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Abstract

Background: While several interventions can effectively lower lipid levels in people at risk 

for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event (CVE) risks remain, 

suggesting an unmet medical need to identify factors contributing to CVE risk. Monocytes and 
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macrophages play central roles in atherosclerosis, but previous work has yet to provide a detailed 

view of macrophage populations involved in increased ASCVD risk.

Methods: A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 

two quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. 

Next, a machine-learning algorithm was developed to analyze gene expression patterns in the 

peripheral monocyte transcriptome of Multi-Ethnic Study of Atherosclerosis participants (MESA-

set1, n=911). A list of 30 genes was generated and integrated with traditional risk factors to 

create an ASCVD risk prediction model (CR-30), which was subsequently validated in the 

remaining MESA-set2 (n=228); performance of CR-30 was also tested in two independent human 

atherosclerotic tissue transcriptome datasets (GTEx and GSE43292).

Results: Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, 

FR-FCM-Z23S), AtheroSpectrum detected two distinct programs in plaque macrophages: 

homeostatic-foaming and inflammatory pathogenic-foaming, the latter was positively associated 

with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes 

was extracted and screened to select a subset of 30 genes correlated with CVE in MESA-set1. A 

CVD risk score model (CR-30) was then developed by incorporating this gene-set with traditional 

variables sensitive to CVE in MESA-set1 after cross-validation generalizability analysis. The 

performance of CR-30 was then tested in MESA-set2 (p=2.60×10−4, AUC=0.742), and two 

independent datasets (GTEx, p=7.32×10−17, AUC=0.664; GSE43292, p=7.04×10−2, AUC=0.633). 

Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model 

(likelihood ratio test, df=31, p=0.03).

Conclusion: Our novel computational program (AtheroSpectrum) identified a specific gene 

expression profile associated with inflammatory macrophage foam cells. A subset of 30 

genes expressed in circulating monocytes jointly contributed to prediction of symptomatic 

atherosclerotic vascular disease. Incorporating a pathogenic foaming gene-set with known risk 

factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate 

both mechanistic investigations and development of therapeutic and prognostic strategies for 

ASCVD risk.
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Introduction

Atherosclerosis remains one of the main causes of death worldwide even as several 

interventions have been shown to reduce risk of atherosclerosis and related atherosclerotic 

cardiovascular diseases (ASCVD)1, 2. Importantly, residual risk of ASCVD has emerged as 

a relevant threat in populations with successful lipid and/or hypertension management and 

interventions to reduce known risk factors (fasting glucose, smoking, etc.)3. Indeed, several 

recent clinical trials revealed that cardiovascular events (CVE) occur even in populations 

with no significant elevation of low-density lipoprotein cholesterol (LDL-C), suggesting 

additional risk factors that could contribute to ASCVD incidence, the leading causes of 

death worldwide4. Current prediction tools for assessing ASCVD risk rely on traditional risk 
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factors such as LDL-C, fasting glucose, smoking, blood pressure, triglycerides, and high-

density lipoprotein cholesterol (HDL-C)5. The existence of residual CVE risk emphasizes 

the need for novel risk prediction tools.

Given the central role of monocytes/macrophages in atherogenesis, extensive efforts have 

been invested in understanding their actions during recruitment and after infiltration into 

atherogenic foci, especially their lipid uptake/efflux relevant to this unique environment6–12. 

Currently, plaque-resident macrophages have been defined as pro-inflammatory “M1”-

like macrophages that release pro-atherogenic cytokines7 and accelerate atherosclerosis 

progression13, 14, or alternatively activated “M2”-like macrophages that are believed 

to reduce plaque inflammation and suppress atherosclerosis progression7. As a major 

component of atherosclerotic plaques, foam cells not only accumulate as fatty streaks, but 

also release pro-inflammatory cytokines and orchestrate pathological tissue remodeling7. 

Indeed, specific macrophage/foam cell phenotypes can impact stability of atherosclerotic 

plaques differently15.

However, many studies fall short in explaining key features that distinguish symptomatic and 

asymptomatic outcomes in patients, or depicting a comprehensive landscape that captures 

the intertwined inflammation and lipid handling aspects that are unique to macrophage-

derived foam cells. Such crucial information in circulating monocytes is difficult to extract 

from transcriptomics of bulk RNA-seq data, primarily due to the relatively subtle gene 

expression differences across cells and the lack of available high-resolution tools to 

characterize their dynamic and plastic actions7–9. Associations between either monocyte 

counts or transcriptome profiles and ASCVD incidence are only found to be moderate 

with limited if any predictive capability16, 17, and have never been investigated in the 

context of ASCVD risk. Herein, we describe an innovative macrophage-derived foam cell 

analytics program, AtheroSpectrum, which can infer pathogenic inflammatory foam cell-

specific genetic programs contributing to ASCVD risk. By combining this gene-set with 

known ASCVD risk factors, we are able to enhance ASCVD risk prediction compared with 

currently used models.

Methods

Data availability

To minimize the possibility of unintentionally sharing information that could be used to re-

identify private information, data from this study are available from the following resources: 

monocyte transcriptome profiles of MESA participants are accessible through GEO Series 

accession number GSE5604716. The other datasets used in this study were accessed with the 

GEO Series accession number GSE9731018, GSE9794119, GSE11624020, GSE11623920, 

GSE4329221, or from FR-FCM-Z23S22 (https://figshare.com/s/c00d88b1b25ef0c5c788, 

DOI: 10.6084/m9.figshare.9206387). GTEx data were from gtexportal.org (dbGaP 

Accession phs000424.v8.p2).
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MESA Participants

Please see additional information about MESA cohort in Expanded Methods. All 

measurements and monocyte collection were obtained at MESA Exam 516. Participants 

were followed for CVE until 2017. Of the 1269 MESA participants, 1207 (male=597, 

female=610) had valid records of CVE on the MESA Events datasets (2017). CVE was 

defined as “cvda” in MESA, including Myocardial Infarction, Resuscitated Cardiac Arrest, 

Definite Angina, Probable Angina (if followed by Revascularization), Stroke, Stroke Death, 

Coronary Heart Disease Death, Other Atherosclerotic Death, and Other Cardiovascular 

Disease Death. Of the 173 participants who experienced CVE between Exam 1 and 

2017 provided by MESA, 68 participants only had events prior to Exam 5, and were 

thus excluded from predictive modeling. Participants with CVE records after Exam 5 

(total participants=1139, including CVE=0, n=1034; CVE=1, n=105) were used for model 

training, testing, and the survival analyses with indicated prediction scores. We randomly 

divided the full dataset (n=1139) into two subsets: MESA-set1 (n=911, 466 females and 445 

males) that was used for gene-set selection and model training; and MESA-set2 (n=228, 121 

females and 107 males) that was used exclusively for model validation. The present analyses 

are primarily based on transcriptomic data collected from the previous report16 with the 

approval from Institutional Review Boards of the four institutions. All participants signed 

informed consent16 (details in the Expanded Methods).

Creation of MDFI for each cell

MDFI (Macrophage-Derived Foam cell Index) was created using a similar method as 

MPI (Macrophage Polarization Index)23. Calculation for rchow and rathero values of three 

atherosclerosis macrophage transcriptome profiles (atherogenesis diet mice) and three 

normal artery macrophages profiles (chow diet mice)20 were calculated were detailed in 

Expanded Method. Linear regression was performed on the macrophage profiles on the rchow 

- rathero plot, producing an adjusted R2 value of 1.000. The regression line was defined as the 

foaming axis. Let the equation of the regression line be: ax + by + c = 0.

The coordinates of each sample’s projection on the regression line (P) were calculated as 

follows:

xp =
b2rcℎow − abratℎero − ac

a2 + b2

yp =
a2ratℎero − abrcℎow − bc

a2 + b2

The correlation r values were always within the range −1 to 1; we then set the left-most 

point on the plot P0 (−1,a − c
b ) as the reference zero-point. Accordingly, the right-most point 

Pmax (1,− a + c
b ) was set as the reference Pmax point. The distance l from the reference 0 point 

to a given macrophage sample’s P (xp, yp) was calculated as the following:
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l = xp − xp0
2 + yp − yp0

2

The distance between Pmax and P0 was scaled to create a 0 (P0) to 100 (Pmax) range and the l 
value of each macrophage sample was rescaled accordingly, resulting in its MDFI.

Model training and testing with 5-fold cross validation

MESA data with valid CVE record after Exam 5 (n=1139) were randomly split to MESA-

set1 (n=911) and MESA-set2 (n=228) and adjusted for stratification of sex. MESA-set1 was 

used for gene screening (EPIC) and CR-30 modeling; whereas MESA-set2 (n=228) was 

exclusively used for CR-30 validation.

A 5-fold cross validation strategy was used to assess model generalizability. The participants 

(n=911) in MESA-set1 were randomly shuffled and divided into 5 equal groups (n=182 

or 183 in each group); 4 groups were used for training and 1 was used for testing. This 

random shuffling was conducted 5 times. To evaluate the classification accuracy of models, 

we considered the average receiver operating characteristic (ROC) under the curve (AUC) 

of each testing group from 5-fold cross validation. Overall performance of the model was 

presented as average AUC of the 5 groups. For comparison, ROC curves were also plotted 

for 10y risk score (JAMA 2001)24, Framingham risk score 200825 (FRS 2008), and the 

Pooled Cohort Equation for ASCVD risk (PCE 2013)26 in the same 5-fold testing sets. 

Please see Expanded Methods for additional information for machine learning-powered 

CVD risk signature gene identification.

Creation of the CR-30 model

A logistic regression model was trained in MESA-set1 using the 30 gene-set and lipid-

lowering medication, hypertension medication, diastolic blood pressure, diabetes, sex, age, 

and MPI. Covariates were rescaled using a standard scaler x − mean
std  prior to model training. 

Each MESA subject was input into the model to generate a regression value between 0 and 

1 for their probability of having a CVEs (0=no event; 1=event). The regression values were 

linearly rescaled to a 0–10 range, and reported as the CR-30 score.

For the analysis of independent validation data (MESA-set2, GTEx, and GSE43292), 

transcriptome profiles were first normalized using the limma (microarry), or EdgeR (RNA-

seq) package. Expression levels of 30 genes in CR-30 were centralized and rescaled using 

the same scaler (standard scaler) with the model-reference set (MESA-set1). A fixed value 

of 0 was assigned to the covariate values that were not collected in the independent 

validation studies. Reshaped data was then uploaded to the model to generate a CR-30 

score for each sample.

Methods for signaling enrichment analyses and PCE 2013 risk score calculation are 

provided in Expanded Methods.
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CVE-free survival analyses

Cox proportional hazards regression was conducted on MESA-set2 participants (121 

females, 107 males) who had valid record of CVE (yes or no) after monocyte collection 

date until the date of record in 2017 MESAEvent data. The median CR-30 score of 

participants in MESA-set2 was used as the cutoff for CVE risk predictions. The analyses 

were done using R packages “survival” (github.com/therneau/survival) and “survminer” 

(rpkgs.datanovia.com/survminer/index.html).

Statistics

Unless otherwise stated, p values of gene differential expression were determined by Mann-

Whitney U test. ROC test was performed using pROC package (https://search.r-project.org/

CRAN/refmans/pROC/html/roc.test.html). p values of enrichment of pathways, upstream 

regulators, and gene ontology terms were generated by the corresponding bioinformatics 

tools. All statistics calculations were conducted using R unless otherwise stated.

Results

Residual ASCVD risk not entirely explained by traditional risk factors

The cohort in the present study includes 1207 MESA participants consisting of 610 

females and 597 males (Table 1, Fig. 1). Multivariate logistic regression analysis of this 

cohort confirmed the significant relevance of known factors to CVE, including sex, age, 

lipid-lowering medication, hypertension medication, diabetes (2003 American Diabetes 

Association [ADA] fasting criteria, level 1=impaired fasting glucose; level 2=diabetes 

mellitus, treated or untreated), and diastolic blood pressure (Fig. S1 and Table 2). However, 

consistent with previous observations4, participants in this cohort who has been treated with 

lipid-lowering or hypertension medication or additional ASCVD risk factor management 

may still have significant risk of having cardiovascular event, suggesting an unmet medical 

need to identify additional factors which may contribute to ASCVD.

AtheroSpectrum identifies the dynamic transition from macrophages to foam cells

To comprehensively characterize the diversified status of monocytes and macrophages 

in the context of cardiovascular disease (CVD) and identify the significant cell features 

that associate with ASCVD risks, we developed a novel computational program called 

AtheroSpectrum. AtheroSpectrum was developed by extending our recently published 

program MacSpectrum23 that was designed to fine-map monocyte and macrophage 

activation and inflammatory features in complex tissue settings or diseases (Fig. S2). 

AtheroSpectrum is designed to capture the heterogeneity of macrophage-derived foam 

cells in atherogenic foci with two indices that address key aspects of these cells: 

Macrophage Polarization Index (MPI, inherited from MacSpectrum to annotate the degree 

of inflammation), and the novel Macrophage-Derived Foam cell Index (MDFI) that depicts 

macrophage foam cells (Fig. 2A). To create the MDFI, we developed a randomized feature 

selection approach to screen for a gene-set that could effectively separate the previously 

reported macrophage foam cells and non-foam cells, as indicated by their lipid deposition 

and cellular granularity in atherosclerotic vs. normal mice (GSE116239)20, while retaining 
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adequate inclusion of the most differentially expressed genes in macrophage foam cell 

formation (detailed in the Methods section). Higher MPI suggests more inflammatory cells 

and higher MDFI suggests more differentiation towards foam cells.

Application of AtheroSpectrum to murine atherogenic plaque macrophages (GSE116240)20 

correctly identified foam cells, and further revealed four subpopulations that we have termed 

non-inflammatory foam cell (A), inflammatory foam cell (B), inflammatory non-foam 

cell (C), and non-inflammatory/non-foam cell (D) (Fig. 2B). AtheroSpectrum accurately 

identified a previously reported foam cell population20 and its depiction was supported by 

expression of inflammatory and foam cell marker genes in the sub-populations depicted by 

MPI and MDFI, including Lgals3, Abcg1, Cd36, Il1b, Ccr2, Trem2, Lipa, Srebf1(Srebp1), 
Nlrp3, and others20, 27, 28(Fig. 2C, Fig. S3A).

To validate if similar cell sub-populations are consistently observed in atherosclerosis 

from different studies, we applied AtheroSpectrum to several atherosclerosis datasets 

generated under different scenarios. In mice with on-going atherosclerosis (GSE97310)18, 

AtheroSpectrum identified similar distribution patterns of athero-plaque macrophages as the 

four sub-populations mentioned above (Fig. 2D, top panel). In contrast, artery macrophages 

from healthy, chow diet mice primarily concentrated in the “D” region, suggesting a non-

inflammatory/non-foamy, unstimulated phenotype in healthy tissues.

Interestingly, compared to mice exhibiting improving/regressing atherosclerosis, mice with 

progressing atherosclerosis (GSE97941)19 had markedly increased macrophage populations 

in regions “B” (21.9% vs. 4.3%) and “C” (27.3% vs. 21.6%), with a similar portion 

in region “A” (18.8% vs 19.0%) (Fig. 2D, middle panel). Similar patterns were also 

observed in human atherogenic plaque-resident macrophages22 (Fig. 2D, bottom panel): 

plaque macrophages of asymptomatic patients predominately concentrated in regions “A” 

(35.9%) and “D” (57.9%), while those from symptomatic patients showed a marked increase 

in populations “B” (7.4% vs. 3.5%) and “C” (24.2% vs. 2.7%). On average there was 

3.9 fold increase (p=0.02) in populations “B” and “C” in more severe vs. healthy/less-

severe conditions across the three datasets. These analyses revealed that the two novel 

inflammatory-foam cell/ inflammatory subpopulations (“B” and “C”) that were identified by 

AtheroSpectrum were associated with CVD severity.

We further conducted gene function analyses on the four cell sub-populations (Fig. 2E). 

Many of the enriched signaling pathways and cell functions could be categorized into 

one of three functional groups: inflammatory response, lipid transport/metabolism, and cell 

development and survival (Fig. 2F). Pro-inflammatory signaling, such as the Th1 pathway, 

was enriched in populations “B” and “C” (Fig. 2E, Fig. 2F). Pathways of lipid metabolism 

(e.g., STAT3, RXR signaling pathways), lipid transport (e.g., integrin signaling, cholesterol 

transport, endocytosis), and cell development (e.g., GM-CSF signaling, TGF-β signaling) 

presented higher activation z-scores in populations “A” and “B” (Fig. 2E, Fig. 2F) – 

consistent with their predicted status as macrophage foam cells. Of note, the foam cells 

“A” and “B” showed both activated cell viability and necroptosis signaling, suggesting those 

foam cells were proliferating and differentiating in the tissue, but died at the end of their 

foam cell fate.
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The pathogenic foam cell program signature genes display distinct expression patterns in 
a population with ASCVD

Based on our analyses, we proposed two cell programs of atherogenic macrophages: the 

“homeostatic foaming” (“D” to “A”) that was present in both benign and severe disease 

conditions, and the “pathogenic foaming” (“D” to “C” to “B”) that was associated with 

severity of disease (Fig. 2G).

Genes that had significantly different expression (p< 0.05) in population “B” vs. “C” but 

not in “A” vs. “D”, and in population “B” vs. “A” but not in “C” vs. “D” resulted 

in a list of 2209 enriched genes that were associated with the inflammatory foam cell 

development of macrophages. This gene list included known signaling pathways involved 

in inflammation (e.g., tumor necrosis alpha [TNF-α] signaling, NF-kappa B signaling 

pathway), lipid transport (lysosome pathway), and lipid metabolism (MAPK signaling). 

A major portion of these genes (1566, 70.9%) presented significant differential expression 

in atherosclerotic vs. non-atherosclerotic artery tissues of human subjects deposited at the 

GTEx Portal (gtexportal.org), supporting the pathological relevance of these genes with 

ASCVD (Fig. S3).

We next designed a self-optimizing signature gene-set feature selection algorithm 

(Exploration system of Process-Incorporated features in Cells [EPIC]) to screen the 2209 

enriched genes using peripheral blood monocyte transcriptomes from MESA participants 

(Illumina bead array transcriptomics16, Table 1). To assess generalization performance, we 

randomly divided the MESA dataset (n=1139) into two subsets: MESA-set1 (n=911, 466 

females and 445 males with 84 CVE cases) that was used for gene-set selection and model 

training; and MESA-set2 (n=228, 121 females and 107 males with 21 CVE cases) that 

was used exclusively for model validation. Our algorithm incorporated multiple steps of 

self-optimizing cycles that gradually selected a panel of 30 CVE associated genes (see 

Expanded Methods).

These genes showed differential expression patterns between the two sexes based on 

standardized gene expression levels (Fig. 3A). Further, we fit a logistic regression model 

using the standardized expression levels of the 30 risk signature genes to predict CVE 

and observed significant associations between gene expression and CVE (Fig. 3B). Of 

note, ATP8B4 and SLC1A3 were positively associated with occurrence of CVE (Fig. 

3B), and were expressed at higher levels in atherosclerotic vs. non-atherosclerotic human 

artery tissues of the same subjects in the GTEx portal (Fig. 3C) and another human 

carotid atheroma dataset (GSE43292)21 (Fig. 3D), while R3HCC1 and MRPL1, which were 

negatively associated with occurrence of CVE (Fig. 3B), were expressed at lower levels in 

atherosclerotic vs. non-atherosclerotic human artery tissues of the same subjects in these 

artery tissue datasets (Fig. 3C,D). For these genes, similar patterns were observed in both 

female and male subjects (Fig. S4).

A Novel ASCVD Risk score by 30 gene-panel (CR-30) can predict ASCVD risk

To determine if the 30 gene-panel would enhance ASCVD risk prediction, we developed 

a novel risk score model, CR-30 (CVD Risk score by a 30 gene-set). CR-30 is a 
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logistic regression model that integrates the 30-gene panel revealed by AtheroSpectrum 

and EPIC, with clinical variables from MESA (Exam 5) including sex, age, lipid-

lowering medication status, hypertension medication status, diabetes, and diastolic blood 

pressure based on their association to CVEs from multivariate regression analyses in this 

cohort (Table 2), and our defined inflammatory index, MPI. A 5-fold cross validation 

analysis demonstrated that CR-30 coefficients were stable across folds with an average 

AUC=0.670 (p=1.53×10−2) (Fig. 4A). In parallel, this analysis also demonstrated reasonable 

generalizability of other commonly used risk scores in MESA-set1: 10y risk score (JAMA 

2001)24 (average AUC=0.628, p=8.62×10−2), Framingham risk score 200825 (FRS 2008) 

(average AUC=0.667, p=1.62×10−2), and the Pooled Cohort Equation for ASCVD risk (PCE 

2013)26 (average AUC=0.645, p=4.16×10−2).

Next, we trained the CR-30 model in the MESA-set1 data (Table 3). The significance of 

MPI in the multivariate regression further suggested the importance of inflammation in 

CVD, consistent with increased inflammatory populations (“B” and “C”) in symptomatic 

patients relative to asymptomatic patients (Fig. 2D). The performance of CR-30 was then 

tested in three independent datasets, including the MESA-set2 (n=228) that was not used in 

model development (Fig. 4B), and two independent datasets (GTEx and GSE4329221) (Fig. 

4D). The CR-30 score range is set to 0–10, with 0 and 10 indicating lowest and highest risk 

for a CVE, respectively. Although trained in a moderate-sized data (MESA-set1, n=911), 

CR-30 predicted CVE in the MESA-set2 with an accuracy of AUC=0.742 (p=1.30×10−4) 

and a significant discrimination of subjects with CVE from those without CVE after sample 

collection (p=2.60×10−4). Other models in this cohort (MESA-set2, n=228) were also 

analyzed for their performance, with JAMA 2001 (p=1.97×10−1, AUC=0.586), FRS 2008 

(p=7.36×10−2, AUC=0.619), PCE 2013 (p=7.30×10−4, AUC=0.724). Furthermore, paired 

ROC performance analyses demonstrated better prediction accuracy of CR-30 in MESA-

set2 than JAMA 2001 (p=2.61×10−2) and FRS 2008 (p =2.62×10−2), and comparable to 

PCE 2013 (p=3.67×10−1). In addition, in MESA-set2, those predicted to have CVE based 

on their CR-30 scores indeed were more likely to have an event compared to those with 

prediction of no-event (Wald test, p=5.98×10−3) after monocyte sample collection (Fig. 

4C). Similarly, CR-30 displayed a prediction of CVEs in females (Wald test, p=4.10×10−2) 

and males (Wald test, p=8.90×10−2) by Cox regression analyses (Fig. S5B). CR-30 was 

also tested in two tissue gene expression datasets (Fig 4D). CR-30 scores significantly 

discriminated atherosclerotic lesions from normal tissue among patients with an AUC 

of 0.664 in GTEx (n=899, p=7.32×10−17) and AUC of 0.633 in GSE4329221 (n=64, 

p=7.04×10−2).

To evaluate the contribution of the CR-30 gene panel and MPI in CVE prediction, we 

performed a model sensitivity test (Fig. S6). We used all variables from the PCE 2013 

model to develop 2 models: PCE-Mute (PCE 2013 variables only) and PCE-CR30-Mute 

(PCE 2013 variables + 30-gene panel + MPI). Generalizability of both models was first 

evaluated through a 5-fold cross validation strategy (PCE-Mute, average AUC=0.639, 

p=5.29×10−2; PCE-CR30-Mute, average AUC=0.655, p=2.95×10−2) (Fig. S6B). The 

two models were trained in MESA-set1 (Fig. S6A) and the likelihood ratio analysis 

with 31 degrees of freedom found significantly better support for the PCE-CR30-Mute 

(complex) model over PCE-Mute (null) (p=3.30×10−2). The performance of PCE-CR30-
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Mute (p=7.89×10−5, AUC=0.762) in MESA-set2 displayed better prediction power than 

PCE-Mute (p=7.66×10−3, AUC=0.677, Fig. S6C,D). In summary, our CR-30 model, 

powered by AtheroSpectrum and a novel machine learning algorithm for feature selection, 

effectively predicted CVD risk and presence of atherosclerotic lesions, exhibiting strong 

potential for future translational development.

Discussion

CVE risk assessment is critical for determining appropriate interventions and minimizing 

occurrence of future CVE. For decades, traditional cardiovascular risk factors, such as HDL-

C, LDL-C, and triglyceride levels have been targeted in ASCVD patients and/or high-risk 

groups for preventative interventions. Our analyses confirmed the association of known 

factors associated with CVE risk in the MESA cohort, including age, sex, diabetes, blood 

pressure, as well as medications for lipid-lowering and hypertension. However, a substantial 

number of people may still experience new CVE4, suggesting additional factors contributing 

to CVE are yet to be revealed.

The monocyte-macrophage lineage plays a critical role in the development of ASCVD. 

Monocytes sense cues from the microenvironment as they travel through the circulation 

and adopt specific gene expression profiles in response. Upon recruitment to the artery 

intima in atherogenic conditions, monocytes differentiate into macrophages and orchestrate 

pathological progression depending on their activation and foam cell development process. 

Therefore, this cell lineage carries comprehensive information on subjects with atherogenic 

conditions, making them ideal targets for analyzing ASCVD risk. However, due to a lack 

of high-resolution transcriptomic approaches, previous studies of this lineage only found 

limited if any association with CVE, and monocyte/macrophage-derived predictive factors 

for ASCVD risk were never investigated until now16, 17.

For decades, lipid metabolism had been extensively investigated for its role in foam cell 

formation. In contrast, little research has been done on the impact of inflammation on the 

foaming process. This deficit is largely due to a strategy of defining a cell subpopulation 

by few known genes followed by their feature characterization. Mouse models provide 

robust information on atherogenesis but little insight into the role of foaming cells and 

their inflammatory status in atherosclerosis progression, and even less to their potential 

roles in plaque instability and rupture. Recent studies also reported the involvement of key 

regulators for foaming, with or without inflammatory response. For example, ANGPTL4 
deletion can enhance foam cell formation primarily by regulating lipid uptake through 

increased CD36 expression and reducing ABCA1 membrane localization29; whereas Nur77 

ablation enhances macrophage inflammation and atherogenesis13. Recent meta-study of nine 

single cell mouse datasets from the Ley group suggested that four macrophage subsets 

could be identified, and transcriptomic similarity of the foamy subset (Trem2+ macrophages) 

are transitioned by inflammatory and interferon inducible macrophage subsets, summarized 

using UMAP algorithms30. This study supported the low-inflammatory feature of Trem2+ 

macrophage subset (GSE119240), induction of LXR- and SREBP- depended fatty acid 

metabolism in foam cells using bulk RNA-seq analyses20, 31. Indeed, distribution of these 

genes on AtheroSpectrum also supported these observations in regarding to their roles 
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in foaming or inflammation (Fig. 2) and provided further expression pattern along either 

homeostatic or pathogenic foaming programs.

Of note, methods using conventional computational algorithms for single-cell RNAseq 

analyses (such as tSNE, UMAP, PCA, and others) often produce a connective spreading 

population for one given cell type (macrophages in these studies) and rely on subsequent 

“marker” gene expression detection to define subsets. We and others have pointed out 

that current unbiased clustering methods for single-cell sequencing analyses may poorly 

depict subsets within one cell lineage23 32. Thus, in the present study, we took a different 

strategy where we annotated macrophage actions without aiming to define macrophage 

subsets during the foaming process. We leveraged our experience computationally 

depicting this lineage with MacSpectrum23 to develop the novel AtheroSpectrum system 

to profile foam-cell-developing macrophages during atherogenesis. This system features 

two indices, MPI and MDFI, that depict the inflammation and foam cell formation 

of atherogenic macrophages, respectively. We validated performance of AtheroSpectrum 

with multiple datasets from separate studies (Fig. 2D). In murine plaque macrophages 

(GSE116240)20, AtheroSpectrum accurately depicted the foam cell population, which was 

indicated by expression of foam cell signature genes Lgals3 and Abcg1 reported in the 

original publication (Fig. 2C). In another study (GSE97310)18, AtheroSpectrum revealed 

expansion of foamy and inflammatory macrophage populations in atherogenic diet-induced 

atherosclerotic mice compared to chow diet mice (Fig. 2D), which was consistent with 

previous knowledge of atherogenic macrophages33–35. These results support the efficacy of 

AtheroSpectrum, which is tailored for this disease.

AtheroSpectrum not only correctly identified known features of atherogenic macrophages 

but also identified a novel program consisting of both inflammatory and foam cell 

populations that were consistently higher in more severe ASCVD conditions: increased 

inflammatory/foamy populations in mice with progressing vs. regressing atherosclerosis, 

and in human subjects of symptomatic vs. asymptomatic atherosclerosis (Fig. 2D). For 

the first time, our discoveries suggest that not all foam cells contribute to atherogenesis 

equally, and the inflammatory foamy process – which we termed “pathogenic foaming” – is 

associated with detrimental outcomes.

We next extracted the 2209 genes that were enriched in the pathological foaming program of 

atherogenic macrophages followed by gene-set screening using our original computational 

program EPIC (Expanded Methods) with a selection guidance for gene-sets association 

with CVE. However, even within the 2209 enriched gene pool, there could be enormous 

combinations of genes (e.g., taking 30 from 2209 genes can produce 1.73×10100 different 

gene-sets), and it is impossible to screen each of them in a feasible amount of time. To 

solve this challenge, we created a novel algorithm, EPIC, that features recursive random 

sampling and self-optimization; through 7 stages of screening, our algorithm gradually 

narrowed down a candidate gene list and eventually produced a final 30-gene panel 

correlated with occurrence of CVE. In addition to the 30 signature genes, the MPI of 

monocytes also showed significant association with CVE (Table 3), suggesting an important 

role of inflammation for the increased pathological foaming program in more severe CVD 

conditions.
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Based on the 30 signature genes as well as MPI, sex, age, hypertension medication, lipid-

lowering medication, diabetes, and diastolic blood pressure, we developed a novel score 

system, named CR-30 (CVD Risk score by 30 genes), for assessing CVD risk by monocyte 

gene expression profiles (Table 3). Cross validation analysis of MESA-set1 for modeling 

suggested reasonable generalization of CR-30 model training with stable AUCs, as well as 

JAMA 2001, FRS 2008, and the PCE 2013 risk scores in MESA-set1 (Fig. 4A). The efficacy 

of CR-30 was then validated in remaining MESA-set2 (p=2.60×10−4) and two independent 

data (GTEx, p=7.32×10−17 and GSE43292, p=7.04×10−2) (Fig. 4). A likelihood ratio test of 

model fit of PCE-Mute model (null) to the alternative PCE-CR30-Mute on the MESA-set1 

data was performed with 31 degrees of freedom which further supports the PCE-CR30-Mute 

model (p=3.30×10−2). Our work established an approach for assessing CVD risk with 

monocytes from peripheral blood, and therefore could be used for longitudinal study and the 

follow-up evaluation of CVD medications.

To date, few monocyte profiles are available with comprehensive clinical measures from 

large cohorts, which significantly limited the robust validation and optimization of the CR30 

prediction tool. There are also several limitations of the current CR-30 score that could be 

further developed when more monocyte transcriptomics data are available. For example, in 

this study, feature selection and CR-30 model training was using MESA-set1 and tested 

in MESA-set2 and two independent datasets; whereas FRS 2008, PCE 2013 and JAMA 

2001 models were trained using independent datasets during their development. It would 

be ideal to conduct feature selection, modeling training in different dataset when they are 

available in the future. In addition, features (including the gene panel and physiological 

variables from MESA cohort) could be selected using various machine learning algorithms 

and/or stepwise strategy for clinical variables and gene features. Although cross validation 

analysis suggested a reasonable generalizability of MESA-set1 (n=911) for CR-30 model 

training, the moderate sample size with imbalanced case/control ratio (CVE0:CVE1 ratio 

is about 9:1) could also be adjusted using imbalanced sampling strategies to improve 

model sensitivity or larger monocyte profiles if available in the future. The CR-30 score 

is not ethnic-specific, given the limited size of our dataset and the number within each 

ethnic group with CVE (Supplementary Table S1). In addition, CR-30 was not applied to 

smaller subsets (e.g., ethnic group) due to the modest sample size in the current cohort. 

Lack of monocyte profiles from human subjects from different age groups also restricted 

age-related risk factor identification. When more monocyte datasets with CVE and detailed 

time courses become available, the CR-30 score can be evaluated and improved to provide 

more precise and robust prediction power of CVD risks within specified periods of time. 

CR-30 was developed using circulating monocyte gene profiles which can be challenging to 

translate seamlessly to clinical practice at this time, primarily due to the cost and technical 

difficulties associated with monocyte isolation from participant blood samples as well as 

RNA-sequencing. It is also a technical challenge to incorporate and cross-compare datasets 

generated using different platforms, which requires standardizing data normalization. Given 

the rapid advances of technologies in transcriptomic and genomic profiling, as well as fast 

developing bioinformatics tools, we are optimistic that application of CR-30 and other gene 

signature-based CVD risk assessment tools will ultimately be feasible, and will benefit 

patients for precision therapy and prevention care in the near future.
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Nonstandard Abbreviations and Acronyms

ASCVD Atherosclerotic cardiovascular disease

CVD Cardiovascular disease

CVE Cardiovascular event

MESA Multi-Ethnic Study of Atherosclerosis

GTEx Genotype-Tissue Expression

MDFI Macrophage-Derived Foam cell Index

MPI Macrophage Polarization Index

FRS Framingham risk score

PCE Pooled Cohort Equation

ADA American Diabetes Association

EPIC Exploration system of Process-Incorporated features in Cells

LDL-C Low-density lipoprotein cholesterol
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HDL-C High-density lipoprotein cholesterol

CR-30 CVD Risk score by a 30 gene-set
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Clinic Perspective

What is new?

• A novel macrophage foaming computational program, AtheroSpectrum, 

revealed two distinct programs during atherosclerosis: homeostatic foaming 

and pathogenic foaming programs.

• CR-30, an ASCVD risk assessment tool developed using monocyte 

transcriptomes and known risk factors, provided enhanced prediction power.

What are the clinical implications?

• Atherosclerosis remains one of the main causes of death in US and 

worldwide, demanding precision ASCVD risk assessment.

• Pathogenic foaming program was positively associated with of the incidence 

of atherosclerosis in multiple studies.
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Fig. 1. 
Schematic overview of the study. Substantial ASCVD risk remains in subjects of optimal/

near-optimal lipid status. In the present study, our AtheroSpectrum revealed the pathogenic 

foaming program of atherogenic macrophages. By cross-referencing these genes with 

genes from peripheral monocytes from MESA participants using our novel algorithm, we 

identified an ASCVD 30-risk gene-set. By combining this 30 gene-panel with other factors, 

we created a Cardiovascular Risk score (CR-30) that depicted ASCVD risk.
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Fig. 2. 
AtheroSpectrum identified inflammatory / macrophage foam cell populations associated 

with severity of atherosclerosis. A, Scheme showing the transition of different types 

of atherogenic macrophages by AtheroSpectrum. B,C, AtheroSpectrum depicted 4 major 

sub-populations of murine plaque macrophages with different foaming and inflammatory 

properties and marker gene expression(UMI). D, AtheroSpectrum identified different artery 

macrophage sub-population distributions in atherogenic vs. control mice (GSE97310), 

progression vs. regression mice (GSE97941), and symptomatic vs. asymptomatic humans 

with atherosclerosis (FR-FCM-Z23S, 2019). E, Heatmaps showing signaling pathways and 

cell functions enriched in each of the artery macrophage sub-populations. F, Representative 

pathways fall into three main categories: inflammatory response, lipid transport/metabolism, 

and cell development and survival. G, Scheme showing predicted cell differentiation 

pathways towards homeostatic foaming and pathogenic (inflammatory) foaming phenotypes.
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Fig. 3. 
Our novel algorithm identified an ASCVD signature gene-panel associated with CVEs 

in the MESA (n=1207). A, Relative expression of the 30 risk signature genes (Z-score, 

standardized expression) in circulating monocytes of female or male MESA participants 

who had a CVE (Yes) or not (No). B, Coefficients of the 30 signature genes in the 

regression analysis. C, ATP8B4, SLC1A3, R3HCC1, and MRPL1 are associated with CVEs 

and had significantly different expression levels in atherosclerotic vs. non-atherosclerotic 

artery tissues of human subjects deposited at GTEx portal.org (537 non-atherosclerotic 

samples, 362 atherosclerotic samples). D, Relative expression (Log 2 RMA signal values) 

of ATP8B4, SLC1A3, R3HCC1, and MRPL1 in atheroma plaque vs. intact tissue from 32 

patients (microarray, GSE43292). p values in C and D were calculated by Mann-Whitney U 

test with false discovery rate (FDR) adjustment.
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Fig. 4. 
CR-30 score effectively depicts CVD risks. A, ROC plots and AUC values of 5-fold cross 

for CR-30 score, 10y risk scores (JAMA 2001), Framingham 2008 risk score (FRS 2008), 

and the 2013 Pooled Cohort Equation for ASCVD risk score (PCE 2013) for the MESA-set1 

participants (n=911). Differently colored curves indicate individual folds of the 5-fold cross 

validation (n=182–183), and the average AUC and p value of the 5 folds were shown. B, 

CR-30, JAMA 2001, FRS 2008, and PCE 2013 risk scores and ROC plots for MESA-set2 

participants (n=228). p values were calculated by Mann-Whitney U test. C, Probability of 

survival (CVE-free) of MESA-set2 participants (n=228) who were predicted to have CVE 

or not by CR-30 score since monocyte collection was calculated by Cox regression with 

Wald test for p values. D, CR-30 scores and AUC values for two independent tissue gene 

expression datasets, GTEx tissue transcriptomics (n=899), and GSE43292 (n=64). p values 

were calculated by Mann-Whitney U test.

Li et al. Page 21

Circulation. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 22

Table 1.

Characteristics of participants from the MESA cohort (Exam5, n=1207).

Female
n=610 (50.5%)

Male
n=597 (49.5%)

Age (years), mean±SD 69.6±9.4 69.7±9.3

BMI (kg/m2), mean±SD 30.1±6.2 28.9±4.6

Cholesterol (mg/dL), mean±SD 191.0±34.4 170.1±36.5

LDL-C (mg/dL), mean±SD 109.8±31.2 99.8±32.6

HDL-C (mg/dL), mean±SD 59.6±16.5 48.4±13.0

Triglycerides (mg/dL), mean±SD 108.1±51.3 109.8±50.1

Fasting glucose (mg/dL), mean±SD 100.6±27.4 105.6±28.1

Waist (cm), mean±SD 99.9±15.9 103.1±11.9

SSBP, mean±SD 125.6±21.6 122.0±18.6

SDBP, mean±SD 66.2±9.4 70.6±9.5

Non-smoking, N (%) 293 (48.0%) 188 (31.5%)

CVE (2017) 65 108

SSBP=seated systolic blood pressure; SDBP=seated diastolic blood pressure. BMI=body mass index. Non-smoking=never smoked; CVE is defined 
by “cvda” in MESA data (details see Methods).
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Table 2.

Multivariate logistic regression analysis showing association between CVE as the outcome and sex, age, HDL-

C, LDL-C, total cholesterol, triglycerides, systolic and diastolic blood pressure, diabetes 2003 ADA fasting 

criteria (level 1=impaired fasting glucose; level 2=diabetes mellitus, treated or untreated), waist circumference, 

body-mass index (BMI), total body fat, lipid-lowering medication, and hypertension medication as the 

variables. p values calculated from multivariable logistic regression.

Variable Coefficient p-value

Age 0.050 1.11E-05

Hypertension medication 0.586 3.98E-03

Sex 0.370 8.90E-02

Diabetes 2003 criteria levels1 −0.353 1.36E-01

Lipid-lowering medication 0.199 3.05E-01

Seated diastolic blood pressure 0.012 3.17E-01

Diabetes 2003 criteria levels2 −0.196 4.91E-01

Triglyceride 0.053 3.85E-01

Waist −0.008 3.93E-01

Total cholesterol −0.258 3.96E-01

LDL-C 0.251 4.08E-01

HDL-C 0.238 4.32E-01

Fasting glucose 0.001 7.50E-01

Smoking −0.056 8.65E-01

BMI 0.003 9.04E-01

Seated systolic blood pressure 0.000 9.87E-01

Intercept −4.674 2.04E-01
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Table 3.

CR-30 model output from the training data (MESA-set1, n=911, standard scaler). Variables in this model 

include a list of 30 pathogenic foaming genes, as well as MPI (Macrophage Polarization Index), sex, 

age, seated diastolic blood pressure, diabetes 2003 ADA fasting criteria (level 1=impaired fasting glucose; 
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level 2=diabetes mellitus, treated or untreated), hypertension medication, and lipid-lowering medication. See 

Methods for model training details.

Circulation. Author manuscript; available in PMC 2023 January 18.


	Abstract
	Introduction
	Methods
	Data availability
	MESA Participants
	Creation of MDFI for each cell
	Model training and testing with 5-fold cross validation
	Creation of the CR-30 model
	CVE-free survival analyses
	Statistics

	Results
	Residual ASCVD risk not entirely explained by traditional risk factors
	AtheroSpectrum identifies the dynamic transition from macrophages to foam cells
	The pathogenic foam cell program signature genes display distinct expression patterns in a population with ASCVD
	A Novel ASCVD Risk score by 30 gene-panel (CR-30) can predict ASCVD risk

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1.
	Table 2.
	Table 3.

