e.g., “cancer antigen present” vs. “cancer antigen absent”), we
consider how much the results of the test would improve the utility
of the current state (where the current state is defined by the vector of
observed features, FO). The expected utility of the state after
sampling unobserved feature i, can be estimated by summing across
its possible values, j:

EðUðFO,FiÞÞ =
X

j∈Fi

EðUðFO, jÞÞPðFi = jÞ, (9)

where EðUðFO,jÞÞdenotes the expected utility of the state if value
j (of unobserved feature Fi) was included in the vector of observed
features. Equation 9 demonstrates how the expected utility of the
state can be calculated for a single feature. As each feature can
have multiple values (two in the simulations described below), the
model explores each branch for each feature. During “myopic”
decisions, the model considers only a single step into the future.
Preposterior analysis (which is implemented in SEA as a “depth-
first” search process), involves imagining each branch several
steps into the future. The computational demands of preposterior

analysis, therefore, are high, even for the relatively low-
dimensional decision problems commonly considered in the
categorization literature.

Equation 9 contributes to the calculation of the gain in utility (cf.,
Nelson, 2005; Nelson et al., 2010) from sampling unobserved
feature i:

GðFiÞ = EðUðFO;FiÞÞ − EðUðFOÞÞ: (10)

SEA proposes that this expected increase in utility from sampling
Fi is the key variable to consider when deciding what feature to
sample, or whether to stop sampling and commit to a final choice.
When G(Fi) for all features is less than, or equal to zero, a cost-
sensitive decision maker should stop sampling and commit to a final
choice. When G(Fi) for at least one feature is greater than zero, an
exploitative strategy would be to sample the feature with the greatest
expected gain.

Importantly, costs are often dependent across features. The cost of
a blood test, for instance, can be substantially less if other blood tests
have already been ordered. A normative strategy therefore requires
the consideration of all possible sequences of tests to account for
these potential dependencies. As the computational demands of this
approach increase exponentially with the number of features con-
sidered, it can only be justified when decisions involve a low number
of stimulus features (as is common in psychology experiments), or
when there is sufficient time available for deliberation and the stakes
are high.

An alternative would be to select tests myopically, selecting the
next test without consideration of those following it. Such selection
strategies are guaranteed to be optimal only if the next test happens
to be the last. Interestingly, previous work has indicated that human
behavior is often myopic during sequential sampling (or deferred
decision) tasks (Busemeyer & Rapoport, 1998), which require
multiple samples to be drawn from a single noisy stimulus feature
(Edwards, 1965; Rapoport & Burkheimer, 1971). Although such
tasks similarly require participants to decide, at each time-step,
whether to consider additional information or commit to a final
choice, the problems considered here require the integration of
information across multiple stimulus features. This poses an addi-
tional challenge, as decision makers must know which features
provide useful information with regards to their goal. In our model,
the concept learning component provides this kind of information
(i.e., knowledge of the problem’s underlying structure) to the

Table 1
Example Utility Table

State ap aq

sp 100 0
sq 0 100

13 The utility of the final action, a given each possible state is provided to
the model in the form of a utility table (e.g., Table 1).

14 We assume costs associated with the final action are included in the
utility table (e.g., Table 1). These costs are not learned by the model, but are
specified to match characteristics of the stimulus. Although we do not
manipulate costs here, different stimulus features could have different
associated costs.
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information-utility component (which then identifies the most infor-
mative samples).

Balancing Demands for Exploration and Exploitation

Precisely determining the optimal balance of exploration and
exploitation is intractable for most tasks and is only possible for
special cases (Kaelbling, 1993; Kaelbling et al., 1996; Simsek &
Barto, 2006). To derive the optimal solution, one would need to
make several assumptions. It would be necessary, for instance, to
estimate the number of trials left in the study (as the negative
consequences of choosing a suboptimal strategy increases with the
number of trials on which it is applied). It would also be necessary to
estimate how rewarding the environment is (as optimal inference
requires normalizing estimates based on environmental character-
istics). It would also be necessary to estimate the probabilities of
different category structures, which represents uncertainty about the
appropriate categorization strategy (alternatively, one could restrict
the possible forms of the environment, as in Stankiewicz et al.,
2006). Finally, it would also be necessary to consider the probability
of any of these factors changing over time (cf., Brown & Steyvers,
2009; Gittins & Jones, 1979; Steyvers et al., 2009).
Fortunately, a number of heuristic methods exist (Kaelbling,

1993; Kearns & Singh, 2002; Moore & Atkeson, 1993;
Schmidhuber, 1991; Sutton, 1990). We combine two of these
heuristic methods: stochastic choice via a softmax choice rule,
and exploration bonuses for underexplored options (Kaelbling,
1993). The exploration bonus, E, could take many forms. In Kalman
filter models, this term often takes the form of an uncertainty bonus
that reflects the standard deviation of the choice’s utility (Daw et al.,
2006). In the current model, E is calculated for each feature
separately:

Ei =
maxðUÞ − EðUðFOÞÞ

ð1 + niÞϕ
, (11)

where max(U) denotes the maximum utility possible irrespective of
sampling costs, EðUðFOÞÞ will always be less than or equal to
max(U). ni denotes the number of previous observations of feature i,
and ϕ denotes a fixed parameter modulating the influence of ni on Ei.
In the case that FO supports perfect prediction, the comparison of
EðUðFOÞÞ (i.e., the expected utility, including the costs of sampling
each feature given the observed features) to max(U) encourages the
model to explore when sampling FO is costly.
Combining the exploration bonus with a softmax choice rule, the

probability of sampling feature m is:

PðFmÞ =
eβðGðFmÞ+EmÞ

P
n e

βðGðFnÞ+EnÞ , (12)

where β denotes a nonnegative temperature parameter that mod-
ulates the stochasticity of the decision process (i.e., “how often is
the feature with highest expected profit chosen?”). When Em = 0,
and G(Fm) ≤ 0, the model stops deliberating and commits to a final
choice.

Summary

SEA interleaves concept learning and information sampling, such
that they mutually influence one another. Information sampling is
akin to a dynamic planning process in which SEA’s concept learning
component (i.e., the RMC) serves as an internal model of the
environment. For instance, the RMC may learn that red objects
tend to be heavy 90% of the time. After observing that an object is
red, the RMCwould update its expectation that the object is heavy to
90% (Equation 1). Before learning this relationship between color
and weight, the RMC would rely on its uninformative prior (50% of
objects are heavy, 50% of objects are light) to guide its predictions.

Calculating the probabilities of these unobserved features (e.g.,
weight) is critical for planning which feature to sample next. The
expected utility of a possible state is calculated by combining the
probabilities of these states with their utilities (e.g., Equation 7).
Importantly, the utility sensitive sampling component does not learn
utilities of various states. Instead, SEA is initialized with a utility
table (as in Table 1) and with the costs associated with sampling
each information source. The conjunction of the concept-learning
and utility-sensitive sampling component allows the model to
perform active sampling.

Equation 8 is used to calculate the expected utility of states
(i.e., specific stimulus feature configurations), abstracting beyond
specific actions (or choices). Equation 9 is used to calculated the
expected utility associated with sampling an unseen feature, ab-
stracting beyond its possible values. This helps the model to
determine if, after sampling a single feature, it should sample
another feature. To make this determination, SEA considers infor-
mation gain (Equation 10) and the exploration bonus for each
unsampled stimulus feature (Equation 11) and combines them using
a softmax choice rule (Equation 12).

Myopic Versus Preposterior Analysis

In deciding which feature to sample, SEA plans ahead for the
maximal number of steps, like an adult might when playing a simple
game such as tic-tac-toe. In the simulations, we compared SEA to
variants that are “myopic” in that they only consider the next step or
move (Figure 3). To clarify how the equations interact to support
myopic decision making and preposterior analysis, we describe
SEA’s behavior in a two-class categorization problem involving
stimuli with three binary stimulus features. We assume that the
model has already been trained.

Myopic decision making involves simulating the sampling of
single unobserved features. Before sampling any stimulus features
FO is [?, ?, ?]. To determine what feature to sample first, the model
simulates the effects of sampling each. For instance, the model
might calculate the expected utility of the possible states after
sampling the first feature (i.e., FO = [0, ?, ?] or [1, ?, ?]) using
Equation 8. The expected utility of sampling this particular feature
can be calculated by combining these expected utilities across
feature values (Equation 9). The gain in utility from sampling the
feature can then be calculated using Equation 10. The exploration
bonus for this feature could then be calculated using Equation 11.
After performing these calculations for each feature, the decision of
what feature to sample would be made using the softmax choice rule
(Equation 12).
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Conceptually, preposterior analysis is an extension of the myopic
algorithm that involves simulation of multiple unobserved features.
As in the previous example, the model might begin a trial by
calculating the expected utility of the first feature (feature “1”)
being “0” (i.e., FO = [0, ?, ?]). Holding this imaginary feature-value
constant, SEA would then simulate the expected utility if other
features were subsequently sampled. For instance, to simulate
sampling feature “2”, SEA would consider the expected utility of
states FO = [0, 0, ?] and FO = [0, 1, ?], using Equation 8. It would
then abstract over these possible values using Equation 9. It would
then calculate the gain in utility and the exploration bonus associated
with sampling this feature using Equations 10 and 11.
The process would then be repeated with the value of feature “1”

set to 1 (i.e., FO = [1, ?, ?]). When the depth of the forward search is
limited to two steps, the algorithm would commit to sampling a
feature after simulating the sampling of two features.15 For a three-
feature categorization problem, SEA would simulate the sampling
of all three features before sampling the first. After sampling one
feature, SEA would simulate sampling both remaining features.
Importantly, SEA does not learn anything during simulation. The
concept learning component is updated only after the final choice is
made, and this learning changes behavior on future trials only.
Although the myopic decision algorithm requires minimal

computational demands, it lacks the sophisticated behavior that
forward search enables (i.e., strategic self-termination and branch-
ing). When SEA employs a myopic strategy, it tends to sample more
dimensions, and to be less accurate (in terms of its categorization
decisions), than when preposterior analysis is employed. These

limitations of the myopic algorithm are illustrated in the simulation
of experiment performed by Blair et al. (2009; see Strategic Atten-
tion Within Individual Trials section).

Simulations

The proposed model treats decisions as a temporally extended
procedure involving sequentially sampling information from the
environment, and then committing to a final choice. As reviewed
above, these sequential decisions about what features are goal-relevant
can influence patterns of eye movements during short-duration deci-
sions (i.e., less than 3 s), which are common in the categorization
literature. Whereas successful contemporary theories of categorization
tend to rely on attentional parameters that weight stimulus features
according to their behavioral relevance, the proposed model can select
relevant information through active sampling.

To compare SEA’s behavior to human decision makers and other
computational models, we simulate several experiments. In the first,
we demonstrate the utility of SEA’s active sampling approach in
high-dimensional environments. In the second, we investigate its
choice behavior in the classic six problems introduced by Shepard
et al. (1961; a well-known test for formal models of categorization).
To compare SEA’s sequential sampling behavior to that of human
decision makers, we then simulate an eye-tracking experiment

Figure 3
Active Learning and Preposterior Analysis

Note. Active learning requires decisions, not only about thefinal choice but also about what information sources should be sampled. (A)When the cost of sampling
an information source exceeds the expected gain in utility, a purely exploitative decision maker should commit to a final choice. (B) To decide whether to stop
deliberating, or to sample an additional stimulus dimension, SEA performs preposterior analysis. In the illustrated example, two of the four features used by Rehder
and Hoffman (2005a, that is, the head and tail of an abstract bird stimulus) have been observed, and all possible future sequences of samples are simulated. In typical
categorization tasks, participants strive to maximize the accuracy of the final choice (as in Table 1), and the cost of sampling each dimension is equivalent. For other
kinds of decisions (e.g., those involving medical diagnoses), outcomes associated with the final choice can be associated with asymmetric values (e.g., the cost of a
false negative is often greater than the cost of a false positive). Similarly, different tests can impose different costs (e.g., anMRI is more expensive than a blood test).
Our beliefs about costs, values, and the probabilities of future events influence what information is sampled, and therefore what is ultimately learned. Ellipse: A
decisionmaker using amyopic planning process would consider the possible results of only a single sample into the future, and thenmake the best possible response.
Full preposterior analysis is generally more accurate, as it also considers the potential results of subsequent samples.

15 In this example, a depth-two search process would involve considering
the expected utility of 18 stimulus configurations: [0, ?, ?], [1, ?, ?], [?, 0, ?],
[?, 1, ?], [?, ?, 0], [?, ?, 1], [0, 0, ?], [0, 1, ?], [1, 0, ?], [1, 1, ?], [0, ?, 0], [0, ?, 1],
[1, ?, 0], [1, ?, 1], [?, 0, 0], [?, 0, 1], [?, 1, 0], [?, 1, 1].
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conducted by Blair et al. (2009). We then simulate an experiment
using the 5/4 category structure (Medin & Schaffer, 1978), and
demonstrate that purportedly suboptimal patterns of attention
(inferred from both eye-tracking and behavioral choice data) may
reflect averaging across individual stimuli associated with distinct
scan paths. Finally, we demonstrate that the mnemonic representa-
tions resulting from SEA’s active sampling procedure predict
human recognition and categorization behavior during the rule-
plus exception task (Davis, Love, &Maddox, 2012; Davis, Love, &
Preston, 2012b; Love&Gureckis, 2007; Palmeri &Nosofsky, 1995;
Sakamoto & Love, 2004).
Rather than fitting the model to each data set, we adopted a

conservative approach, and used the same fixed parameters for all
simulations (to avoid overfitting). We therefore do not focus on
parameter-specific effects in each simulation, but instead consider
broader qualitative effects associated with the model architecture.
One-hundred utility units were awarded for correct answers, and

no points were awarded for incorrect answers. The exploration
parameter, ϕ, was set to 0 (such that the exploration bonus for
each feature, Ei was driven purely by potential gain in utility), the
decision parameter, β was set to 1, and the cost of sampling each
feature, ℒi, was set to 10. For the concept learning component, the
parameters were set to their default parameters (Anderson, 1991b);
the coupling parameter, c, was set to 0.3, the αj parameter for each
label was set to 0.01, and the αj parameter for each value of the other
features was set to 1.16

Benefits of Selective Sampling

Many real-world learning problems involve identifying a sparse
signal hiddenwithin a noisy high-dimensional space (similar tofinding
a needle in a haystack). Here, we demonstrate the relationship between
feature selection and decision accuracy, and demonstrate SEA’s
capacity to cope with high-dimensional problems. In particular, we
illustrate how selective sampling can increase learning efficiency by
comparing the learning performance of a model that actively samples
information to a model that samples every feature on every trial. The
purpose of this simulation is not to demonstrate that the model
performs similarly to human decision makers in high-dimensional
environments (we are unaware of category-learning data sets with
similar structure). Rather our goal is to demonstrate how selective
sampling in SEA can facilitate learning.
In both simulations, the stimuli were composed of 99 random

binary features (generated through a process similar to coin flip-
ping), and a single binary feature that perfectly correlated with the
category label. During each of the 100 repetitions of each simula-
tion, SEA was trained over 100 blocks of 10 trials. As full
preposterior analysis (exhaustive forward search through the 100-
dimensional space) imposes high computational demands, SEA was
set to use a “myopic” strategy in which forward search was limited
to one step ahead. In our first simulation (Figure 4A and 4B), the
cost associated with sampling each feature limited SEA’s sampling
behavior to five or fewer features per trial. Nevertheless, SEA
quickly found the signal feature, and learned to ignore the others.
In the second simulation (Figure 4), instead of performing active

sampling, SEA sampled every feature on every trial. The compari-
son between the two models demonstrates how selective sampling
based on expected utility can improve learning. Real-world envir-
onments typically impose some cost for information sampling

(e.g., time, effort, or monetary), and the number of features consid-
ered during deliberation is a function of these costs. Therefore,
learning efficiency can be impaired when amodels inductive bias (or
prior) is inappropriately matched to the environment. Specifically,
when estimated costs are too low, a decision maker may sample too
many features. Conversely, when costs are too high, the decision
maker may fail to efficiently explore the domain, and develop
inaccurate beliefs as a result. A strongly cost-sensitive decision
maker, for example, may identify a single weakly informative
stimulus feature, and subsequently fail to identify more-reliable
decision strategies (i.e., using a different stimulus feature, or con-
sidering a set of features).

Shepard et al. (1961)

For decades, the six problems developed by Shepard et al. (1961)
have been a benchmark for testing formal categorization theories. In
Shepard’s six problems, stimuli consisting of three binary features,
are used to define six different category problems (Figure 5). The
Type I problem is a one-dimensional task in which a single
dimension is relevant and the other dimensions can be ignored.
The Type II problem is a two-dimensional rule-based task requiring
the learner to employ a disjunctive exclusive-or (XOR) rule. In the
Type III, IV, and V problems, all dimensions are informative, and
for each category, all but one member can be categorized according
to the same strategy, while the remainder must be categorized using
a different strategy. These three problems also differ in interesting
ways; the Type III problem, for instance, can be solved using two
dimensions,17 and the Type IV problem is characterized by a
linearly separable prototype structure. Finally, in the Type VI
problem, all three dimensions are relevant, and participants must
essentially memorize the individual stimuli.

A typical finding, which has been both replicated (Nosofsky
et al., 1994) and extended (Feldman, 2000; Love, 2002; Nosofsky&
Palmeri, 1996), is that the initial difficulty of each task (as measured
by the proportion of choice errors) closely reflects the number of
dimensions that must be considered (Medin & Schaffer, 1978;
Nosofsky, 1984; Shepard et al., 1961). Therefore, the tasks tend to
increase in initial difficulty from Type I to II, from II to {III, IV, V}18,
and from {III, IV, V} to VI (Figure 6A, left). In support of this idea,
several formal categorization models that include selective attention,
are able to closely predict this behavioral effect (Nosofsky et al.,
1994), while Bayesian models (like Anderson’s Rational model;
Anderson, 1991b) tend to underestimate differences between the
problems during early learning (Nosofsky et al., 1994).

We simulated the experiment performed by Rehder and Hoffman
(2005a) who used eye tracking to investigate whether the differences
in behavioral accuracy between rules might reflect differences in
information sampling. Their important finding was that, following

16 The feature-wide parameters, α0, determine the likelihood that distinct
clusters with the same feature value will be created. Low values of the α0
parameter for the category label, for instance, would mean that distinct
clusters with the same label would be unlikely.

17 The structure of the Type III problem mirrors that of the Blair et al.
(2009) experiment. Although each dimension is potentially relevant, after
observing the first (“indicator”) dimension, only one of the two remaining
dimensions is relevant. Accordingly, only two dimensions need to be
sampled on any given trial.

18 The Type III, IV, and V problems are typically equivalent in difficulty.
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learning, eye movements closely reflected the behavioral relevance
of each dimension (Figure 6B, left). These results provide compel-
ling support for the idea that differences in attentional strategies
underlie observed differences in behavioral accuracy between rules.
The results also indicate that attention operates, not only at later
decisional stages but also can influence information sampling
behavior.
We performed 1,000 simulations of this experiment using full

preposterior forward search. Each simulation involved 28 learning
blocks. In each block, each stimulus was presented in random order.
Although we simulated all problems, our goal was to compare our

findings to those of Rehder and Hoffman (2005a), so we report only
results associated with problems I, II, IV, and VI.19

The model predicted the correct ordering of six problem difficul-
ties (Figure 6A, right). Perhaps more interestingly, the model
learned to selectively sample behaviorally relevant stimulus dimen-
sions across learning blocks (Figure 6B, right). Although the model
used the same parameters for this simulation as for all others, this
sampling behavior resembled that of human decision makers. One
interesting difference, however, is that while humans tended to
sample from all three dimensions during performance of the Type IV
problem, the model sampled an average of 2.5 dimensions. This
reflects the prototype structure of this problem, which allowed SEA
to strategically self-terminate on roughly half of the trials. The
results of Rehder and Hoffman (2005a) imply that only a small
percentage of high-performing participants may have self-
terminated in this stimulus-specific way. Although it is potentially
interesting that the model identified this efficient sampling strat-
egy, the propensity for self-termination will correlate with infor-
mation cost.20 In the next section, we apply SEA to a study whose
design is ideal for evaluating whether people self-terminate and
branch in a stimulus-specific way.

Strategic Attention Within Individual Trials

The results from the simulations of the Shepard et al. (1961) and
Rehder and Hoffman (2005a) experiments demonstrate that the
model is capable of mirroring the human tendency to strategically
sample behaviorally relevant information based on learned category
structure. This type of feature-based attention is important for
improving the efficiency with which decisions can be made. In
many contexts, however, decision makers can further reduce the
amount of information sampled by considering stimulus-specific
factors.

Figure 4
Benefits of Selective Sampling

Note. In the active-sampling model, the number of features sampled (A) negatively covaried with the slope of the learning curve (B). This reflects the models
ability to efficiently explore unsampled features (i.e., by considering the number of times each feature has been observed; Equation 11), and capitalize on the
single reliable feature in the simulation environment. The selective sampling model (B) learned more quickly than a comparable model in which all stimulus
features were always sampled (C).

Figure 5
Geometric Depiction of the Six Problem Types (Shepard et al.,
1961)

Note. Members of each category are denoted by white and black spheres. In
the Type I problem, a single dimension is relevant. In the Type II problem,
two dimensions are relevant, and decisions makers must employ a logical
XOR rule. In the Type III, IV, and V problems, all dimensions are
informative, but the categorization structures differ in interesting ways. In
the Type VI problem, all stimulus dimensions must be considered.

19 Model predictions for all six problems are illustrated in Appendix B
(Figure B1).

20 Like all other parameters, information costs were held constant across
simulations.
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For instance, in the category structure shown in Table 2 (and in
Figure 1B), the “indicator” dimension (D1), by itself, is not predic-
tive of category membership, but determines which of the two
remaining dimensions should be sampled. When D1 = 1, for
instance, the decision maker should sample D2 next, but when
D1 = 2, only D3 is informative. Thus, 100% accuracy can be
achieved by first sampling the indicator dimension, and then
strategically sampling only one of the remaining dimensions.21

Participants in Blair et al’s study learned to perform the task
through trial-and-error, until either reaching a learning criterion of
24 correct consecutive trials or until a maximum of 200 total trials.
Participants then performed an additional 72 (“transfer”) trials of the
same stimuli without feedback. Data from participants (42%) who
did not reach the accuracy criterion were excluded from the primary
analyses. The findings indicated that participants were able to
employ stimulus-specific attention during information sampling.
Participants tended to selectively sample dimensions 2 and 3
depending on the value of dimension 1, and therefore, spent
more time fixating on dimensions 1 and 2 for stimuli belonging
to category A or B, and more time fixating on dimensions 1 and 3 for
those belonging to category C or D.
To isolate behavioral effects reflecting the depth of the forward

search process, we simulated this experiment using two model

variants. The standard SEA model included stimulus specific atten-
tion and exhaustive preposterior search, while the myopic model
considered only one step into the future. As each dimension is
equally predictive in isolation, the myopic model was no more likely
to sampling the indicator dimension than a nonindicator dimension.
The myopic model, therefore, should sample the indicator dimen-
sion first on roughly one third of trials. In these trials, it could then
select the appropriate nonindicator dimension to sample. However,
if a nonindicator dimension was sampled first, the model should then
randomly sample either the indicator dimension (and then self-
terminate) or the other nonindicator dimension (and then sample the
remaining dimension). As a result, when using a myopic strategy,
the model should tend to sample a greater number of stimulus
features than when preposterior analysis is used.

After reaching the learning criterion, the standard model correctly
classified 93.3% of the remaining 72 transfer items. Mirroring
human sampling behavior, the standard model tended to sample
all stimulus dimensions early in learning, but then tended to sample
only two dimensions per trial: first D1, and then either D2 or
D3. (The features sampled were optimal on 98.6% of trials.)

Figure 6
Human and Model Accuracy and Sampling Behavior for the Six Problems Described by Shepard et al. (1961)

(A)

(B)

Note. (A) Left: Human categorization accuracy by learning block. Right: Model Accuracy by learning block.Mirroring behavior of the Rational
Model of Categorization (RMC; Anderson, 1991b), learning of the Type IV was attenuated during later blocks relative to other problem Types.
For discussion of this effect, please see the original text. (B) Left: In an eye-tracking study, Rehder and Hoffman (2005a) found that human
participants learned to selectively fixate on behaviorally relevant stimulus dimensions across blocks. Right: Like human decision makers, the
model learned to selectively sample from behaviorally relevant stimulus dimensions. Vertical-axis: number of dimensions sampled. Horizontal-
axis: learning block.

21 Interestingly, this category structure is closely related to the Type III
category structure of Shepard et al. (1961).
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After reaching the learning criterion, the myopic model correctly
classified 67.9% of the remaining 72 items. Like the standard model,
the myopic model tended to sample all dimensions during early
learning, and sample fewer dimensions later in learning. However,
demonstrating the benefits of planning during information sampling,
the myopic model tended to sample more dimensions than the
standard model after learning (M = 2.33 instead of M = 2).

Modeling Eye Movements in the “5/4” Categorization
Task

The previous results from Blair et al. (2009) were inconsistent
with a standard view of selective attention, but were compatible with
SEA’s sampling account which can lead to different sampling
patterns for different stimuli. One possibility is that classic studies
consistent with selective attention accounts in part reflect the
averaging of different sampling patterns for different stimuli. In
this section, we consider this possibility by revisiting Medin and
Schaffer’s (1978) “5/4” categorization structure (shown in Table 3),
which was originally used to differentiate prototype- and exemplar-
model accounts of category representation.
During a training phase, participants typically learn to categorize

the first nine stimuli (A1–A5 and B1–B4) through trial and error. In
a subsequent transfer phase, the participants also categorize the
seven transfer items (T1–T7). The task is somewhat ill-defined, in
that no single feature perfectly predicts the category label. Instead,
the categories have a prototype structure (category A: [0, 0, 0, 0];
category B: [1, 1, 1, 1]), and the features differ in terms of how
reliable they are with regards to prediction of the correct response.
As shown in Table 3, the “High1” and “High2” features each
correctly predict the category label for seven of the nine training
items, the “Med.” feature predicts the correct category label for six
out of the nine training items, and the last feature (“Low”) predicts
only five of the training items correctly.
Viewed through the lens of categorization models that include

feature-wide attention parameters, an optimal decision maker should
place no-weight on the least-informative feature. Exemplar models
(e.g., Nosofsky, 1986), but not prototype models (Minda & Smith,
2002; Nosofsky, 1987), indicate that human participants tend to assign
substantial weight to this feature. This seemingly suboptimal pattern of

attentional weighting has been interpreted as evidence favoring the
prototype account of category representation (Minda & Smith, 2002).

To independently assess the attention devoted to each feature,
Rehder and Hoffman (2005b) used eye tracking to measure fixations
to each feature across training. Visual features were randomly
assigned to each category feature (i.e., the features shown in
Table 3) in a counterbalanced fashion (across participants) to
account for effects associated with visual salience. Through trial-
and-error, participants trained until either completing 21 training
blocks in total, or completing two consecutive blocks without error.
Each block involved a single presentation of each of the nine stimuli
in random order. During the subsequent transfer phase, participants
categorized all 16 stimuli in each of two blocks. Each transfer block
consisted of a single presentation of each stimulus in random order,
and no feedback was presented. Matching the predictions of exem-
plar theory, a key finding was that the majority of participants
actually do display this seemingly suboptimal attentional pattern.

In SEA, optimality is defined with respect to the maximization of
expected utility. From this perspective, an active-sampling learner
should seek to optimize scan paths for individual stimuli (i.e.,
minimizing sampling costs and maximizing reward). One possibil-
ity is that the attentional pattern observed by Rehder and Hoffman
(2005b) might reflect an average across different optimal scan paths
for individual stimuli.

To investigate this possibility, we simulated this experiment 1,000
times. Although the same parameters were used for all simulations,
SEA’s choice behavior closely resembled that of human decision
makers (Pearson r = 0.98; Figure 7; Rehder & Hoffman, 2005b).
SEA’s sampling behavior also resembled human eye-movement
data. Human decision makers were more likely to sample the highly
informative features [M(High1) = 80%, M(High2) = 80%] than the
moderately informative feature (M = 75%), and were more likely to
sample the moderately informative feature than the least informative
feature (M = 60%). SEA displayed the same ordering of feature
fixation probabilities (High1 = 83%, High2 = 83%, Med. = 66%,
Low = 17%).

These results provide a new vantage point on optimality for this
task. From the perspective of models that have feature-wide

Table 2
Category Structure Used by Blair et al. (2009)

Category D1 D2 D3

A 1 1 1
A 1 1 2
B 1 2 1
B 1 2 2
C 2 1 1
C 2 2 1
D 2 1 2
D 2 2 2

Note. While eye-tracking data were collected, participants learned to sort
the eight stimuli into four different categories (A–D). The A and B categories
shared the same relevant dimensions (D1 and D2), as did categories C and D
(D1 and D3). The optimal strategy was to first sample Dimension 1 (D1), and
then sample either D2 or D3 depending on its value (i.e., if D1 = 0, the
optimal strategy would be to sample D2, otherwise, one should sample D3).
See also Figure 1B.

Table 3
The 5/4 Category Structure (Medin & Schaffer, 1978)

Stimulus High1 High2 Med. Low

A1 2 2 1 2
A2 2 2 1 1
A3 2 2 2 1
A4 2 1 2 2
A5 1 2 2 2
B1 2 1 1 2
B2 1 2 1 2
B3 1 1 2 1
B4 1 1 1 1
T1 2 1 2 1
T2 2 1 1 1
T3 2 2 2 2
T4 1 2 1 1
T5 1 1 2 2
T6 1 2 2 1
T7 1 1 1 2

Note. Med. = medium.
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attention, it is suboptimal to place any weight (i.e., sample) the least
informative feature in the 5/4 problem. However, according to SEA,
featureal relevancy is contingent on what information has previously
been sampled. According to SEA, depending on the stimulus and
scan path, the so-called least informative feature can be highly
informative. In those cases, SEA will sample this feature to maxi-
mize utility. SEA’s strategic sampling leads it to sample 2.42
features on average for the 5/4 problem whereas a feature-wide
attention model would need to consider 3.0 features on every trial. In
light of this result, one conclusion is to exercise caution in charac-
terizing attentional allocation as suboptimal when stimulus-specific
scan paths can increase sampling efficiency.

Rule-Plus Exception

In the previous simulations, we focused on eye-tracking studies as
they provide an independent estimate of attention (assuming a
typically strong coupling between eye movements and attention
holds, e.g., Deubel & Schneider, 1996). However, we intend our
theory and model to not only accurately predict human sampling
behavior but to additionally account for effects thought to reflect the
resulting mnemonic structure. To illustrate how our model performs
subsequent recognition memory, we applied SEA to an experiment
using the rule-plus exception category structure (Table 4). In this
structure, most stimuli can be accurately sorted into categories
according to a simple rule, but the remaining exception items
must be recognized, and categorized according to a different
strategy. Behavior on this task reveals interesting differences in
how rule-following and exception items are encoded.
Although rule-following items tend to be more easily learned (as

estimated by categorization accuracy), exception items tend to be
better recognized (as estimated by subsequent old–new recognition-
test accuracy; Davis, Love, & Maddox, 2012; Davis, Love, &
Preston, 2012b; Love & Gureckis, 2007; Palmeri & Nosofsky,
1995; Sakamoto & Love, 2004). This is thought to reflect stronger
encoding of the rule-irrelevant features for the exception items.
Differences in categorization and recognition accuracy between the
rule-following and exception items, therefore, suggest differences in

the organization of conceptual knowledge. As single-system cate-
gorization models (e.g., Nosofsky, 1986) have difficulty accounting
for this effect, dual-process frameworks (involving separate repre-
sentational systems for rule-following and exception items) have
been proposed (e.g., Nosofsky et al., 1994). We predicted that due
to its minimization of sampling cost, SEA would develop incom-
plete representations of rule-following items (i.e., ignoring rule-
irrelevant features), and would sample more features for exception
items (as these need to be differentiated from rule-following items,
and then sorted according to a different strategy).

In SEA, recognition strength is modeled (by the concept-learning
component) as the likelihood of the observed stimuli, given the
learned clusters:

Recognition Strength =
X

k

PðFOjkÞPðkÞ, (13)

where P(k) denotes the prior probability of existing clusters (Equa-
tion 4). Our estimate of recognition strength therefore reflects the
degree to which a stimulus “activates” the existing clusters. This
variable comprises the denominator in Equation 3 and so plays an
important role in normalizing estimates of P(k|FO).

The model results conformed to the pattern of human results as
rule-following items had an accuracy advantage during learning,
and a disadvantage during subsequent recognition test (Figure 8). As
shown by the black bars in Figure 8D, our model sampled fewer
features (M = 2.45) for rule-following items than for exception
items (M = 3.17) during learning, reflecting a learned strategy of
sampling until the presence or absence of an exception item could be
determined.

To better understand the consequences of this learned sampling
strategy, we simulated a “yoked” model that inherited the scan paths

Figure 7
5/4 Categorization Task: Comparison of Human and Model Cate-
gorization Behaviour

Note. Human data from (Rehder & Hoffman, 2005b).

Table 4
Rule-Plus Exception Category Structure (Davis, Love, & Preston,
2012b)

Category Item type D1 D2 D3 D4

A Train* 2 2 2 2
A Train 1 1 1 2
A Train 1 1 2 1
A Train 1 2 1 1
B Train* 1 2 2 2
B Train 2 1 1 2
B Train 2 1 2 1
B Train 2 2 1 1
— Test 1 1 1 1
— Test 1 1 2 2
— Test 1 2 1 2
— Test 1 2 2 1
— Test 2 1 1 1
— Test 2 1 2 2
— Test 2 2 1 2
— Test 2 2 2 1

Note. Participants in this study learned to categorize based on the first eight
stimuli (Item Type: “Train”). By attending only to the first feature (“D1”),
participants would be able to categorize three of the four stimuli within each
category. Exception items (marked with an asterisk) violate this simple rule,
and thus require attention to other features. After category training, item
recognition for the rule-following and exception items is compared via a two-
alternative forced choice task, involving comparison to eight additional test
items (Item Type: “Test”).

226 BRAUNLICH AND LOVE



from a simulation of our standard model. This removes the possibility
of hypothesis-dependent sampling, as the concept-learning and active-
sampling components were decoupled.22 Compared to our regular
model, the yoked model’s performance was particularly impaired on
the exception items. The yoked model made disproportionately more
errors to the exception items during learning (see Figure 8C) and was
worse than our standard model in recognizing these items. This finding
illustrates the importance of strategic sampling in this task. In particular,
the categorization task necessitated greater sampling of information
about exception items, leading to a more complete representation of
these items in memory.

General Discussion

SEA describes how people strategically sample information while
learning and making decisions. It consists of a Bayesian learning
component, which models beliefs about the world, and an
information-utility component that conducts a goal-directed forward
search based upon these beliefs. Interactions between the two
components allow the model to actively learn about the external
world by sequentially sampling from information sources expected
to provide useful information. In SEA, usefulness reflects both a
drive to maximize expected gain in utility (exploitation of existing
knowledge), and a drive to maximize knowledge of the external
world (exploration). As a consequence of active sampling, SEA’s
knowledge of the world reflects the utility function it strives to
optimize (Table 1 provides an example of a utility function that
would maximize decision accuracy). Although SEA differs from
“single-step” categorization models that sidestep questions related
to active sampling, and instead contort representations of encoded
dimensions based on their behavioral relevance (e.g., Kruschke,

1992; Love et al., 2004; Nosofsky, 1986), its active sampling
behavior leads to the development of dense representations along
dimensions expected to be behaviorally relevant, and sparse
representations along dimensions expected to be irrelevant. As
a result, SEA provides a compelling account for many aspects of
human categorization behavior. Interestingly, although each com-
ponent can be considered normative in its own right, as a conse-
quence of the recurrent interactions between learning and
information sampling, SEA can develop and maintain beliefs
that systematically deviate from reality (Figure 2).

As our goal was to offer a general theory of how attentional-like
behavior could emerge from sequentially sampling information
according to its expected utility (Trommershäuser et al., 2006),
SEA was not tuned to any of the individual tasks. The default
parameters from the RMC were used throughout. Similarly for
each simulation, an arbitrary cost of 10 utility units was imposed
for sampling each stimulus feature. Although it was not tuned to
particular data sets or tasks, SEA was able to capture a wide range of
category learning findings. For example, in addition to capturing the
basic difficulty ordering of the six problem types described by
Shepard et al. (1961), SEA correctly captured known human sam-
pling behavior during category learning (Figure 6). Thus, by com-
bining the Bayesian concept-learning component with a utility-
sensitive sampling component, SEA is able to account for effects
that were thought to require a dedicated postencoding attention-
weighting mechanism (Kruschke, 1992; Nosofsky et al., 1994).

Figure 8
Rule Plus Exception Results

(A) (B) (C) (d)

Note. (A) Human Behavior: Recognition (“Rec.”) and categorization (“Cat.”) accuracy for rule-following (“Rule”) versus exception (“Ex.”)
stimuli (Davis, Love, & Preston, 2012a). Although categorization accuracy was greater for rule-following items, recognition accuracy was
greater for exception items. Error bars reflect 95% confidence intervals. (B) Model Behavior. Mirroring human behavior, the model displayed
greater categorization accuracy for rule-following items than for exception items, but greater recognition strength (Equation 13) for the exception
items than the rule-following items. (Note differences in the vertical-axis scale for categorization accuracy and recognition strength). (C) Model
Categorization Behavior: Categorization accuracy for rule and exception items for the standard and yoked (“Y”) models. Mirroring human
behavior, both models displayed better categorization accuracy for rule-following items than for the exception items. Accuracy for the yoked
model was lower than that of the standard model. Model-type and stimulus-type interacted such that the yoked model displayed a greater
difference in accuracy between rule-following and exception stimuli than the standard model. (D) Model Sampling Behavior. Although the
standard model sampled a greater number of features for exception items than for rule-following items, the yoked model did not.

22 Because the calculations of the concept-learning component are sto-
chastic, and because the stimuli were randomized, the yoked model was
unable to perform stimulus-specific sampling. When coupled, the probabi-
listic calculations of the concept-learning component guide active sampling.
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SEA can additionally address sampling phenomena that are
outside the scope of existing models with attentional mechanisms.
Rather than initially encoding all information used to form the
decision, and then contorting these encoded representations based
on their behavioral relevance, SEA’s information-utility component
allows the model to select relevant information through a dynamic
forward search process. This allows the model to allocate attention
flexibly within individual trials (as in Blair et al., 2009). This ability
is unavailable to models in which attention operates at the level of
individual features, but not at the level of individual stimuli.
Moreover, as “indicator” features (such as those in the category
structure considered by Blair et al., 2009, which indicate the next
appropriate feature to sample) can be considered as contextual cues
signaling appropriate decisional strategies, SEA’s active sampling
procedure naturally accounts for effects associated with context-
gated knowledge partitioning (Lewandowsky et al., 2006; Little &
Lewandowsky, 2009; Yang & Lewandowsky, 2003).
This capacity to flexibly sample from information sources ex-

pected to provide useful information supports an alternative inter-
pretation of findings associated with the classic 5/4 category
structure (Medin & Schaffer, 1978; Rehder & Hoffman, 2005b).
In our simulations, SEA sampled stimulus features at an overall rate
consistent with the best-fit attention weights from the Generalized
Context Model (GCM; Nosofsky et al., 1994). However, these
overall sampling proportions arose in SEA from averaging hetero-
geneous sampling patterns across the individual stimuli. One pos-
sibility is that heterogeneous sampling behavior might also explain
why these weights arose for the GCM. By characterizing each
category decision as the culmination of an active sampling process,
SEA offers a rich account of the microstructure of each trial that can
be tested experimentally. In cases such as the 5/4 studies, this
disaggregation offers novel insights into classic categorization tasks
and alternative accounts of the behavioral results.
Although we have focused on eye-tracking studies, we intend

SEA to apply to other kinds of behavior. Even in cases in which all
stimulus features fall within the same spatial location, its selective
sampling processes should still be operable. To illustrate this point,
we applied SEA to a rule-plus-exception category learning problem
in which most items followed a simple rule, and the remaining
exception items had to be categorized according to a different
strategy (Davis, Love, & Maddox, 2012; Davis, Love, &
Preston, 2012b). Like human decision makers, SEA made more
errors on exception items during learning while also showing
enhanced recognition for these items following learning. This
reflects increased representational density for the rule-following
items relative to the exception items; as SEA tended to sample
more stimulus features for exception items (sampling each stimulus
until it could be determined whether it was an exception).
We also aimed to show how behaviors beyond the scope of classic

models of selective attention could be explained in terms of strategic
sampling. That SEA could capture the qualitative data patterns in
these studies, and in cases offer novel interpretations and predic-
tions, is a strength of this work. In this contribution, we did not stress
comparison to alternative models, though we did note where classic
selective attention models and myopic versions of SEA that do not
perform full-look-ahead search would fail. In the future, finer-
grained model comparisons and fits to data, including to individual
participants, can assist in evaluating alternative strategic sampling
models.

By considering information gathering to be an integral compo-
nent of category learning, the current approach recasts categoriza-
tion as a dynamic decision-making problem. This is similar to a
model-based reinforcement-learning approaches in which the learn-
ing agent incrementally builds a model of the external world, while
at the same time using the model to adjust its policy (i.e., guide the
agent’s choices; Sutton, 1990, 1991). In these kinds of dynamic
decision-making tasks, optimal performance requires a delicate
balance between exploration (which provides the highest returns
according to current estimates of utility) and exploitation (which
help the agent to discover options with potentially greater utility;
Kaelbling et al., 1996; Sutton & Barto, 1998).

Although it places less emphasis on managing the exploration/
exploitation trade-off, the model most similar to SEA is likely that
developed by Nelson and Cottrell (2007). This model combines a
Bayesian concept-learning component (which was designed for the
six problem types described by Shepard et al., 1961), with an active
sampling procedure driven by the expected information gain of each
stimulus feature (Nelson, 2005). In conjunction with a fixed cost for
sampling each feature, the sampling procedure encouraged the
model to selectively sample task-relevant stimulus features; mirroring
previously observed patterns of human eye movements (Rehder &
Hoffman, 2005a). SEA is additionally able to predict the correct
ordering of problem difficulties (i.e., Type I < II < IV < VI),23 a
common touchstone for evaluating formal categorization models.
Nelson and Cottrell’s work can be seen as a special case of SEA. First,
SEA includes a flexible concept-learning component that is capable of
learning a wide variety categorization problems. Second, it is flexible,
in that it can maximize accuracy or expected utility. This is useful
when the maximization of utility and accuracy represent distinct
objective functions.

Below, we discuss some possible elaborations of SEA after first
considering some implications of this work.

Bayesian Discriminative Learning

One popular distinction in machine learning is between discrimi-
native and generative models (Ng & Jordan, 2002). In brief,
generative and discriminative models characterize the task of the
learner differently. Generative models attempt to learn an internal
model of each class (i.e., category). In contrast, discriminative
models attempt to find a boundary that separates classes. Generative
models are typically Bayesian in form, whereas discriminative
models include decision trees, Support Vector Machines, regression
approaches, and some (but not all) connectionist models. In genera-
tive models, the learning task is to estimate the joint probabilities
between all variables. These models assume that a hidden or latent
variable (e.g., a category label) generates the observed features. In
contrast, discriminative models perform a conditional estimation.
For example, logistic regression only estimates the probability
of a class (i.e., category) as a function of the predictive features.
In this sense, discriminative models are more focused by the task,
whereas generative models address a broader estimation problem,
though models of all types have an inductive bias to make learning
tractable.

23 Like Rehder and Hoffman (2005a), Nelson and Cottrell (2007) consid-
ered only these four problems.
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SEA displays characteristics of both generative and discrimina-
tive models. SEA is a generative model in that it builds an internal
model of the world that can be sampled from. On the other hand, its
internal model is heavily biased by the discriminative pressures of
the tasks it performs, which results from its utility-driven sampling.
Therefore, rather than attempting to build an unbiased model of the
world, SEA samples information that it expects will be useful for
performance of the task. Although learning to classify items as
members of one of two contrasting categories, for example, SEA
will naturally focus on information that discriminates the two
categories. SEA is therefore a generative model whose internal
model of the world is shaped by its goals. This is also the defining
characteristic of the SUSTAIN clustering model (Love, 2005). In
effect, SEA follows SUSTAIN’s basic principles, but updates and
places these principles within a Bayesian framework. This allows
SEA to handle uncertainty, display strategic sampling behavior, and
model changes in tasks and goals via changes of its utility function.
These characteristics allow SEA to capture behaviors not typi-

cally associated with Bayesian models. One such behavior is
blocking (Kamin, 1969) in which knowledge of an informative
stimulus feature can interfere with the learning of another. For
example, consider a trial-by-trial category learning task in which the
shape feature is predictive of category membership, and all other
stimulus features are irrelevant. During early trials, SEA predicts
that all features will be sampled occasionally, consistent with the
findings of a uniform prior in repeated resource allocation games
(Benartzi & Thaler, 2001; Langholtz et al., 1997). However, assum-
ing some cost to sampling information (e.g., a desire to minimize
cognitive effort), eventually, only shape information will be sam-
pled and other stimulus features will be ignored. Thus, if another
feature that was previously behaviorally irrelevant becomes infor-
mative, SEA would be unlikely to learn this new relationship.
The simulations reported here involved classification learning in

which the learner aims to predict the category label from the
features. In this induction task, all the features are known and
the category label is inferred. However, other induction tasks are
possible, such as inference learning, in which the learner knows the
category label and one of the features is inferred instead (e.g., This is
a fish. Does it have scales?). Although inference and classification
learning are informationally equivalent (after feedback is provided,
inference and classification learning provide the same information to
the learner), but strongly influence what human decision makers
ultimately learn (Chin-Parker & Ross, 2002; Rehder et al., 2009;
Sakamoto & Love, 2010; Yamauchi et al., 2002; Yamauchi &
Markman, 1998). In classification learning, people tend to learn
information that discriminates between the two categories. In
inference learning, however, people tend to learn more about the
internal structure of each category.
When its utility function is adjusted to reflect each task, SEA’s

behavior is consistent with these results. For classification learning,
SEA’s utility function should emphasize predicting the category
label. In inference learning, SEA’s utility function should emphasize
predicting whatever feature is absent on the current trial. In effect,
the task demands should shape SEA’s utility function, which will in
turn shape SEA’s internal model; consistent with the psychological
theory of how human memory is shaped by these tasks (Markman &
Ross, 2003). Related manipulations that alter the presentation order
of features and label (Ramscar et al., 2010) or the isolation of

categories (Goldstone, 1996) could also be accommodated in a
principled way by tailoring SEA’s utility function.

Future Directions

One line of future work is improving SEA’s basic components.
For example, SEA’s learning component relies on Anderson’s
(1991b; Anderson & Matessa, 1990) RMC. Virtually any other
concept learning model could be used that can perform forward
planning by estimating the probabilities of unobserved features.
Basic improvements could also be made to SEA’s information-
utility component. SEA’s information-utility component performs
an exhaustive forward search; evaluating the full breadth and depth
of the decision tree defined by the stimulus attributes. As the number
of possible branches increases exponentially with the number of
features considered, this exhaustive approach is prohibitively expen-
sive for all but the simplest problems.

We did consider a myopic version of SEA that lowered search
costs (in terms of computation) and performed well in some envir-
onments (Figure 4). On occasions, people may also engage in simple
myopic search strategies (e.g., Busemeyer & Rapoport, 1998).
However, our results also make clear that people can also engage
in more sophisticated search strategies. One possibility would be to
allow the model itself to determine the appropriate depth of the
forward search (Snider et al., 2015). For the problems considered
here, searching only two steps ahead would have been sufficient to
support human-like behavior. A model starting with a shallow search
and then progressing deeper until reaching a performance plateau
could be a viable model for human information sampling. More
sophisticated search procedures, of course, could also improve
computational efficiency, and/or better capture human characteris-
tics. For example, Google DeepMind’s AlphaGo, which defeated a
champion human Go player, relies on Monte Carlo tree search to
selectively explore the most promising parts of the search space
(Silver et al., 2016). People may similarly rely onmemory to retrieve
the most effective search strategies used in the past (Logan, 1988).

In addition to considering the search strategy, where the primary
concerns are computational complexity and pruning of the search
space, consideration of alternative evaluation strategies, such as a
“confirmatory” or “positive” testing strategies (Klayman, 1995),
would also be fruitful. In a sense, SEA already explains people’s
tendency to engage in confirmatory behavior in terms of using a
biased internal model for forward planning. Therefore, SEA can be
considered an alternative account of how confirmatory behavior can
arise. Rather than solely reflecting a faulty reasoning process,
confirmatory behavior may reflect a biased internal model. In other
words, a decision maker could try to reduce uncertainty through
preposterior analysis, but fail to make accurate predictions as a result
of inaccurate beliefs. SEA’s capacity for this behavior makes it
susceptible to phenomena like blocking. Our hope is that it will
advance our understanding of broader phenomena, such as echo
chambers or filter bubbles, in which personalized information
searches and social media use can lead to underexposure to alterna-
tive viewpoints, resulting in inaccurate, or incomplete, worldviews
(Pariser, 2011).

Incorporating alternative search and evaluation strategies may
increase SEA’s quantitative fit to human data, as could incorporating
additional noise sources into SEA’s evaluation and decision pro-
cesses. Across the simulations considered here, SEA’s behavior could
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be characterized as somewhat idealized in comparison to human
participants. In this contribution, we prioritized illustrating basic
principles and performance patterns over quantitative fit. Future
efforts may emphasize quantitative fit and measurement of individual
differences in learning and information sampling strategies.
SEA also suggests fruitful research avenues to explore in psy-

chology and neuroscience. Traditional models of selective attention
(e.g., Kruschke, 1992; Love et al., 2004; Nosofsky, 1986) have
been useful at both the behavioral and neural levels of analysis
(Braunlich & Love, 2019; Mack et al., 2013). Although these
models provide a principled way to investigate how information
is organized during decision making, they tend to sidestep questions
related to active sampling processes which unfold across time during
deliberation. SEA, however, posits that more sophisticated sampling
processes unfold across time during deliberation. This opens a
number of avenues for future investigation. For example, SEA
proposes that an optimal decision maker should consider the ex-
pected gain in utility from each feature, G(Fi), Equation 10. This
variable can be subdivided into three subcomponents: The expected
cost of sampling a feature, the expected gain in utility of sampling
the feature without consideration of its cost, and the expected
reliability (i.e., expected inverse variance) of each feature. SEA
also provides an estimate of the expected reduction in uncertainty
about the appropriate final choice from sampling each feature. In
addition to the issues outlined above regarding search strategies,
each of these variables may be of interest to scientists interested in
examining intratrial attentional effects.

Conclusions

Current models of categorization provide a compelling account
for how information is organized to support advantageous decision
making (Figure 1A). Although these models provide important
insights into decision-making strategy, they sidestep the sequential
and contingent information sampling processes that occur within
individual trials (Figure 1B), and which are necessitated by the
computational demands of interacting with the high-dimensional
real world. As shown in Figure 4C, encoding all available sensory
information in high-dimensional environments is computationally
inefficient (at least at high resolution; Goffaux et al., 2010). Accord-
ingly, decision makers appear to draw on their existing knowledge
to selectively sample information from sources expected to provide
behaviorally relevant information (Blair et al., 2009; Najemnik &
Geisler, 2005; Nelson & Cottrell, 2007; Yang et al., 2016). Active-
sampling learners therefore can develop beliefs about the world that
systematically deviate from reality (Figure 2), particularly when
competing demands for exploration and exploitation are not bal-
anced appropriately.
SEA describes these bidirectional effects on the development of

conceptual knowledge. Although it is largely formulated at the
computational level (Marr, 1982), it makes predictions about how
behavior should unfold both within and across trials, and should be
useful in understanding and predicting human behavior. SEA should
serve as a useful guide for understanding attentional effects, learn-
ing, and decision phenomena underlying the development of
biased representations of the external world. Such effects are not
only common in the laboratory, but are of fundamental importance
for understanding how capacity-limited decision makers interact
with the external world.
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Appendix A

Variable Definition

a Action
αj Dirichlet prior for particular value on particular stimulus dimension
α0 Dirichlet prior for a particular stimulus dimension
c Coupling probability
Cij Number of times value j has been observed on dimension i in a particular cluster
G Expected gain in utility
F Features (or “Dimensions”)
j Feature value
O Indices of observed (i.e., previously sampled) dimensions
k Cluster number
ℒ Sampling cost associated with particular dimensions
nk Number of items assigned to cluster k
i Index of dimension considered for sampling
U Utility
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Figure B1
Simulation of Shepard et al. (1961): All Rules
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