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Abstract

Objective: Quantify tradeoffs in performance, reproducibility, and resource demands across 

several strategies for developing clinically relevant word embeddings.

Materials and Methods: We trained separate embeddings on all full-text manuscripts in the 

Pubmed Central (PMC) Open Access subset, case reports therein, the English Wikipedia corpus, 

the Medical Information Mart for Intensive Care (MIMIC) III dataset, and all notes in the 

University of Pennsylvania Health System (UPHS) electronic health record. We tested embeddings 

in six clinically relevant tasks including mortality prediction and de-identification, and assessed 

performance using the scaled Brier score (SBS) and the proportion of notes successfully de-

identified, respectively.
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Results: Embeddings from UPHS notes best predicted mortality (SBS 0.30, 95% CI 0.15 to 

0.45) while Wikipedia embeddings performed worst (SBS 0.12, 95% CI −0.05 to 0.28). Wikipedia 

embeddings most consistently (78% of notes) and the full PMC corpus embeddings least 

consistently (48%) de-identified notes. Across all six tasks, the full PMC corpus demonstrated 

the most consistent performance, and the Wikipedia corpus the least. Corpus size ranged from 49 

million tokens (PMC case reports) to 10 billion (UPHS).

Discussion: Embeddings trained on published case reports performed as least as well as 

embeddings trained on other corpora in most tasks, and clinical corpora consistently outperformed 

non-clinical corpora. No single corpus produced a strictly dominant set of embeddings across all 

tasks and so the optimal training corpus depends on intended use.

Conclusion: Embeddings trained on published case reports performed comparably on most 

clinical tasks to embeddings trained on larger corpora. Open access corpora allow training of 

clinically relevant, effective, and reproducible embeddings.
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BACKGROUND AND SIGNIFICANCE

Word embeddings provide a means of converting words and phrases into arrays of numbers 

so that they can be used in models requiring numerical input. Embeddings are developed 

through unsupervised learning procedures that aim to capture the semantic meaning and 

relationships of language in the text. An efficient embedding is able to represent these 

relationships in a lower-dimensional space than could be accomplished with count-based 

methods. While such embeddings are useful across many domains, their use in analyzing 

the text of clinical encounter notes presents several challenges. First, while there are many 

publicly available pretrained embeddings, many of these are derived from a broad range of 
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non-medical text sources and thus may not capture the appropriate word sense, linguistic 

relations, or vocabulary needed in a clinical context.[1] Second, while it may be appealing 

to train new embeddings on locally available clinical notes within a health system,[2] the 

size of available clinical corpora may vary by center and may not be sufficient to train 

effective embeddings.[3] Additionally, locally sourced embeddings, even when cleared of 

personally identifiable information (PII), can be attacked to expose patient-level protected 

health information (PHI).[4]

Prior work on domain-specific clinical word embeddings has leveraged multiple data 

sources in addition to text,[5] focused on knowledge discovery in large corpora of 

biomedical text,[1,2,6-8] utilized the entire[2,8] or only medically-relevant articles on 

Wikipedia,[9] MEDLINE abstracts,[10] and leveraged the Medical Information Mart for 

Intensive Care III (MIMIC-III) dataset which is de-identified, but requires a data use 

agreement for researchers and is limited to a single center.[11] Other work has focused on 

concept embeddings that capture clinical information from both structured and unstructured 

data sources and relies on pre-processing with the Unified Medical Language System 

(UMLS) thesaurus.[12] Studies have compared word embeddings built using different 

training corpora and training algorithms[13] with mixed results for publicly available 

corpora compared to local clinical text for training,[1,2] size of training corpus,[1,6] vector 

dimension,[7] and training algorithm.[2,6,7] For example, BioWordVec is a downloadable 

embedding set trained on all Pubmed Central (PMC) titles and abstracts; however, its only 

clinical validation was in semantic similarity and it was not compared to embeddings trained 

on local clinical text.[14] However, the optimal approach to producing word embeddings 

that are relevant for the analysis of clinical text, are efficient to train and use, and are free 

of PII, and thus fully shareable, remains unknown. Additionally, the performance tradeoffs 

in using corpora that are publicly available and free of PII compared to locally available 

corpora with PII are unknown.

To overcome these knowledge gaps, we propose published clinical case reports (already 

fully de-identified as a result of publication, comprises a corpus much smaller than the 

general corpus of all published manuscripts, not all of which may not be relevant for clinical 

notes, is readily available for download, and are written in a style analogous to the text of 

clinical encounter notes) as a text corpus for training word embeddings for clinical natural 

language processing (NLP) tasks. In this study, we evaluated 60 word embedding sets and 

compared performance across embedding size, training method, and training corpus. We 

focused evaluation on previously developed intrinsic and extrinsic NLP tasks relevant to 

clinical text including linguistic regularity, mortality prediction, de-identification[15], and 

others. We hypothesized 1) that embeddings trained on the full text of published clinical case 

reports would share similar lexical and syntactic properties with clinical notes; 2) that such 

clinically relevant embeddings would demonstrate comparable performance to embeddings 

trained on corpora of clinical notes that include PHI; 3) that embeddings trained on case 

reports would outperform embeddings derived from non-medical domain text and general, 

non-clinical scientific text; and finally 4) that subword n-grams[16] would outperform 

word-level n-grams[17] due to their ability to produce word vectors for out-of-vocabulary 

and misspelled terms, which occur frequently in electronic health record (EHR) data.[18]. 
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Finally, we make our embeddings available for public download to support reproducibility 

and transparency.

MATERIALS AND METHODS

We trained a set of word embeddings using every combination of three training algorithms, 

five text corpora, and four dimension sizes, for a total of 60 sets of word embeddings (Table 

1).

Text Corpora

PMC Open Access Subset—The PMC Open Access Subset- Case reports only corpus 

(OA-CR) was built using case report manuscripts downloaded from PubMed Central 

published from 2007-2017 that are available under the OpenAccess Subset. Of the 515,592 

reports indexed in the PMC (Supplemental Methods), 27,575 had the full text openly 

available. Text from both the abstract and manuscript body sections of downloaded XML 

files were included in the final training corpus. All non-English text was removed using the 

detect method of the langdetect[19] python package. All text was converted to lowercase 

and stripped of non-body text, XML tags, break and tabs, figure tables and captions, figure 

references, citations, and URLs. Reports with less than 100 tokens of processed text were 

removed.

The PMC Open Access Subset- All manuscripts corpus (OA-All) was built using all 

manuscripts downloaded from PubMed Central published from 2007-2017 that are available 

under the OpenAccess Subset. Of the 5,834,856 reports indexed in the PMC (Supplemental 

Methods), 630,885 had their full text openly available.

MIMIC-III—The MIMIC corpus was built using patient encounter notes from the MIMIC-III 

dataset.[20,21] 278,269 notes were extracted and processed. All text was converted to 

lowercase; stripped of end fields, generic fields, de-identification metastrings, underscores 

used as separation lines, and breaks and tabs; and all non-English text was removed. Clinical 

notes were often short but appeared valid on manual review, and so a 50 token cutoff was 

used for inclusion in the final corpus.

Wikipedia—The Wikipedia-English corpus (Wiki) was built using a Wikipedia dump 

(downloaded 2018-11-02, 15.6GB). The download contained 18,906,413 articles that 

were processed using the WikiCorpus from the genism python package[22] to provide a 

standardized and reproducible workflow. Similarly to MIMIC-III notes, a 50 token cutoff 

was used for inclusion in the final corpus.

University of Pennsylvania Health System—From the University of Pennsylvania 

Health System (UPHS), we retrieved all signed clinical encounter notes from inpatient and 

outpatient encounters from January 1, 2017 to December 4, 2019. This corpus contained 

14,828,230 notes. Raw text was processed identically to the MIMIC corpus and no de-

identification was performed prior to training the embedding models.
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Text Processing

Multi-word expressions—We constructed a multi-word expression dictionary of terms 

to capture relevant meaning of clinical concepts across corpora. Multi-word expressions 

(MWEs) were identified using both an intrinsic and extrinsic method. First, pointwise 

mutual information (PMI) was calculated for every bigram and trigram in the OA-CR corpus 

using the NLTK python package.[23] Bigrams and trigrams were included if they appeared 

in at least 10 unique manuscripts and were in the 50th to 95th percentile of PMI (percentile 

based on manual review to determine clinical relevance). Second, the National Library of 

Medicine specialist lexicon[24] was used to identify MWEs. Any term in the specialist 

lexicon present in the OA-CR corpus was considered a MWE. In total, 398,217 n-grams 

were classified as MWEs; a representative sampling of included and excluded MWEs is 

included in the supplemental methods (Supplemental Tables 1-2). The flashtext python 

package[25] was used to join all MWEs with an underscore between words in all corpora 

used for training word embeddings and all text used in evaluation tasks.

Tokenization—Text corpora were processed for training as follows: the OA-CR, MIMIC, 

and UPHS corpora were first tokenized by sentence and then by word using the spaCy 

tokenizer in python[26]. Due to the their larger size, the OA-All and Wiki corpora were 

tokenized using the gensim LineSentence method. Corpora were saved as single text files for 

GLoVE training.

Word embeddings

Training Algorithms—Word embeddings were trained using word2vec[17] and 

fasttext[16] with a skip-gram architecture as implemented in the python gensim package.

[22] We also trained GLoVE embeddings using the GLoVE C implementation from 

Stanford NLP (version 1.2).[27]

Tasks—To compare the embedding training procedures, all 60 embeddings were tested in 

every designed task, irrespective of the source dataset for the task. Intrinsic evaluation tasks 

were chosen to evaluate the ability of the embeddings to capture semantic representations 

in a clinical context. Extrinsic tasks were chosen to test the different embeddings in 

downstream NLP tasks that researchers or data scientists may encounter in working with 

clinical text.

Intrinsic Evaluation

Semantic Similarity: Semantic similarity was measured by computing the correlation 

between the cosine similarity of word pairs and the manually curated similarity scores 

of those pairs in the University of Minnesota Semantic Relatedness Standard (UMNSRS) 

similarity dataset.[28] This task measures the degree to which an embedding's numeric 

representation of two terms is as similar as a clinician's assessment of their similarity 

in a clinical context. Correlations are reported using Spearman’s ρ with 95% confidence 

intervals. Only word pairs for which both terms had vector representation in the word 

embedding model were considered in the comparison. For example 'Famvir' and 'bedwetting' 

were not present in the OA-CR word2vec embedding vocabularies. The percent of 

UMNSRS terms that were out-of-vocabulary for each training algorithm-corpus pair, as well 
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as the full list of OA-CR word2vec out-of-vocabulary terms are reported in Supplemental 

Tables 3 and 4 respectively.

Linguistic Regularity: A known feature of continuous space language models is the 

preservation of an offset vector that captures some semantic regularity. For example, in 

non-clinical settings, embeddings have maintained semantic relationships such as singular/

plural and male/female through an offset vector.[29] By extension, a useful set of clinically 

relevant word embeddings should capture offset vectors related to medical treatment. 

We curated a list of 100 pairs of medical terms with a relationship "is_a_treatment_for' 

across inpatient, outpatient, medical, and surgical contexts likely to be discussed in a 

clinical encounter note (Supplemental Table 5). For example metformin is a treatment 

for diabetes mellitus just as lisinopril is a treatment for hypertension. Therefore, an 

embedding that captures clinically relevant semantic information should reproduce the 

analogy. νmet formin−νdiabetes = νlisinopril−νhypertension.

To determine whether this treatment relationship was preserved in the vector space for each 

embedding we used two approaches. First, we calculated the offset as the difference for each 

term pair from the average cosine similarity across all pairs. We also calculated the offset 

vector from the cosine similarity of the centroid of disease terms to the centroid of treatment 

terms (Supplemental Figure 2) and the standard deviation of all pairs to the centroid cosine 

similarity (Supplemental Figure 4). The offset vector likely does not represent an actual 

word in the embedding space, rather, it is the regularity identified in training the embedding 

space. The standard deviation of the cosine similarity for each term pair and the centroid are 

reported as measures of the regularity of this clinical relationship.

Second, we evaluated linguistic regularity using a previously reported analogy completion 

task.[30] For every combination of pairs, representing an analogy a:b::c:d, we calculated 

the cosine similarity between d and the single closest vocabulary word in the embedding 

space to a−b + c. We report the mean and standard deviation of the cosine similarity 

across analogies derived from the 100 pairs of medical terms with a relationship 

"is_a_treatment_for" (Supplemental Figure 5).

Extrinsic Evaluation

Lexicographic Coverage: We evaluated embeddings on their ability to provide a vector 

representation for all words in a clinical note. A useful set of word embeddings should 

be able to produce representations for a wide variety of medical terms, including for new 

terms that might not have been seen in an original training corpus and for misspellings. 

We tested coverage on 362,430 unique words in the 53,425 MIMIC-III discharge summary 

notes[20,21] and 398,662 unique words in 48,432 UPHS ICU discharge summary notes. 

Coverage is reported as the proportion of all unique tokens for which a model could provide 

a word vector.

Clustering Purity: We evaluated word embeddings for their ability to cluster similar notes 

using two different sets of discharge summaries from the MIMIC-III and UPHS datasets. 

The clustering task was performed independently on each set.
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Summaries from three ICUs in the MIMIC-III dataset: neonatal intensive care unit 

(‘NICU’), trauma surgical intensive care unit (‘TSICU’), and coronary care unit (‘CCU), and 

from four matched ICUs in the UPHS dataset: neonatal intensive care unit (‘NICU’), trauma 

surgical intensive care unit (‘TSICU’), medical intensive care unit (‘MICU’), and heart and 

vascular intensive care unit (‘HVICU’) were used for independent clustering experiments. 

We limited the analysis to a subset of ICUs that are clinically distinct to simplify the 

clustering task in order to best evaluate the underlying embeddings.

Each discharge summary was given a document-level vector representation by taking the 

centroid across all word vectors in the note. Out-of-vocabulary words were ignored. A 

k-means (with k equal to the number of ICU labels in the testing dataset) procedure was 

used to cluster the document vectors. To evaluate the overall ability of the word embedding 

representation of discharge summary text, we use the summary statistic clustering purity. 

Clustering purity was calculated using the formula: Purity = 1
N ∑i = 1

k maxj ∣ ci ∩ tj ∣ where N 

= total number of test notes, k = number of clusters, C = set of clusters, ci = cluster i in 

C, and tj = ICU label j. We reported the 95% confidence interval over 1,000 bootstrapped 

replicates for the purity measure.

Mortality Prediction: We evaluated word embeddings for their ability to capture clinically 

relevant signal in mortality prediction. Mortality prediction was performed using notes from 

the MIMIC-III and UPHS datasets. The first physician encounter note charted within 24 

hours of hospital admission was used to predict in-hospital mortality during the current 

admission using a convolutional neural network with a previously described architecture[31] 

designed for word embedding based input (Supplemental Figure 2). The text of each 

note was converted into sentence vectors by taking the centroid of a word vector matrix, 

where every row in the matrix is a vector representation of a word in that sentence. Out-of-

vocabulary tokens were ignored. Notes were limited to the first 100 sentences and notes 

shorter than 100 sentences were padded using sentences from the beginning of the note 

(see Supplemental Table 6). An 80/20 split was used for training and testing, and sampling 

was stratified to maintain balance in outcome between the two sets. We reported predictive 

performance for each model with the scaled Brier score (SBS)[32] and 95% bootstrapped 

confidence interval over 1,000 replicates. The UPHS dataset was downsampled to reflect the 

same mortality event rate as the MIMIC dataset to facilitate comparisons.

De-identification: De-identification of clinical encounter notes using word embeddings was 

performed according to a previously published method.[15] For every token in a note, a 

vector was randomly sampled for the N nearest word vectors, where N varied between 

3,5, and 7 to increase obfuscation. We evaluated embeddings trained on a published corpus 

lacking PII (OA-AII), one local corpus containing PII (UPHS), and one general corpus 

where PII removal is not relevant (Wiki). Additionally, we limited the analysis to a single 

training algorithm (word2vec) and dimension (300) to isolate the corpus as the testing 

variable.

To assess the quality of the de-identification, 50 de-identified notes from the UPHS corpus 

were chosen randomly for qualitative review by a physician (GEW). Notes were judged as 

Flamholz et al. Page 7

J Biomed Inform. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fully de-identified or not based on obfuscation of both the patient's name and age in the 

note. Cases where "david" was replaced with "david," or "joan" was replaced with "joans" 

were not considered sufficient for de-identification. We reported the absolute number 

and proportion of notes with adequate de-identification. Additionally, once notes were de-

identified, we repeated the mortality prediction task as described above on the UPHS notes 

to assess the clinical relevance of notes obfuscated using the embedding based obfuscation 

procedure. As a secondary analysis, we also repeated the de-identification procedure using 

the same three embeddings with 8 notes from the 2014 i2b2 de-identification task and 

manually evaluated all fields labeled as containing PII.[33]

Ranking—Summary performance of models was compared across the three training 

variable categories: algorithm, corpus, and vector dimension. To determine ranking for a 

specific task, mean performance for a category (e.g. training algorithm) was calculated over 

the remaining categories (e.g. text corpus and vector dimension). The variables in a category 

were then ranked from best performing (1) to lowest (number of variables in the category, 

e.g. 3 for training algorithm). De-identification was excluded from this composite evaluation 

as not all corpora, training algorithms, and vector dimension sizes were compared.

RESULTS

Training corpora varied widely in the number of available documents and tokens (Table 

2, Supplemental Table 7). The word2vec and fasttext models identified the same relevant 

vocabulary from each corpus while the GLoVE embeddings contained a larger vocabulary.

Intrinsic evaluation

Semantic similarity—The word2vec and fasttext embeddings outperformed the GLoVE 

embeddings for nearly all corpora and dimension sizes (Figure 1). All of the embeddings 

trained on clinical corpora outperformed those trained on non-medical text.

Linguistic regularity—Word embeddings performed similarly across training models and 

corpora, but did slightly better with higher vector dimensions (Figure 2, Supplemental 

Figures 2, 4-5). The GLoVE embeddings performed slightly better for some dimensions 

with the largest improvements in the smallest corpus. Regularity varied in and between 

disease types (Supplemental Figures 3, 6-8).

Extrinsic evaluation

Lexicographic coverage—Fasttext embeddings were able to produce vectors for all 

words while embeddings trained with word2vec and GLoVE not infrequently returned null 

results for out-of-vocabulary terms (Figure 3). UPHS embeddings had the best coverage 

across notes from UPHS and from MIMIC-III.

Clustering purity—MIMIC-III discharge summaries were more easily clustered than 

those from UPHS for nearly all corpora and dimensions (Figure 4). Fasttext embeddings 

outperformed the other models in almost all cases, and the OA-CR embeddings performed 
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as least as well as the other embeddings in this task. Performance was only minimally 

affected by the dimension size of the embedding.

Mortality prediction—Prediction models were fit using 3,336 and 4,122 notes in the 

MIMIC-III and UPHS datasets respectively. Final performance was reported on the held 

out test sets that included 834 and 1,030 notes, respectively (Figure 5). Performance ranged 

from the best model, word2vec OA-CR embeddings with 1,200 dimensional vectors trained 

on UPHS notes, with a SBS of 0.30 (95% CI 0.15 to 0.45) to the worst, GLoVE UPHS 

embeddings with 1,200 dimensional vectors trained on UPHS notes, with a SBS of −0.06 

(95% CI −0.28 to 0.14). The mortality rate was 12.2% in the MIMIC-III dataset and in the 

downsampled UPHS dataset.

De-identification—Wiki embeddings had the highest rate of successful de-identification, 

while de-identified notes from the UPHS corpus notes trained the best-performing mortality 

prediction model (Table 3). Relative performance among the embeddings was similar in the 

i2b2 task (Supplemental Tables 8-9).

Overall performance rankings—On average, training with word2vec and training 

on the OA-All and MIMIC corpora produced the best results (Figure 6). Clinical text 

embeddings outperformed non-clinical text trained embeddings (Supplemental Figure 11), 

and word-level embeddings more often outperformed sub-word embeddings (Supplemental 

Figure 12). For individual embedding sets, fasttext trained 100-dimensional vectors trained 

on the Wikipedia corpus had the highest median performance across tasks but the fasttext 

trained 1,200-dimensional vectors trained on the OA-All corpus had the most consistently 

best performance (Supplemental Figures 9-10).

DISCUSSION

Only minimal differences in performance on intrinsic and extrinsic tasks were identified 

through comparisons of 60 sets of word embeddings. Consistent with previous studies[1,2] 

absolute best performance on any given task varied by training algorithm, corpus, and 

dimension, indicating that no one embedding procedure is optimal. However, there were 

clear advantages when looking at performance across variable categories (Figure 6). In 

general, embeddings trained on scientific and medical language corpora outperformed 

embeddings trained on general language. Wang et al.[2] concluded that general language 

embeddings were comparable to clinical language embeddings as they observed similar 

performance in a number of extrinsic NLP tasks, but noted that clinical embeddings did 

better for semantic tasks. In our analysis, with the exclusion of de-identification, the 

Wikipedia embeddings were consistently outperformed across the broad array of tasks tested 

here. This study also confirms Wang’s findings that no single set of embeddings is optimal 

for all tasks. Additionally, our work extends that of Wang et al. by comparing EHR-based 

embeddings from two different health systems, neither of which consistently outperformed 

the other by a meaningful margin. Lastly, by providing results in the form of point estimates 

with confidence intervals we allow for more nuanced assessment of the relative performance 

of different training pipelines.
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Overall, OA-All and MIMIC embeddings had the best average performance across all tasks, 

with OA-All embeddings performing more consistently, but the size of the performance 

differences for most comparisons were small. Word2vec and fasttext embeddings did 

significantly better than GLoVE embeddings for most tasks. Finally, 300 and 600 

dimensional embeddings outperformed smaller and larger dimension embeddings, though 

the effect was smaller than for corpus and training algorithm. These empirical findings on 

word embedding performance in clinical NLP tasks have several implications for researchers 

and data scientists working with clinical text data.

First, publicly accessible, clinical corpora should be used to train embeddings for most 

clinical tasks. Many previous studies investigating word embeddings for use in clinical 

NLP have relied on clinical note corpora that are not publicly available.[1,2,13,34,35] 

Locally trained embeddings create a barrier to the adoption of word embeddings in 

clinical NLP as such embeddings are not shareable, limiting further evaluation, refinement, 

and enhancement. Furthermore, the dearth of publicly shareable embeddings, especially 

ones that have been validated in clinical NLP tasks, functions as a bottleneck for the 

development of downstream clinical applications that are reproducible. We show that 

embeddings trained on publicly available clinical text have comparable performance to 

locally trained embeddings in intrinsic and extrinsic evaluation. Because embeddings trained 

on the PMC Open Access are completely de-identified through the editorial process, they 

can be shared. We have made ours available for download (https://github.com/weissman-lab/

clinical_embeddings) and we provide a pipeline for updating the embeddings with code 

available on GitHub. A robust, shareable embedding set allows for overcoming issues 

of privacy and reproducibility that have hampered the utilization of word embeddings in 

clinical NLP.

Second, the much smaller OA-CR corpus can be used with minimal performance 

decrements when computational resources are more limited. Both OA-All and OR-CR 

embeddings were trained on subsets of the PMC Open Access database, with the OA-CR 

embeddings being trained exclusively on case reports. The OA-CR embeddings are an order 

of magnitude smaller than the OA-All embedding (0.7GB vs. 7.8GB for the word2vec 

300-dimension embeddings) yet their performance was comparable to OA-All embeddings 

across most tasks. Both OA-CR and OA-All embeddings are also smaller than existing 

BioWordVec embeddings for comparable word2vec vectors (300 vs. 200 dimensional 

vectors respectively) and fasttext embeddings of the same dimensions. The availability of 

a computationally manageable embedding set will allow for broader incorporation of word 

embeddings to research projects, especially when access to larger computational resources 

poses a physical and technical obstacle. It must be noted that the OA-CR embeddings were 

built for clinical NLP tasks related to understanding and learning from clinical encounter 

notes. Their effectiveness in other areas of clinical NLP requires further study. As the 

environmental cost of training large language models increase, using clinically enriched 

corpora may also represent a more energy efficient solution for clinical tasks.[36]

Third, subword n-grams do not provide dramatic improvements in performance in clinical 

tasks compared to word-level n-grams. Previously, fasttext embeddings were not found 

to enhance performance in intrinsic tasks compared to word2vec embeddings.[2,37] 
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However, we hypothesized sub-word embeddings would outperform word-level embeddings 

in extrinsic tasks where issues of out-of-vocabulary words and misspellings present in real-

world EHR data would be manifest. While lexicographic coverage for both MIMIC-III and 

UPHS ICU notes was 100% for fasttext embeddings and lower for word2vec embeddings, 

higher coverage did not translate to better performance in ICU class labeling or mortality 

prediction. This result further complicates issues of clinical text processing and other 

methods are necessary for dealing with EHR text idiosyncrasies. It is important to note 

that the extrinsic tasks evaluated here are predictive and it is possible that fasttext based 

methods for other NLP tasks such as named entity recognition will fare better.

Fourth, embeddings trained on local, PII-containing clinical notes offer minimal 

performance advantages at the cost of decreased reproducibility. There is good face validity 

that locally trained embeddings would outperform embeddings trained on public corpora 

in local tasks by capturing local care patterns and documentation practices. Our UPHS 

embeddings were trained on one-hundred times the number of encounter notes used in 

previous studies, and performance in local and non-local NLP tasks was not significantly 

better, and even worse in some cases. The results for our UPHS embeddings should give 

pause to researchers believing only locally trained embeddings should be used for their 

research. However, in de-identification with word embeddings, UPHS embeddings trained 

on PII-containing text outperformed embeddings trained on non-PII-containing biomedical 

text. Notably, this is the first study to examine performance of embeddings trained from 

two different health systems and thus strengthens the case for using open rather than local 

training corpora. Overall, the Wiki, OA-All, and UPHS corpora contained more biographic 

syntax necessary for de-identification with word embeddings compared to the smaller, 

de-identified OA-CR and MIMIC corpora. It is possible there are other local syntactic NLP 

tasks, such as bias identification in EHR notes, where local training will be produce superior 

results.

This study should be interpreted in light of several limitations. First, though OA-CR 

trained embeddings performed very well on average, absolute best performance in a given 

task varied, indicating that building optimally performing embeddings requires a robust 

evaluation of embeddings trained on different text corpora. Second, while we evaluated 

our embeddings in intrinsic and extrinsic tasks, we did not evaluate the embeddings in a 

clinical named entity recognition task, a popular application of word embeddings,[6,38-40] 

and it is possible that larger corpora would perform better in a more focused syntactic 

task. Third, there has been a recent shift in NLP from word embeddings to context 

embeddings that leverage attention in training[41,42] and it remains to be seen if context 

embeddings built from published case reports can provide the same performance, though 

contextual embeddings have only showed a small performance increase compared to word 

embeddings in clinical NLP tasks including entity recognition[43], semantic similarity[37], 

and disease prediction.[44] While context-sensitive embeddings such as BERT offer 

promising results for NLP broadly, training from scratch requires a substantially higher 

computational cost[40] and further investigations of pre-trained clinical models[37,44] 

are warranted. Additionally, the environmental impact of training large models warrants 

careful consideration of long-term sustainability and benefits.[36] Finally, the inferential 

and explanatory relevance of offset vectors may be confounded by corpus-level noise and 
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other irregularities.[45,46] Therefore, further work is needed to test the clinical relevance of 

analogy completion in downstream reasoning tasks and validate the appropriateness of such 

tasks for evaluating clinical corpora.

CONCLUSION

There are a number of recognized limitations to the use of word embeddings for clinical text 

representation including methods of validation and issues relating to sharing embedding sets 

such as interoperability and privacy.[13] We sought to address these issues by building 

and evaluating embeddings trained on publicly available clinical case reports. These 

embeddings perform comparably to embeddings trained from general and clinical text 

corpora in a variety of intrinsic and extrinsic tasks, even at a fraction of the training 

corpus size. We make these embeddings available for download to alleviate researchers 

of having to construct their own embedding as well as for benchmarking new embedding 

sets and embedding methods. Training local embeddings requires access to clinical text, 

computational resources, and methods of validation. Such a high upfront cost has prevented 

the utilization of word embeddings in clinical research projects. We hope to facilitate their 

use by providing a downloadable set of word embeddings that can be reproduced, updated, 

and has been experimentally validated.
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Highlights

• Published case report text approximates clinical notes for language model 

training

• Training with case reports performs comparably to training on larger corpora

• Subword training does not increase performance in clinical text prediction

• Training on text containing protected health information offers minimal 

benefit

Flamholz et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Spearman correlation between the cosine similarity of the words in each pair and the 

manually annotated similarity.
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Figure 2: 
The variance in cosine similarity across vector differences of 100 word pairs related by 

"is_a_treatment_for". Standard deviation was calculated from the mean cosine similarity of 

all 100 pairs. Embeddings with lower standard deviation capture a more regular treatment 

relationship using the same vector difference.
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Figure 3: 
Fraction of words in a set of clinical encounter notes for which a vector was produced from 

an embedding set. Intensive care unit encounter notes from the MIMIC-III and University of 

Pennsylvania Health System datasets were used to measure lexicographic coverage.
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Figure 4: 
Clustering purity of intensive care unit (ICU) discharge summaries based on a k-means 

procedure. Discharge summaries from three ICUs in the MIMIC-III dataset and four ICUs in 

the University of Pennsylvania Health System dataset were used.
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Figure 5: 
Performance of a mortality prediction model using the text of the first physician encounter 

note for each hospitalization. Performance is reported on a held-out test set the scaled Brier 

score. Abbreviations: MIMIC-III = Medical Information Mart for Intensive Care III.
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Figure 6: 
Ranking of task performance across three training variables: training algorithm, text corpus, 

vector dimension. Performance in each variable was ranked from highest (best performing) 

to lowest (worst performing).
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Table 1:

Summary of training algorithms, text corpora, and vector dimensions used for training word embeddings. 

For training algorithm, word-level describes training on whole tokens in the training corpus while sub-word 

describes training on n-grams.

Training Algorithm Text Corpus
Vector
Dimension

word2vec (word-level) MIMIC-III (MIMIC) 100

fasttext (sub-word) PMC Open Access Subset- All manuscripts (OA-All) 300

GLoVE (word-level) PMC Open Access Subset- Case reports only (OA-CR) 600

University of Pennsylvania Health System (UPHS) 1200

Wikipedia- English (Wiki)
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Table 2:

Summary of word embeddings by text corpus. Vocabulary size indicates the number of words that have 

vector representation in the embedding sets for each training corpus. Abbreviations: PII = patient identifiable 

information, DUA = data use agreement, OA-CR = PMC Open Access Subset- Case reports only, MIMIC = 

MIMIC-III clinical notes, OA-All = PMC Open Access Subset- All manuscripts, Wiki = Wikipedia-English, 

UPHS = University of Pennsylvania Health System clinical encounter notes.

Corpus PII
Public

Availability Documents Tokens

Vocabulary
size-

word2vec

Vocabulary
size-

fasttext
Vocabulary

size- GLoVE

OA-CR No Creative Commons License 27,449 49,590,835 333,360 333,360 435,835

MIMIC No With approval and DUA 220,453 148,089,760 160,411 160,411 267,629

OA-All No Creative Commons License 628,404 1,848,856,520 3,748,342 3,748,342 3,755,370

Wiki No Creative Commons License 4,555,827 2,542,552,916 3,338,426 3,338,426 3,338,427

UPHS Yes None 14,828,230 10,917,117,453 2,393,946 2,393,946 5,090,787
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Table 3:

De-identification with word embeddings of clinical encounter notes. Intensive care unit notes from the 

University of Pennsylvania Health System dataset were used for de-identification. De-identified notes were 

used as input for the mortality prediction task described above and performance is reported as the scaled 

Brier score. Abbreviations: OA-All = PMC Open Access Subset- All manuscripts, Wiki = Wikipedia-English, 

UPHS = University of Pennsylvania Health System clinical encounter notes.

Embedding Set Notes De-identified (%) Scaled Brier Score (95% CI)

OA-All 300d word2vec 24 (48%) 0.13 (−0.06, 0.31)

UPHS 300d word2vec 38 (76%) 0.61 (0.48, 0.73)

Wiki 300d word2vec 39 (78%) 0.50 (0.37, 0.63)
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