Skip to main content
. 2022 Jan 19;22:10. doi: 10.1186/s12880-022-00734-4

Table 4.

A comparison of model performance

Precision Sensitivity Specificity F1 Score AUROC IoU
U-Net 0.867 ± 0.073 0.810 ± 0.122 0.993 ± 0.005 0.831 ± 0.082 0.902 ± 0.060 0.719 ± 0.115
DeepLabV3+ 0.862 ± 0.082 0.828 ± 0.096 0.992 ± 0.006 0.838 ± 0.081 0.909 ± 0.047 0.726 ± 0.088

Inception-

ResNet-v2 U-Net

0.904 ± 0.072 0.805 ± 0.133 0.995 ± 0.004 0.842 ± 0.089 0.900 ± 0.066 0.737 ± 0.120
DenseNet121 U-Net 0.891 ± 0.053 0.824 ± 0.145 0.994 ± 0.004 0.845 ± 0.091 0.909 ± 0.071 0.741 ± 0.117
Resnet101 U-Net 0.865 ± 0.072 0.819 ± 0.122 0.992 ± 0.005 0.832 ± 0.068 0.906 ± 0.060 0.718 ± 0.095

Unsupervised

with Deep forest

0.832 ± 0.073 0.911 ± 0.096 0.990 ± 0.005 0.863 ± 0.048 0.95 ± 0.046 0.762 ± 0.071

Tomek Links

with Deep Forest

0.884 ± 0.061 0.867 ± 0.124 0.993 ± 0.004 0.867 ± 0.066 0.930 ± 0.061 0.770 ± 0.094

Cluster centroid

with Deep forest

0.868 ± 0.067 0.873 ± 0.107 0.993 ± 0.004 0.864 ± 0.062 0.933 ± 0.053 0.765 ± 0.087

Unsupervised

with GBDT

0.864 ± 0.066 0.894 ± 0.104 0.992 ± 0.004 0.872 ± 0.051 0.943 ± 0.051 0.776 ± 0.075

Tomek Links

with GBDT

0.885 ± 0.06 0.872 ± 0.123 0.994 ± 0.004 0.870 ± 0.066 0.933 ± 0.060 0.775 ± 0.094

Cluster Centroid

with GBDT

0.857 ± 0.073 0.902 ± 0.084 0.992 ± 0.004 0.874 ± 0.048 0.947 ± 0.041 0.779 ± 0.072
DenseNet121 U-Net [43] 0.858 ± 0.071 0.873 ± 0.109 0.991 ± 0.006 0.858 ± 0.057 0.926 ± 0.068 0.755 ± 0.082

Bold values are denotes the best-performing statistic of a metric among all models tested.