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Abstract

Escherichia coli is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical informa-
tion for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting 
whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order 
to minimize disruptions to existing public health workflows. Multiple in silico tools have been developed for predicting serotypes 
from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific require-
ments of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and 
easily interpretable results. To address these specific requirements, we developed ECTyper (https://​github.​com/​phac-​nml/​
ecoli_​serotyping) for performing both speciation within Escherichia and Shigella, and in silico serotype prediction. We compared 
the serotype prediction performance of each tool on a newly sequenced panel of 185 isolates with confirmed phenotypic sero-
type information. We found that all tools were highly concordant, with 92–97 % for O-antigens and 98–100 % for H-antigens, and 
ECTyper having the highest rate of concordance. We extended the benchmarking to a large panel of 6954 publicly available E. 
coli genomes to assess the performance of the tools on a more diverse dataset. On the public data, there was a considerable 
drop in concordance, with 75–91 % for O-antigens and 62–90 % for H-antigens, and ECTyper and SerotypeFinder being the most 
concordant. This study highlights that in silico predictions show high concordance with phenotypic serotyping results, but there 
are notable differences in tool performance. ECTyper provides highly accurate and sensitive in silico serotype predictions, in 
addition to speciation, and is designed to be easily incorporated into bioinformatic workflows.

DATA SUMMARY
Raw sequence data for the 185 newly sequenced isolates have 
been deposited under NCBI BioProject PRJNA670237. The 
ECTyper source code and database files are accessible from the 
GitHub repository https://​github.​com/​phac-​nml/​ecoli_​sero-
typing and it is installable through conda and pip. Web-based 
wrappers are available for Galaxy (https://​toolshed.​g2.​bx.​
psu.​edu/​repository?​repository_​id=​677aeba29ae3ba88) and 
IRIDA (https://​github.​com/​phac-​nml/​irida-​plugin-​ectyper). 

Five supplementary tables are available with the online 
version of this article.

INTRODUCTION
Escherichia coli is a Gram-negative rod-shaped bacterium that 
is frequently found in the intestines of many animals, including 
humans. Most E. coli are naturally occurring commensal 
intestinal flora, but some can be pathogenic, depending on 
their host and route of infection, and are usually transmitted 
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via the faecal–oral route, leading to foodborne outbreaks in 
humans. Foodborne illness is a significant global health and 
economic burden according to the World Health Organiza-
tion (WHO) [1], with an estimated 600 million annual cases 
of foodborne illnesses and 420 000 deaths, of which 63 000 
are caused by E. coli [1, 2]. In Canada, the annual estimates 
suggest that there are approximately 4 million cases of food-
borne illnesses every year, with ~40 000 caused by E. coli [3, 4]. 
There have been numerous revisions to the taxonomy within 
the genus Escherichia, and currently there are five formally 
named species, E. albertii, E. coli, E. fergusonii, E. hermanni, 
E. marmotae and E. ruysiae, in addition to six cryptic clades 
(I–VI) [5–7]. Delineation between Escherichia species is diffi-
cult due to their high level of genetic relatedness, along with 
unstable biochemical phenotypes, with E. coli, E. albertii, E. 
fergusonii and Shigella spp. being the most clinically relevant 
[8, 9]. As a first step, diagnostic laboratories perform specia-
tion using biochemical assays such as Vitek (bioMérieux, 
Inc., Durham, NC, USA) and mass spectrometry. Cryptic 
Escherichia lineages are phenotypically indistinguishable 
from E. coli, but can be identified by several multi-locus 
sequence typing (MLST) schemas [10], ribosomal [11], core-
genome MLST [12] and Clermont et al. phylotyping [13, 14]. 
Shigella is closely related to Escherichia, which poses issues 
for the identification of samples, and there has been some 
controversy as to whether they should be merged [15]. The 
major species of Shigella fall into three clusters within E. 
coli lineages, including S. dysenteriae types 1, 8 and 10, S. 
boydii and S. sonnei [16]. However, diagnostic differentiation 
between Escherichia and Shigella species is important from a 
clinical and epidemiological perspective, as Shigella spp. are 
distinctly different clinical and epidemiological pathogens 
that can cause dysentery (shigellosis) [17].

The gold standard within-species classification for E. coli 
is phenotypic serotyping with antibodies targeting specific 
surface somatic (O) and flagellar (H) and, occasionally, the 
capsular (K) antigens [18, 19]. Rapid, accurate and cost-
effective serotyping has long played a vital role in surveillance 
and outbreak detection activities since it provides crucial 
subtyping information quickly [20]. Increasingly, whole-
genome sequencing (WGS) is being adopted by public health 
and food safety laboratories to replace traditional methods of 
strain characterization for surveillance and outbreak response. 
As more laboratories adapt their operations to utilize WGS 
within a public health and food safety context, it is important 
to maintain the ability to derive serotypes from WGS data, in 
order to leverage existing knowledge and minimize disrup-
tions to ongoing public health surveillance activities.

Phenotypic serotyping methods are laborious, time-
consuming and require the maintenance of large libraries of 
antisera targeting each antigen, and the results are strongly 
affected by the quality of the antisera and the experience of 
the technician. There are 181 recognized O-antigens that form 
part of the large lipopolysaccharides (LPS) structure that is 
present on the surface of Gram-negative bacteria and is struc-
turally composed of oligosaccharide repeats made up of 3 to 5 
sugars [21]. The chromosomal O-antigen gene cluster consists 

of multiple genes and is responsible for precursor synthesis, 
transport, assembly and maturation of these precursors to 
form part of LPS [22, 23]. There are four genes that make 
ideal biomarkers for predicting O-antigen type due to the key 
roles that they play in determining the O-antigen structure, 
which include a flippase (wzx), a polymerase (wzy) and ABC-
dependent transporters (wzm/wzt) [23]. Interestingly, Ooka 
et al. identified 20 O-antigens shared between E.albertii and 
E. coli [24]. Suitable biomarkers for predicting the H-antigen 
type are primarily based on fliC, in addition to flkA, fllA and 
flmA, which have been shown to influence some H-antigen 
types [25]. Phenotypic typing of H-antigens typically takes 
2 h, but issues with sample motility and the requirement for 
several rounds of agglutination reactions can easily increase 
the time taken for determining serotype to several days if 
repeat passages are necessary [26, 27]. A benefit of in silico 
typing is that there is no need to go through the time-
consuming process of motility induction, since the results 
are based on the presence of the specific sequences [28, 29].

Multiple tools have been developed for in silico serotyping 
of E. coli samples, which predict serotype by identification of 
closest matching alleles within curated databases of antigen-
specific alleles. Three commonly used tools are: SRST2 [30], 
SerotypeFinder [31] and EToKi EBEis (EnteroBase Escheri-
chia in silico serotyping module from EnteroBase Tool Kit) 
[32]. Both O and H-antigens have variants where the corre-
sponding genes are highly similar and these alleles with high 
nucleotide identity can pose issues for similarity search-based 
antigen determination [31]. For example, O17, O44, O73, 
O77 and O106 are antigens where the alleles of wzx and wzy 
have been shown to have greater than 99 % similarity [31] and 
in the case of H antigens there is high similarity (97–99 %) for 
H4 and H17 in fliC. WGS data can be leveraged to identify 

Impact Statement

We developed and validated a new E. coli in silico sero-
type prediction tool, ECTyper, that provides easily inter-
pretable results that are tailored to be incorporated 
into routine public health laboratory workflows. The 
tool provides both command-line and web-based inter-
faces (Galaxy Project [50], IRIDA [35]) allowing for flex-
ible and easy integration into existing pipelines. ECTyper 
provides highly accurate serotype predictions, even for 
low-quality whole-genome sequencing (WGS) data for 
both assembled and raw sequence data, in addition to 
species resolution within Escherichia and Shigella. The 
reported results are designed to be readily interpreted 
by laboratory staff with clear quality control informa-
tion. ECTyper and SerotypeFinder both provided highly 
concordant results with phenotypic serotyping on both a 
newly sequenced panel of 185 isolates and a large public 
dataset of 6954 isolates. Based on this validation work, 
ECTyper can be implemented into public health laborato-
ries with confidence.
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the species of an isolate by identifying the closest genome in 
a curated database such as RefSeq [33]. Tools for performing 
rapid whole-genome genetic distance comparisons include 
MASH, which enables high compression of the database and 
rapid genetic distance calculations [34]. Due to the taxonomic 
complexity within and between Escherichia and Shigella, it is 
important to confirm the species identification of a sample, 
but none of the existing in silico serotyping tools provide this 
functionality.

Here we present ECTyper, a Python 3 tool for performing 
in silico serotyping and species identification using either 
assembled or raw sequence data, which was developed as a 
command-line tool that is web-accessible through Galaxy 
Project (https://​usegalaxy.​eu/​root?​tool_​id=​ectyper) [1] and 
IRIDA (https://​github.​com/​phac-​nml/​irida-​plugin-​ectyper) 
[35]. The serotype reports produced by ECTyper are designed 
to be readily interpretable with QC information for technical 
staff. We benchmarked the performance of ECTyper along 
with SRST2, SerotypeFinder, EToKi EBEis on both on a veri-
fied dataset of newly sequenced strains and a large collection 
of publicly available E. coli strains.

METHODS
Development of biomarker database
Sequence similarity-based in silico serotyping depends heavily 
on accurate and comprehensive coverage of different antigen 
alleles to provide reliable identification results. As a starting 
point, the allele databases from SRST2 (release date: 30 July 
2019) and SerotypeFinder (release date: 28 January 2019) 
were combined and analysed using db-check v. 0.1.4 (https://​
github.​com/​andersgs/​db-​check) to determine consistency in 
the antigen assignment for each allele sequence, as well as to 
remove duplicated and truncated alleles. A total of 8125 E. 
coli samples were downloaded from EnteroBase (10 January 
2019) that had either partial or complete serotype informa-
tion reported on the record, i.e. O157:H7, O157, or H7. The 
reported O- and H-antigens in the EnteroBase metadata 
were standardized in accordance with the accepted list of 
O- and H-antigens at the Canadian National Microbiology 
Laboratory. Rough, non-motile or unreported antigens 
were all treated the same with the antigen labelled as ‘-’. To 
increase representation of diverse alleles for highly prevalent 
serotypes such as O157, we selected 556 samples from the 
EnteroBase dataset (Table S1, available in the online version 
of this article). Additionally, to further improve the repre-
sentation of O77, H28 and H52 antigens, three alleles were 
extracted from GenBank NCBI (AB972416.1, JH965342 
and AVRH01000047). blastn v. 2.7.1 was used to query the 
initial set of allele sequences from SRST2 and SerotypeFinder 
with a requirement of >=97 % coverage and identity. Novel 
alleles from EnteroBase were excluded from the database 
if they did not possess a stop codon at the 3′ end. Another 
round of deduplication and allele assignment consistency was 
performed with db-check v. 0.1.4 with the addition of the new 
alleles from EnteroBase.

Iguchi et al. identified 16 high-similarity O-antigen similarity 
groups [36] and we replicated this work by using ClustalW v. 
2.1 [37] to align alleles within each gene and pairwise distances 
were calculated for all alleles using ape [38] (Table S2). For 
O-antigen biomarker genes the clustering threshold was set at 
>=98 % identity and coverage and for H-antigen genes it was 
set to >=99 %. From the perspective of the clinical laboratory, 
it was preferred to have ambiguity in a result requiring further 
confirmation rather than a fully resolved and incorrect result. 
For this reason, O-antigens that form a high-similarity group 
are all reported as members of the group unless there is >1 % 
divergence in the antigen allele hits. For example, the O2 and 
O50 are closely related and are reported as O2/O50 when the 
blastn hits are >99 % identical.

The minimum thresholds for coverage and identity that are 
necessary to unambiguously identify each antigen cluster 
were determined by computing all-against-all blastn of all 
alleles within each gene. The threshold was assigned to be the 
level of coverage and identity where all of the hits correspond 
to a single antigen cluster with a lower bound of 1 % coverage 
in cases where all hits from a query match to the same antigen. 
This is useful in cases where the sequence coverage of the 
marker genes is poor but the matching sequence identified 
is highly diagnostic for the antigen allele. For example, O88-
4-wzx allele, a member of the O88 serogroup, has no hits 
outside the O88 serogroup, thus a default minimum threshold 
of 1 % coverage and 90 % identity are assigned. Otherwise, if a 
given query sequence had hits to multiple different antigens 
then the minimum coverage and identity thresholds for that 
antigen were increased to the level that would unambiguously 
identify it as a single antigen cluster. This information is used 
to set individual antigen thresholds for both coverage and 
identity based on its uniqueness.

Theory and implementation
The ECTyper software is designed to fit into the workflows 
of reference and diagnostic laboratories performing typing 
of E. coli samples by performing both speciation within 
Escherichia and Shigella and in silico serotyping. ECTyper 
requires minimal user-specified parameters and accepts 
both assembled genomes and raw Illumina sequence data, 
which provides flexibility to the user, depending on their 
bioinformatic workflows. The ECTyper workflow consists of 
an optional species identification step using the RefSeq data-
base of curated genomes and species assignments, followed 
by identification of closest matching alleles of the key genes 
for determining O- and H-antigens (Fig. 1). ECTyper requires 
accurate species designations in its database and it is known 
that there are inconsistencies in RefSeq with the taxonomy 
of cryptic Escherichia clades due to their inconsistent 
phylogenetic placement, which will hopefully be resolved in 
future releases [7]. The optional species identification step is 
performed if the user specifies the ‘--verify’ parameter using 
MASH v. 2.0.0 [34] against the NCBI RefSeq database. The 
closest matching genome with the smallest MASH distance 
is used to predict the species of the sample. If the sample is 
labelled as anything other than E. coli, the software does not 

https://usegalaxy.eu/root?tool_id=ectyper
https://github.com/phac-nml/irida-plugin-ectyper
https://github.com/andersgs/db-check
https://github.com/andersgs/db-check
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proceed with in silico serotyping. The results are provided 
as a tab-delimited file with quality control information for 
troubleshooting purposes.

The process for identification of antigen sequences differs 
slightly depending on whether the user is providing assem-
bled or raw sequence data (Fig. 1). For raw sequence inputs, 
a preprocessing step is performed where reads are aligned to 
the database of reference O- and H-antigen alleles by Bowtie2 
v. 2.4.2 [39] followed by calling the consensus sequence using 
BCFtools v. 1.8 [40] and seqtk v. 1.3 [41]. Following identi-
fication of the consensus sequence, both assembled and raw 
sequence inputs are processed identically. Using the databases 
of O- and H-antigen alleles, each genome is queried using 

blastn [42] and the hits are filtered using default thresholds 
of >=95 % identity and >=90 % coverage for O-antigen alleles 
and >=90 % identity and >=50 % coverage for H-antigen 
alleles. The specific antigen allele is identified by sorting hits 
to select the allele with the highest coverage and identity. The 
allele gene score is calculated as a product of %identity and 
%coverage normalized by the maximum possible product 
value of 10 000 favouring alleles with the largest %identity 
and %coverage values (gene score=(%identity*%coverage)/
10 000).

To improve the accuracy and resolution of O-antigens, 
ECTyper bases the overall call for the O-antigen type on the 
information provided from both wzx/wzy or wzm/wzt gene 

Fig. 1. Flowchart outlining the major stages within ECTyper. Input can be either raw reads or assemblies. Species identification is 
performed if the ‘--verify’ parameter is specified using MASH to determine the closest representative genome in NCBI RefSeq. Antigen 
predictions only proceed if the species is E. coli. In the case of raw reads as input, there is a preprocessing stage that aligns the reads 
against curated databases of genes used to predict O- and H-antigens and produce a consensus sequence. After the preprocessing 
stage, both reads and assemblies are processed the same. The best matching alleles for each of the genes is identified using blastn 
based on both %identity and %coverage values. A final report is output in tab-delimited format with the summary QC values (Table 1). 
See the Methods section for further details.
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pairs. Candidate O-antigens are scored based on the sum of 
the scores from both genes in a pair and if a gene is missing it 
contributes 0 to the score for that O-antigen. Based on wzx/wzy 
or wzm/wzt O-antigen allele pairs, the highest scoring antigen 
is reported. It is possible for multiple antigens to have highly 
similar scores due to inherent sequence similarity between 
them, or sequence quality issues, and in these cases, ECTyper 
reports all of the candidate antigens that are >99 % identity 
and 100 % coverage. Cluster memberships of O-antigens with 
either identical or highly similar wzx/wzy or wzm/wzt alleles 
is presented in Table S2. For some O-antigens, the gene pairs 
only provide minimal resolution power, with the cumulative 
differences in wzx/wzy or wzm/wzt alleles as low as one SNP: 
for example, between O118 and O151, or O123 and O186 
[31]. In contrast to O-antigen prediction, the H-antigens are 
predicted based on a single gene, with the highest scoring 
allele determining the H-antigen prediction. The fliC, flkA, 
fllA, flmA and flnA genes are used for H-antigen prediction, 
with fliC being represented by the largest number of alleles 
in the database.

Reporting requirements for reference and diagnostic labo-
ratories frequently require quality information to determine 
if the result meets their criteria for reporting to clients. To 
address this need, ECTyper has a built-in quality reporting 
module that provides clear quality control flags (Table 1) along 
with required information for diagnosing issues, with the 
result based on extensive consultation with diagnostic labo-
ratories within the Canadian National Microbiology Labora-
tory. The main QC criteria include species check, presence 
and absence of the O- and H-antigen alleles, quality of the 
antigen prediction based on individual allele %identity and 
%coverage thresholds, and distance to alleles of other antigens 
(Table 1). These QC flags allow for quick sample screening 
in a diagnostic setting and ensure that the sample meets the 
minimum reporting requirements and is a feature that is 
unique to ECTyper compared to other E. coli in silico typing 
tools. Samples that are assigned a PASS flag would be readily 
reportable due to the presence of close database matches for 

each of the antigen genes with adequate coverage to make a 
high-quality serotype prediction. Samples that are flagged as 
anything other than PASS should be reviewed in more detail 
by the technician to ascertain what troubleshooting steps are 
necessary. Some situations requiring troubleshooting include 
non-E. coli, potentially contaminated samples and low-quality 
WGS data resulting in low-quality database matches.

Construction of benchmarking datasets
The first dataset is a collection of 185 newly sequenced isolates 
with verified phenotypic serotype information representing 
122 diverse serotypes (Table S3) where any discrepancies 
in predictions could be verified with additional phenotypic 
testing. The second dataset consisted of a broad collection of 
publicly available genomes to assess the performance of the 
tools on a diverse array of serotypes contributed from different 
laboratories (Table S4). Reads for these genomes were down-
loaded from the Sequence Read Archive and assembled using 
shovill and each of the genomes was assessed for quality and 
completeness using Quast and CheckM as described above. 
EnteroBase performs quality assessment of genomes before 
inclusion into their database, but there is the possibility that the 
read sets changed since they were analysed and we identified 
seven genomes that failed to assemble. Species confirmation 
of the candidate E. coli genomes was performed using MASH 
within ECTyper and the RefSeq database. Of the original 8125 
genomes we removed any genomes in the construction of 
the allele databases in addition to any genomes that failed 
assembly checks, which yielded 6954 genomes for the public 
benchmarking dataset (Table S4).

In silico serotyping tools benchmarking
The performance of ECTyper v. 1.0.0, along with three 
existing tools, SerotypeFinder v. 2.0.1 (released: 28 January 
2019), EToKi EBEis v. 1.0 (released: 1 December 2019) and 
SRST2 v. 0.2.0 (released: 30 July 2019) was compared using 
the two different datasets described above using the default 

Table 1. Quality control values and their assignments based on the nine scenarios

Value Scenario

PASS (REPORTABLE) Both O and H-antigen alleles meet or exceed both minimum %identity or %coverage individual allele thresholds and a single 
serogroup is predicted both for O and H

FAIL (-:- TYPING) A sample is E. coli and both O- and H-antigens are not called by the tool. For example,the reported serotype is -:-

WARNING (WRONG SPECIES) A sample is non-E. coli (e.g. Shigella boydii) based on the NCBI RefSeq reference assemblies

WARNING MIXED O-TYPE A mixed O-antigen call is predicted requiring a further wet-lab confirmation (e.g. O17/O77/O73/O106)

WARNING (-:H TYPING) A sample is E. coli and O-antigen is not predicted. For example, reported serotype is -:H18

WARNING (O:- TYPING) A sample is E. coli and H-antigen is not predicted. For example, reported serotype is O17:-

WARNING (O NON-REPORT) O-antigen alleles do not meet minimum %identity or %coverage thresholds

WARNING (H NON-REPORT) H-antigen alleles do not meet minimum %identity or %coverage thresholds

WARNING
(O and H NON-REPORT)

Both O and H-antigen alleles do not meet individual minimum %identity or %coverage thresholds



6

Bessonov et al., Microbial Genomics 2021;7:000728

parameters for each tool. SRST2 requires raw reads as input 
and does not have an assembly-based mode. EToKi EBEis, on 
the other hand, only supports assembly as input. Both Sero-
typeFinder and ECTyper can utilize raw and assembled data.

Concordance of in silico serotype predictions was measured 
independently using the O- and H-antigens for each sample 
where a valid antigen was reported. Since in silico predictions 
will not necessarily reflect phenotype, we did not measure 
concordance for antigens that were reported as rough (Table 
S4). The predicted antigen determined by each tool was 
compared against the laboratory-reported antigen and the 
results were categorized into five types: (1) perfect match 
(PM); (2) ambiguous match (AM); (3) incorrect prediction 
(IP); (4) no prediction (NP); (5) not reported (NR). PMs 
required the reported and in silico predicted serotype to be 
the same. AMs were allowed when the reported antigen was 
contained in the list of potential antigens reported by a tool in 
a mixed call, for example, if a sample was reported to be O2 
for the O-antigen, but predicted to be O2/O50. IPs were cases 
where the tool predicts an antigen that does not match any of 
the reported antigen(s). Samples where a tool did not issue 
an antigen prediction were listed as NP. NR samples include 
rough, missing and non-motile assignments and these cases 
were not analysed further.

Phenotypic serotyping
A panel of 185 isolates representing a diverse collection of 
serotypes with high confidence in their assignments. Somatic 
(O) and flagellar (H) antigens were identified by standard 
agglutination methods for identification of O1 to O188 and 
H1 to H56 following the Edwards and Ewing serotyping 
protocol [18] using commercially available antisera from SSI 
Diagnostica (Copenhagen, Denmark) by the accredited sero-
typing laboratory within the Canadian National Microbiology 
Laboratory.

WGS
Overnight cultures of E. coli were grown in BHI broth and 
genomic DNA extraction was extracted using the Qiagen EZ1 
biorobot using the EZ1 DNA tissue kit. Sequencing libraries 
were prepared using Illumina Nextera XT library prepara-
tion kit and were sequenced on Illumina MiSeq using the 
MiSeq 600 cycle reagent version 3 kit according to standard 
manufacturer’s protocols.

Genome assembly and quality metrics
The Illumina paired reads from both the Guelph Reference 
Services and EnteroBase public datasets were both assem-
bled using the shovill v. 1.1.0 pipeline (https://​github.​com/​
tseemann/​shovill) [43] with the following parameters: --gsize 
5000000 --assembler spades --trim --depth 0 --mincov 0 
--minlen 0. The quality and completeness of the assemblies 
were assessed using QUAST v. 5.0.2 [44] and CheckM v. 1.1.3 
[45], respectively. Genome assemblies were excluded that had 
a size <4 MB or >6.5 MB, N50 <20 KB or a CheckM complete-
ness score <95.

RESULTS AND DISCUSSION
Construction of the ECTyper allele database
A combined dataset of antigen alleles was constructed using 
the databases from SRST2 (524 alleles), SerotypeFinder (60 
alleles) and NCBI (3 alleles). Additionally, we extracted a total 
of 936 O- and H-antigen alleles from 556 EnteroBase genomes 
(Table S1). These genomes were not included in the subse-
quent benchmarking experiments using the public data. The 
resulting ECTyper database v. 1.0.0 contains a total of 1523 
alleles representing 179 O- and 53 H-antigens, respectively. 
Specifically, O-antigens are represented by 505 wzx, 570 wzy, 
41 wzm and 40 wzt alleles, while H-antigens are represented 
by by 349 fliC, 11 flkA, 4 fllA, 2 flmA and 1 flnA alleles.

Since it is known that there is a high degree of sequence 
similarity between some antigen-coding alleles [36], we 
determined the pairwise sequence similarity of each of the 
biomarker alleles in the ECTyper database and identified 
high-sequence-similarity clusters. We identified 16 clusters 
of highly similar O groups which represent 35 O-antigens, in 
addition to 2 H groups consisting of 4 individual H-antigens 
(Table S2). Each of the flagellar clusters H4/H17 and H1/H12 
only differ by one nucleotide difference (Table S2). ECTyper 
reports all potential antigens when the top match is localized 
to an O-antigen high-sequence-similarity cluster and all hits 
are >99 % identical. This ambiguity in reporting is desirable 
from a diagnostic laboratory perspective, since it is preferable 
to only report what is a high confidence result.

Newly sequenced dataset benchmarking
The in silico predictions for ECTyper, SerotypeFinder, SRST2 
and EToKi EBEis were classified into the five categories 
described in the Methods section for the 185 newly sequenced 
isolates with confirmed serotype information using Illumina 
paired-end sequencing (Table  2). For O-antigens, SRST2 
was found to have the highest number of samples with fully 
matching predictions with 169 (PM) but also had the highest 
number of incorrect predictions with 14 (IP) (Table 2). When 
using raw data, ECTyper had the second highest O-antigen 
matches (PM) with 163 samples and instead of incorrect 
predictions, there was a higher number of ambiguous results 
(AM) with 16 (Table 2). ECTyper identified 22 discordant 
isolates (16 AM and 6 NP) selected for further analysis (Table 
S5). The primary cause was the inability to distinguish the 
O-antigens that belong to high-similarity groups [36]. Using 
assemblies as input, ECTyper had the highest concord-
ance with phenotypic serotyping for this dataset (96.8 % O, 
100 % H) followed by EToKi (94.6 % O, 98.4 % H) and Sero-
typeFinder (93.5 % O, 99.5 % H) antigen typing concordance 
(Table 2). There was a minimal difference when using reads 
as input with ECTyper, which resulted in a slight increase in 
ambiguous (AM) results (Table 2). EToKi EBEis had almost 
double the number of ambiguous results compared to Sero-
typeFinder and ECTyper (Table 2). All four tools were able 
to provide a perfect match for 78–91 % of samples and fully 
concordant O-antigen predictions (PM and AM) for 91–96 % 
of the 185 samples and only a single incorrect prediction by 

https://github.com/tseemann/shovill
https://github.com/tseemann/shovill
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one tool. This demonstrates that in silico predictions based on 
marker genes are highly accurate.

SRST2 had the fewest number of samples with no serotype 
prediction (NP) for O-antigens, while SerotypeFinder had the 
highest. ECTyper clearly benefited from the expanded allele 
set, since its performance was in-between SRST2 and Sero-
typeFinder (Table 2). The differences between ECTyper and 
SRST2 are likely due to algorithm differences, since ECTyper 
is built on the database from SRST2. However, there was only 
a minor benefit to the expanded allele database for H-antigens 
compared to SerotypeFinder and SRST2 (Table 2). H-antigen 
predictions were all highly accurate and showed  >97 % 
concordance with phenotypic serotyping for the four tested 
tools (Table 2). O-antigen marker genes had higher rates of no 
matches (NP) compared to H-antigens (Table 2). This could 
be due in part to sequence compositional differences in the 
respective genes, which can cause low sequencing coverage, as 
has been described previously for Salmonella, where low GC 
content in wzx and wzy loci (25–35 %) causes these regions 
to have low sequencing depth when libraries are prepared 
using the Nextera XT kit [46, 47]. Overall, ECTyper strikes a 
good balance between sensitivity and specificity for in silico 
predictions of O- and H-antigens, but all of the tools tested 

produced reasonably accurate antigen predictions for the 
majority of the tested isolates in this panel.

EnteroBase public dataset benchmarking
The benchmarking of the four in silico serotyping tools was 
extended using a large dataset of 6954 publicly available E. 
coli samples from EnteroBase which contained 187 distinct 
O- and 53 H-antigens. The O- and H-antigens were analysed 
independently, since both antigens were not always reported. 
There were 6905 samples with a reported O-antigen and 
3722 samples with a reported H-antigen that were used for 
tool benchmarking (Table 3). The number of samples that 
failed to produce an O-antigen prediction (NP) remained 
low for ECTyper, EToKi EBEis and SerotypeFinder, with 
<=7 % for the three tools (Table  3). However, there was 
a larger number of samples failing to produce a predicted 
serotype using SRST2, with 17 % for O-antigens and 31 % for 
H-antigens (Table 3). This could be due in part to the use of 
the raw sequence reads as the basis for the serotype predic-
tions, since the assembly-based input to ECTyper had <1 % of 
samples without an O-antigen prediction compared to 6 % for 
read-based input (Table 3). Similarly to the newly sequenced 

Table 2. In silico serotype prediction benchmarking on newly sequenced isolates. A total of 185 E. coli isolates with complete serotype information for 
both O- and H-antigens were used to benchmark the performance of four in silico prediction tools (Table S3)

O-antigen H-antigen

Perfect match
(PM)

Ambiguous 
match
(AM)

Incorrect 
prediction

(IP)

No in silico 
prediction

(NP)

Perfect match
(PM)

Ambiguous 
match
(AM)

Incorrect 
prediction

(IP)

No in silico 
prediction

(NP)

ECTyper 
(assembly)

163 16 0 6 185 0 0 0

ECTyper (reads) 163 14 1 7 185 0 0 0

SerotypeFinder 154 19 0 12 183 1 0 1

EToKi EBEis 145 30 2 8 182 0 0 3

SRST2 169 0 14 2 181 0 1 3

Table 3. In silico serotype prediction benchmarking on a large public dataset. A total of 6954 samples with complete or partial serotype information 
were used to benchmark 4 tools for in silico serotype prediction accuracy (Table S4). Since complete antigen information was not available for all 
samples, there was a total of 6905 samples with O-antigen information and 3722 samples with designated H-antigens

O-antigen H-antigen

Perfect match
(PM)

Ambiguous 
match
(AM)

Incorrect 
prediction

(IP)

No in silico 
prediction

(NP)

Perfect match
(PM)

Ambiguous 
match
(AM)

Incorrect 
prediction

(IP)

No in silico 
prediction

(NP)

ECTyper 
(assembly)

6071 176 595 63 3309 0 396 17

ECTyper (reads) 5756 149 588 412 3303 0 390 29

SerotypeFinder 5896 262 586 161 3308 25 386 3

EToKi EBEis 5288 572 555 490 3304 7 393 18

SRST2 5125 45 559 1176 2269 12 265 1176
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dataset, there were more instances of missing marker genes 
for O-antigens compared to H-antigens (Table 3).

Assembly-based inputs had the highest numbers of PMs for 
ECTyper (87.9 % O, 88.9 % H) and SerotypeFinder (85.4 % O, 
88.9 % H) when compared to the user reported serotypes for 
this dataset (Table 3). ECTyper performed similarly when 
using reads as input but there was a 4.5 % decrease in PM 
compared to assembly-based O-antigen predictions and 
0.2 % for H-antigens (Table 3). Both EToKi EBEis (76.6 % 
O, 88.8 % H) and SRST2 (74.7 % O, 61 % H) had significantly 
lower numbers of PMs compared to the reported O-antigens 
(Table 3). However, EToKi EBEis had similar accuracy for 
H-antigen predictions compared to SerotypeFinder and 
ECTyper. When ambiguous matches were also taken into 
account (PMs and AMs), the differences in concordance 
between reported and predicted serotypes for assembly 
based inputs are reduced considerably with ECTyper (90.4 % 
O, 88.9 % H), SerotypeFinder (89.2 %O, 89.6 % H) and EToKi 
EBEis (84.9 %O, 89 % H). SRST2 (74.9 %O, 61.3 % H) lags 
behind the other tools, primarily because of the much larger 
number of failed predictions (NPs) as the numbers of incor-
rect predictions (IPs) for each tool were very consistent, 
with an average of 8.3 % for O-antigens and an average of 
9.8 % for H-antigens found across the four tools (Table 3). 
SerotypeFinder and ECTyper were both highly accurate and 
outperformed SRST2 and EToKi EBEis on this large and 
heterogeneous multi-source dataset, with ECTyper seeing 
a minor drop in typing performance on raw unassembled 
inputs.

Discordant antigen predictions observed for 
EnteroBase dataset across all tools
Samples with disagreement between one or more tools were 
analysed in more detail to understand if there was potentially 
an issue with the reported serotype information, since it was 
not possible to phenotypically confirm them. Lack of agree-
ment between reported and predicted serotypes could be due 
to inaccurate predictions or point to potential errors in the 
reported serotype. For example, serotyping within E. coli is 
complicated by known cases of antigens with cross-reactivity, 
one of the pitfalls of phenotypic sub-typing [18, 31, 48]. There 
were 880 samples that had at least 1 tool report a discordant 
prediction across either O- and/or H-antigens (Table S4). This 
represents 13 % of the dataset. This demonstrates that for the 
vast majority of the samples, in silico predictions are highly 
accurate. Of the 880 samples, there were 100 samples where a 
single tool produced a discordant result (IP). These are highly 
likely to be due to issues with the specific tool, instead of 
an issue with the reported serotype information. SRST2 had 
the highest number of unique issues, with 35 samples with 
a conflict in the O-antigen and 9 for the H-antigen, which 
represents a total of 44 samples. This result is interesting due 
to the fact that SRST2 is the second largest contributor of 
alleles to ECTyper database with 21 unique errors across 
both O- and H-antigens. SerotypeFinder had the lowest 
number of unique errors, with seven samples. Due to the 
extensive sharing of alleles from SerotypeFinder and SRST2 

with ECTyper it is not unexpected that there would be low 
numbers of unique errors and these biases could reinforce 
incorrect allele designations.

There are 780 samples where the predictions from more than 
1 tool did not match what was reported in the serotype record 
(Table S4). These disagreements represented up to 11 % of the 
dataset and may be the result of numerous factors, including 
issues with the antigen associated with alleles in each of the 
databases, metadata errors, or phenotypes that are the result 
of activity not controlled by the genes used for predictions 
[21]. The O2 and O50 serotypes are an example of a differ-
ence in phenotype that is determined by a factor outside of 
the genes used to predict the O-antigen. There is a very high 
similarity between O2 and O50, with their individual alleles 
demonstrating 99.9 % nucleotide identity [22]. The cause for 
the difference in their phenotypes is the result of a point muta-
tion in fdtB, which results in the absence of d-Fucp3NAc in the 
O50 antigen [22]. Similarly problematic antigens for sequence 
similarity predictions based on the defined biomarker data-
bases include O17, O44, O73, O77 and O106 serogroups, 
which have genetic identity of greater than 99.8%, but gluco-
syltransferase genes alter their side-chain composition [22]. 
In addition to cases where there are issues with high genetic 
similarity, there are instances of clearly incorrect serotype 
designations in the public dataset. For example, O157 is the 
most prevalent antigen in the dataset, with 2865 samples and 
an overall accuracy rate of 97 %. However, there appears to be 
an issue with the published serotype assignment in 59 cases, 
where all of the tools predicted an O-antigen other than O157. 
A further examination of these 59 discrepant samples shows 
40 different O-antigens being predicted, none of which belong 
to a group that is genetically similar to O157. Additionally, 
there were 42 samples where H17 was predicted to be H4 by 
multiple tools. As described earlier, H4 and H17 are highly 
similar genetically, differentiated by a single SNP. These anti-
gens are even difficult to type reliably in the laboratory using 
agglutination, since there are problems with antisera cross-
reactivity [31]. This represents a limitation of all in silico tools 
that utilize sequence similarity-based approaches if there is 
no specific nucleotide difference needed to specify one type 
instead of another. However, identification of these mutations 
is complex and would require laborious phenotypic confirma-
tion, and for many cases, it is not necessary, as laboratories 
can rely on WGS-based analyses to determine the relatedness 
of organisms more accurately.

CONCLUSION
As WGS becomes standard within public health laboratories, it 
is important to minimize disruptions to outbreak and surveil-
lance activities by providing in silico serotype predictions. 
ECTyper was designed to meet the specific needs of diagnostic 
laboratory reporting requirements and provides both species 
and serotype predictions based on WGS data. The results are 
provided in a format that is readily interpretable by techni-
cians performing routine typing of samples with clear quality 
control information. Consistently between both datasets both 
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ECTyper and SerotypeFinder achieved the highest rates of 
concordance with phenotypic serotyping. Overall, there were 
high rates of concordance between predicted and reported 
serotypes based on genes for O- and H-antigens, respec-
tively. However, there are multiple antigens that cannot be 
identified reliably using the existing biomarkers due to their 
high genetic similarity. The ability to resolve highly similar 
serotypes could be improved by the inclusion of cgMLST, or 
other whole-genome genetic distance-based approaches, as 
has already been done for Salmonella [49]. The inclusion of 
species resolution within ECTyper and its high accuracy in 
predicting serotype information from WGS data will make it a 
highly useful tool for laboratories performing routine testing 
of E. coli.
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