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a b s t r a c t 

Accurate detection of COVID-19 is one of the challenging research topics in today’s healthcare sector to 

control the coronavirus pandemic. Automatic data-powered insights for COVID-19 localization from medi- 

cal imaging modality like chest CT scan tremendously augment clinical care assistance. In this research, a 

Contour-aware Attention Decoder CNN has been proposed to precisely segment COVID-19 infected tissues 

in a very effective way. It introduces a novel attention scheme to extract boundary, shape cues from CT 

contours and leverage these features in refining the infected areas. For every decoded pixel, the atten- 

tion module harvests contextual information in its spatial neighborhood from the contour feature maps. 

As a result of incorporating such rich structural details into decoding via dense attention, the CNN is 

able to capture even intricate morphological details. The decoder is also augmented with a Cross Context 

Attention Fusion Upsampling to robustly reconstruct deep semantic features back to high-resolution seg- 

mentation map. It employs a novel pixel-precise attention model that draws relevant encoder features to 

aid in effective upsampling. The proposed CNN was evaluated on 3D scans from MosMedData and Jun 

Ma benchmarked datasets. It achieved state-of-the-art performance with a high dice similarity coefficient 

of 85.43% and a recall of 88.10%. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

COVID-19 outbreak has posed an unprecedented global health 

risis and has adversely impacted human life. COVID-19 is a viral 

nfection that is transmitted via droplets from an infected person’s 

ough, sneeze, or breath. It can show mild symptoms like fever, 

ore throat, and fatigue. In some cases, it can lead to severe respi- 

atory illness and difficulty in breathing. According to WHO, over 

18 M corona virus cases have been reported worldwide, of which 

.62 M were casualties as of March 2021. The United States is 

he most affected country with the maximum number of infected 

ases (over 6 M) and the highest death toll of 184 K. 

Currently, Reverse-Transcription Polymerase Chain Reaction (RT- 

CR) is the most widely used technique for testing COVID-19. RT- 

CR test detects the presence of the COVID-19 viral RNA from res- 

iratory samples. Though PCR testing is the current major clinical 

iagnostic test, it is faced with some limitations: it displays varying 

ensitivity with time (i.e. negative PCR patient can test positive in 

p to 5 days) [1] , it has a long turnaround time from a few hours
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o 2 days [2] . More recently, Rapid Diagnostic Test (RPT) was used 

or detecting the corona virus antigens with artificial antibodies. 

hey show sensitivity between 34–80% and take less than 30 min 

4] . But cases inadequate antigen traces in the nasal samples can 

o undetected on RPT. 

While biomedical tests demand intensive laboratory settings 

nd patient testing requirements, medical imaging on the other 

and, is relatively easier to obtain. When combined with Artifi- 

ial Intelligence (AI) based techniques, the medical imaging modal- 

ty can serve as an effective screening aid for automatic COVID-19 

etection. Many recent clinical studies have suggested that chest 

omputed Tomography (CT) imaging can be a potential tool for 

OVID-19 diagnosis due to its high sensitivity and low infection 

iss rate. In a study with 1014 patients in Wuhan China, CT-based 

creening registered 97% sensitivity as confirmed by the PCR test 

1] . CT had also shown a 75% detection rate in identifying false- 

egative cases missed by the PCR test. In another clinical experi- 

ent with 51 patients, CT was shown to have a recall of 96.07% 

ith the typical findings being ground-glass opacities, consolida- 

ion, and septal thickening [3] . Some CT patterns were found to 

verlap as well as contrast with that of Severe Acute Respiratory 

yndrome (SARS) and adenovirus infection. In a study with 34 sub- 

https://doi.org/10.1016/j.patcog.2022.108538
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108538&domain=pdf
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ects involving 4121 COVID-19 patients, CT scans for 91.4% of them 

ad presented with bilateral lung involvement that is suggestive of 

OVID-19 [4] . Guan et al. observed abnormal CT findings of Ground 

lass Opacity (GGO) and bilateral patchy shadowing in 86.2% 

OVID-19 cases [5] . For a study population in Italy, the use of CT

or assessing COVID-19 on PCR positive patients gave a high detec- 

ion accuracy of 97% [6] . The highest sensitivity recorded for chest 

T is 98% on a test group of 81 patients in Shanghai, China [7] . 

The most common CT manifestations of COVID-19 include pe- 

ipheral and posterior ground-glass opacities. In a few other cases 

esp. with severe symptoms), interlobular septal thickening, air 

ronchogram are likely to occur [3] . Crazy paving patterns, reverse 

halo’ signs are also reported as CT features for COVID-19 detection 

4] . AI-based analysis can help localize regions on chest CT that 

an potentially be a COVID-19 infection. With supervised learning, 

I can learn possible patterns that distinctly characterize COVID- 

9 on CT. Though detecting the presence of the virus is useful for 

onfirmatory diagnosis, the segmentation of the infected regions 

rom CT is more insightful and provides finer details for further 

linical assistance. Some challenging elements in CT that affect AI 

odeling are as follows: 1) heterogeneity of the target COVID-19 

nfection that might hugely vary in size, shape, and location. 2) Un- 

lear boundaries and limited contrast that is hard for pixel-precise 

elineation. 3) Interference from other manifestations that affect 

he class-discriminability of the target structure. Suitable AI mod- 

ling for addressing these issues would attempt to learn a robust 

ttention model for accurately harnessing the nature of a feature 

ixel. In this way, AI for automated COVID-19 segmentation can 

ut down a huge amount of clinician’s time and effort put into the 

elineation process. 

In this work, we propose a Contour-aware Pixelwise Attention 

CPA) decoder Convolutional Neural Network (CNN) for accurate 

OVID-19 infection segmentation from chest CT. In broad sense, 

he decoder explores additional contextual information from con- 

our regions to guide in detecting the spread of infection. It em- 

loys dual convolution pathways to extract this relevant lower- 

rder context (boundary, edge, shape, etc.) from the contour map. 

he attention logic used in the decoder learns to densely fuse 

hese contour features with the incoming intermediate feature 

ap. Also, to robustly upsample the resolution of the decoder 

ap, a Cross-Context Attention Fusion upsampling module has 

een presented. It exploits the encoded feature map at the cor- 

esponding level as supplementary context for upsampling. This 

odule interpolates high-resolution pixel features by computing 

he upsampled region as an attention function over the input low- 

esolution map and the supplementary context. By aggregating 

uch variable receptive field information from diverse contextual 

aps, the upsampler achieves lossless transformation, suppressing 

ny unwanted artefacts. 

The following are the main contributions of this research. 

1. We propose a novel contour-enhanced pixel attention decoder 

in this work that can be leveraged to enhance discriminability 

of lesion from normal pixels. Though enhancing decoder with 

boundary/edge awareness has been investigated in prior works 

[24 , 25] , the decoder model presented in this work explores a 

new fusion approach that combines information from multiple 

contour feature maps via attention. 

2. We also propose a novel upsampling module that takes ad- 

vantage of structural details present in the encoder features 

for interpolating high-resolution pixels. Different from previous 

works, this upsampler employs a pixel-precise attention model 

to extract relevant information from the encoded maps through 

cross-correlations. 

The rest of the manuscript is organized as follows. In Section 2 , 

elated works in AI-assisted COVID-19 CT segmentation are re- 
2 
iewed. Also, deep attention methods for feature upsampling and 

ecoding are discussed. Section 3 and 4 describe the proposed 

ork and discussion on the experimental results respectively. 

ection 5 concludes the key findings of the work. 

. Related works 

This section reviews related works in automated COVID-19 seg- 

entation and deep attention models for feature upsampling and 

ecoding. 

.1. COVID-19 segmentation from CT 

COVID-19 diagnosis from chest CT has been associated with 

he typical manifestations of the infection on the CT modality. AI 

echniques for inspecting COVID-19 mainly search for the ground- 

lass opacities, consolidations, and interstitial changes to charac- 

erize the infection. Several research works have explored different 

eep CNN architectures for the detection and segmentation of the 

OVID-19 infected regions from CT. 

Semi-supervised approaches learn from active annotation feed- 

ack and can alleviate the problem of sparsity in manually delin- 

ated data. For instance, Fan et al. presented a semi-supervised 

NN framework for segmentation of COVID-19 infection from CT 

lices [8] . The CNN aggregates high-level features from multiple 

evels using a parallel partial decoder. It employs reverse atten- 

ion and edge attention modules to mine boundary and edge in- 

ormation from spatial CT. Multiple Instance Learning (MIL) en- 

bles training on limited data labeling via leveraging relationships 

etween the instance features. In a joint COVID-19 segmentation 

um severity assessment CNN, He et al. proposed hierarchical MIL 

o first learn embedding-level representation for each 2D patch 

nstance in the 3D scan bag. Further bag-level MIL aggregation 

ver the instance embeddings was used for final classification [9] . 

oosely labeled CT data simulated by a time-series model can re- 

eal trends in COVID-19 infection patterns across time. Zhou et al. 

roposed a dynamic simulation framework to map the distribution 

f progression in infection regions across different points in time 

10] . The simulated 2.5D data is spread out along three planes (x-y, 

-z, x-z) and it is jointly segmented on a three-way segmentation 

-net model. 

U-net efficiently combines encoded features with high- 

esolution layers to enable precise target region localization and 

ixel-accurate classification. Chaganti et al. utilized the Dense U- 

et model to derive COVID-19 related lung abnormalities segmen- 

ation from CT [11] . The lung segmented 3D chest CT regions are 

assed through Dense U-net feature extraction and classified into 

ffected and unaffected voxels. A new form of the shared encoder 

ith two bifurcated U-net decoders was proposed by Yazdekhasty 

t al. for COVID-19 segmentation [12] . 

Few works propose new optimization objectives that focus on 

 distinct criterion or enhance existing algorithms. Elaziz et al. 

roposed an improved version of the Marine Predators Algorithm 

MPA) to generate multi-level thresholds for effective COVID-19 CT 

egmentation [13] . The approach optimizes the MPA search space 

xploration using the Moth Flame Optimization (MFO) technique. 

lustering techniques learn from unannotated datasets and gener- 

te patterns that can be used to better explicate COVID-19 CT im- 

ges. Chakraborty et al. applied a superpixel-based clustering ap- 

roach to process spatial features in COVID-19 infected scans [14] . 

 modified flower pollination algorithm was designed to explore 

he search space for forming clusters. 

Ensemble networks fuse diverse contextual information gen- 

rated from various feature transformations. Ouyang et al. pro- 

osed an ensemble of 3D ResNet34 with uniform and size- 

alanced data sampling for COVID-19 detection from CT [15] . An 
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nline 3D attention mechanism generates attention maps that are 

xplicitly trained against segmented infection regions. Learning 

rom noisy labels can be adaptively tuned in response to self- 

nsemble network optimization. Wang et al. proposed a noise- 

obust SqueezeNet-based self-ensembling framework that trains 

or COVID-19 segmentation with noisy labels [16] . The student and 

eacher networks in the ensemble are updated adaptively through 

oise-robust dice and consistency losses. 

.2. Attention upsampling and decoder networks for segmentation 

In the context of medical image analysis, feature interpola- 

ion from a fine-grained low-resolution map to the target high- 

esolution demands lossless property. Moreover, enhancing the lo- 

ation information and selection of the most salient low-level at- 

ention features can result in optimal segmentation performance. 

everal works have investigated ways to achieve effective feature 

psampling that is sensitive to the target objects and suppresses 

rrelevant features. For instance, Yin et al. proposed a Total Gener- 

lized Variation (TGV) scheme for restoring the feature map from 

he loss of information due to upsampling with bilinear interpola- 

ion [17] . TGV is used to effectively reconstruct target maps from 

ow-resolution features. The model exploits first and second-order 

erivatives for incorporating information from various channels in 

he feature map into the upsampled map. 

Learning an attention gating function from the high-level fea- 

ure map can serve as guidance for localizing areas from the low- 

evel map. Huang et al. applied a global pooling upsample atten- 

ion model at each decoder layer for semantic segmentation using 

eature Pyramid Networks [18] . The global knowledge context from 

he high-level features was used to derive attention coefficients 

or the low-level feature maps. Attention-guided dense upsampling 

onvolutions were exploited for learning precise feature informa- 

ion. In the work by Sun et al., dense attention upsampling con- 

olution and bilinear upsampling were used for deriving upsam- 

led feature maps from high-level features [19] . The densely up- 

ampled map is summed with low-level features and concatenated 

ith the bilinear upsampled map. The resultant feature map is at- 

ended with channel-wise spatial attention. Chen et al. used sub- 

ixel convolution with pixel shuffling as a dense upsampling con- 

olution operation [20] . Multiple periodic low-level feature maps 

re merged into a high-resolution map in positions determined by 

he period shuffling operation. This technique overcomes the prob- 

em of block artifacts in the Fully Convolutional Network (FCN) due 

o pixel replication from the same feature map. 

Decoder modules provide a mechanism to fuse low-level details 

ike edges, boundaries, regions with high-level features to create 

ccurate segmentation maps. Exploiting primitive features helps 

NN decode precise boundaries, recover minor objects, and refine 

he feature activations from generating false positives. Spatial and 

ross-channel attention are the two major attention models for im- 

licitly learning salient regions and key features. The Spatial Chan- 

el Attention U-Net (SCAU-net) employs spatial and channel atten- 

ion models for feature decoding and recalibration [21] . The spa- 

ial attention model adaptively learns to generate weighted maps 

or the features that identify key areas and prune irrelevant fea- 

ures. The channel attention module selectively exploits global in- 

ormation to enhance useful features for the decoder. In the work 

y Karthik et al., an implicit spatial attention mask is derived for 

eighing the relative importance between pixels in a feature map 

22] . Peng et al. applied a dual attention mechanism to the decoder 

hat employs two key components: 1) global attention upsampling 

o derive channel attention mask for the low-level feature map 2) 

patial attention mask generated from the low-level features to re- 

over boundary details for the decoder [23] . 
3 
Edge information from low-level features can serve as impor- 

ant cues for localizing objects. Zhang et al. proposed an edge guid- 

nce network that propagates edge attention features from the ini- 

ial encoding layers onto the decoder [24] . A weighted aggregation 

f multi-scale decoder features and edge-attention representations 

re used to derive the final segmentation mask. The effectiveness 

f exploiting saliency information in deeper layers and use it to 

xtract meaningful structural information in shallower layers was 

emonstrated in [25] . 

Decoders can be also set to capture specific aspects of the CNN, 

ike factoring multi-class specific information, aggregating contexts, 

tc. Hong et al. proposed a decoder that reconstructs dense fore- 

round segmentation masks from categorical adaptive saliency at- 

ention maps produced by an attention model [26] . Class-specific 

ttention weights defined over all the channels in the feature map 

re processed by the decoder to render the final segmentation 

ap. By fusing features across modalities, a mask-guided attention 

odel can be applied to learn rich feature patterns from multi- 

odality data [27] . 

Learning to adaptively aggregate multi-scale pyramid feature 

aps via attention can result in enhanced pixel-wise delineation. 

n the work, the authors proposed an efficient decoder that high- 

ights salient regions and suppresses noise through defining at- 

entive spatial gating and feature interaction mechanisms over the 

CN [28] . Zhang et al. proposed a multi-scale parallel decoder de- 

ign that aggregates local and long-range contextual information 

rom the branches of a HRNet [29] . These aggregated feature sets 

re a result of adaptive spatial pooling and spatial reasoning mod- 

le which capture the large local receptive field and long-range 

patial correlations respectively. 

. Proposed work 

The architecture of the proposed contour-enhanced attention 

ecoder CNN is presented in Fig. 1 . It is modeled as an encoder- 

ecoder paradigm. It starts out with a series of encoding layers. 

ach encoder block is made up of three convolutional branches 

ith different receptive field sizes. The encoder block emits one 

ainline output to the downstream encoder and three auxiliary 

utputs for use at the corresponding decoder. 

At every decoding step, the CNN uses a cross-attention model 

o merge this auxiliary encoder feature-set with the incoming fea- 

ure map at that step. From Fig. 1 , the upsampling module selec- 

ively fuses this encoder context with the input feature map to 

enerate the decoded map. Through a series of such attention- 

ided decoding steps, the encoded map is transformed back to 

igh resolution segmentation image. 

In the final two steps of the decoding, the CNN exploits CT con- 

our based features to guide in accurate tracing of the infected ar- 

as. A feature extraction network is employed to generate robust 

eatures from CT contour map. The decoder then integrate these 

tructural features containing shape, boundary information with 

he deep semantic feature map through spatial-attention, to refine 

ts prediction of the infection spread. 

Being indirectly linked to the shallower encoder blocks, this 

ontour attention decoder induces the encoding layers to generate 

ffective representations that complement it. This feedback enables 

he encoder to produce salient features that augment the decoder 

n highlighting the infection pixels from normal pixels. This com- 

lementary learning not only enhances discriminability of the in- 

ection, but also suppresses noise from entering the decoder. 

Section 3.1 presents the design of the encoder block. The up- 

ampler module is described in Section 3.2 . Finally, Section 3.3 elu- 

idates the pixelwise attention decoder that uses contour features 

o refine the predicted infection regions. The output from the final 

ayer is deeply supervised with categorical cross-entropy loss. 
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Fig. 1. Architectural diagram of the proposed CNN. 

Fig. 2. Architectural overview of the multi-Kernel encoding module. 
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.1. Multi-Kernel encoding (MKE) module 

In semantic segmentation, the design of the encoder network 

irectly affects the performance of the model to a large extent. As 

pposed to a linear convolutional chain, widening the number of 

arallel feature extraction branches at a single layer boosts the rep- 

esentational capability of the CNN. It enables the CNN to observe 

nd correlate large variations in the spatial properties of the infec- 

ion. The MKE module is inspired by the hybrid Inception-ResNet- 

2 architecture, which factorizes the convolution into multiple sep- 

rable steps, resulting in high computational efficiency and a richer 

eature-set. 

As shown in Fig. 2 , the MKE block consists of two steps, 

amely1) the featurization step and 2) reduction step. Let x l−1 ∈ 

 

H×W ×C be the input feature map for the MKE module at network 

evel l . Here H, W, C denote the spatial height, spatial width, and 

he number of channels respectively. First, the featurization layer 

s applied on x l . This step derives two auxiliary residual connec- 

ions via linear and separable convolutions. The dimensionality of 

he stacked residues is scaled up to match the channel number of 

 

l through 1 × 1 filter-expansion convolution. Residual links offer 

ultiple paths for feature flow and prevent gradient signals from 
4 
anishing. When these residual connections are combined with the 

nception the training is greatly speeded-up. The magnitude of the 

ggregated residues is scaled by a factor of 0.3 to stabilize learn- 

ng. The scaling factor was chosen as per the design parameters 

eported in the Inception net [46] . 

The ReLU activated feature map is fed down the reduction layer 

hat results in 1) downsizing the spatial resolution by half, 2) dou- 

ling the number of feature channels. As shown in Fig. 2 , out- 

uts from the multi-branch reduction step are as follows: one 

ainline output feature map x l and three auxiliary feature maps 

m 

l 
1 
, m 

l 
2 
, m 

l 
3 

. The mainline result is consumed by the downstream

ncoder layers, while the auxiliary/sideline features are exploited 

y the decoder. 

As per Fig. 2 , the number of output channels in the resulting 

ainline feature map x l is given by C′ .The value of C′ = 32 for 

evel l = 1. For subsequent levels, C′ is set to twice the number 

f input channels C . That is, for input x l−1 ∈ R 

H×W ×C passed into 

he MKE module, the resultant feature map x l is given by 
H 
2 

× W 

2 
×C′ 

 

Similarly, resolution of the emitted three auxiliary feature maps 

s also reduced by half. These auxiliary features are denoted as 
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Fig. 3. Schematic diagram of cross context attention fusion upsampler. 
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l 
1 

∈ R 

H 
2 

× W 

2 
× C′ 

2 and { m 

l 
2 
, m 

l 
3 
} ∈ R 

H 
2 

× W 

2 
× C′ 

4 . Overall, introducing 

uch multi-branched convolutions offers wider filter banks. It en- 

bles the encoder to efficiently process the spatial grid-size re- 

uction in several hops. Furthermore, by forming a channel-wise 

ense concatenation of these feature maps, it integrates variably- 

ized receptive field information locally at each level in the pro- 

essing hierarchy. 

.2. Cross context attention fusion (CCAF) upsampler 

To learn an adaptive feature interpolation scheme that can re- 

over spatial features from high-dimensional semantic representa- 

ions, a dense attention upsampler has been proposed. Learning 

uch a dense attention function to retrieve salient structural de- 

ails can attribute more awareness to the semantic features learnt 

n these deep layers. 

Especially, when reconstructing to higher resolution, retrieving 

he relevant lower-order context significantly enhances the local- 

zation information in the decoder layers. Considering these design 

spects, the proposed attention upsampler draws a spatial cross- 

orrelation amongst the three auxiliary encoded feature maps. The 

psampler architecture is presented in Fig. 3 . 

For CCAF upsampler at level l, consider input feature map 

 

l+1 ∈ R 

H×W ×C , where H, W, C denote the spatial height, spatial 

idth, and a number of channels respectively. Let m 

l 
1 

∈ R 

2 H×2 W × C 
4 

nd { m 

l 
2 
, m 

l 
3 
} ∈ R 

2 H×2 W × C 
8 be the three auxiliary lower-order fea- 

ure maps from the encoder level l . The output yielded by the up- 

ampler block is denoted as u l ∈ R 

2 H×2 W × C 
2 , where the spatial res- 

lution is doubled and the channel number is halved. Doubling the 

patial resolution can be seen as projecting every pixel in the low- 

esolution map to a 2 × 2 region in the upsampled map. Specifi- 

ally, for a pixel location ( i, j ) in the low-resolution map u l+1 , the 

psampler learns an attention function over the aligning 2 × 2 

ub-region in the contextual maps m 

l 
1 
, m 

l 
2 

, m 

l 
3 

. By weighing the

ontributions from these sub-regions along with the pixel feature, 

he pixel at location ( i, j ) is densely interpolated to a 2 × 2 re-

ion in the upsampled map u l . 

As shown in Fig. 3 , for pixel at location ( i, j ) in u l+1 , the cor-

esponding 2 × 2 area is sampled from the lower-order contex- 

ual maps m 

l 
1 
, m 

l 
2 
, m 

l 
3 

. Let p = { 1 , 2 , 3 } be used to identify the

espective contextual map m 

l 
p . Then from Fig. 3 , three 1 × 1 

onvolutions are applied to transform every m 

l 
p region of size 

 × 2 to different embeddings called the keys. In Fig. 3 , K p ∈ 

 

2 ×2 ×C denote the key embeddings for the corresponding con- 

extual map. Here the channel number is in C dimensions. Sim- 
5 
larly, the pixel feature ( i, j ) in u l+1 is linearly transformed into 

uery vector for that pixel Q ∈ R 

1 ×1 ×C . Then the attention coef- 

cients map A p ∈ R 

2 ×2 is generated via matrix multiplication be- 

ween query and keys. Eq. (1) presents the relation for computing 

 p . 

 p = K p × Q 

T (1) 

This form of attention weighing is defined as dot-product at- 

ention. Every point in the 2 × 2 A p gives the degree of correlation 

etween the features Q and the corresponding pixel in K p . Further 

he attention weights A p are pixel-wise softmax normalized across 

p (shown in Fig. 3 ). Therefore the weights assigned to every po- 

ition in the 2 × 2 attention map are cross-correlated over the p

ontextual maps. This step yields the new spatial attention map αp 

or each p . 

Similar to the calculation of keys K p , new embeddings denoted 

s V p are calculated from the contextual maps m 

l 
p . Three more 

onvolutional layers with 1 × 1 filters are applied on m 

l 
p to create 

he values V p ∈ R 

2 ×2 × C 
2 . It represents the contextual features in 

C 
2 

umber of channels. Derivation of V p from m 

l 
p is depicted in Fig. 3 . 

he values mainly help with feature adaptation. 

The attention fusion utilizes these normalized weights αp to ag- 

regate the values V p . The final upsampled 2 × 2 sub-region for a 

ixel as per Eq. (2) . 

 = 

∑ 

p 

αp V p + f 
(
u 

l+1 ( i, j ) 
)

(2) 

here f (. ) is a 1 × 1 convolution that projects u l+1 to C 
2 channel 

umber. U denotes the upsampled area for the pixel at ( i, j ) . The 

ame mechanism is parallelly run overall spatial points to gener- 

te the upsampled map u l . From Eq. (2) , it is seen that residual

earning is placed on these attentive features against the feature 

ow u l . Due to this, the attention branch is seen as applying suit- 

ble infection segmentation refinement over the mainstream fea- 

ure map u l . The spatial attention weights are adjusted to reflect 

he inclusion of lower-order context towards enhancing the se- 

antic maps. Since these contextual maps receive active attention 

eedback via back propagation, the MKE feature extraction is auto- 

uned to complement the refinement of semantic features. Thus 

ighly effective upsam pler learning is achieved via adaptive atten- 

ion recalibration and active feedback. 

.3. Contour-aware pixelwise attention (CPA) decoder 

To obtain precise high-resolution region segmentation with 

harp boundaries, the final decoder layers are infused with explicit 
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Fig. 4. Processing pipeline for connected contour regions extraction from chest CT. 
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oarse contour area maps as presented in Fig. 1 . Towards the end, 

he decoding layers mainly focus on attributing the semantic con- 

ext to recover spatial resolution. As a result, they retain lesser 

eature channels compared to the inner layers which learn com- 

rehensive representational features. When these layers learn to 

ink class labeling with the pixels, the contour region maps serve 

s supplementary information channels that aid in boundary pixel 

iscrimination. These contour region features on CT serve as an 

mportant cue to delineate the intricate morphologies of the target 

OVID-19 infection. Moreover, diffusing such lower-order context 

ia an attention model enables the decoder to selectively integrate 

nly the salient shape profile that boosts boundary awareness. It 

lso automatically discards the noise inherent to the coarse con- 

our regions. The contour region features do not induce semantic 

ontext, but they highlight homogeneous regions. This region in- 

ormation enriched with semantic features from the deeper layers 

s leveraged by the decoder to distinguish contrast variations be- 

ween COVID-19 infected tissues and other lung manifestations. 

Fig. 4 presents the process flow diagram describing the vari- 

us steps in the extraction of connected regions from the CT im- 

ge. The input CT scan is processed through stages of edge de- 

ection, intensity thresholding, and contours extraction to reveal 

he prominent candidate-connected regions within the lung area. 

irstly, the CT is subjected to Canny edge detection. The edges are 

ilated and masked against the base CT image, to obtain a sharp- 

ned image containing the regions enclosed within these edges. 

he resulting map is spatially min-max intensity normalized, to 

reserve the edge contrast details. The region fragments display- 

ng high boundary contrast against the surrounding background 

re deduced using Otsu binary thresholding. This is followed by 

 morphological closing operation that connects discontinuities in 

he foreground objects. Contour lines are then inferred from the 

mage. 

The areas enclosed within the contours are filled as foreground. 

s a result, only the connected components that fall inside the 

ung segments are rendered as the contour regions map. 

The Contour Feature Extraction (CFE) network shown in Fig. 1 , 

xtracts two levels of multi-type convolutional features from the 

ontour region map described in Fig. 4 . To minimize the size of the

uxiliary network and create robust feature-sets, multi-branching 

f depth-wise separable and grouped convolutions is formed at the 

FE block. There are two levels of convolutional features in the CFE 

etwork, i.e. r 1 and r 2 . Each level l offers triple branching of dif- 

erent convolutional types, whose outputs r l 
1 
, r l 

2 
, r l 

3 
connect to the 

ainstream decoder blocks at the respective level. The motivations 

ehind designing the CFE network as an array of such convolution 

ypes are as follows: 1) they facilitate rich-location context at a 

uch lower computation cost 2) each branch can be scaled sepa- 
6 
ately and thus highly tuneable via the decoder attention, 3) bind 

nformation flow from variable spatial scale profiling, since convo- 

utional branches in the same CFE-level observe different feature 

cales, 4) boost gradient flow between CFE levels due to aggre- 

ation of multi-scale features. Moreover, the depth-wise separable 

onvolution efficiently draws channel-wise correlations and offers 

ense pixel connectivity. The grouped convolution acts as a regu- 

arizer. 

The proposed attention decoding module utilizes these r 1 , r 2 

egion contextual features from the CFE net to refine COVID-19 in- 

ection segments. The pixelwise attention decoder exploits the 8- 

oint connectivity of a pixel to build an attention function over 

he corresponding position and its neighboring positions on the 

ontour region map. The architectural diagram of the proposed de- 

oder is shown in Fig. 5 . 

As shown in Fig. 1 , the CPA decoder at level l, feeds on the

ainline feature map u l ∈ R 

H×W ×C from the upstream CCAF up- 

ampler. It learns a transformation of u l to d l through attentive 

ggregation over the diverse region contextual maps { r l 
1 
, r l 

2 
, r l 

3 
} ∈ 

 

H×W ×C from level l . These region context maps have the same 

imensions as the incoming feature map u l , as shown in Fig. 5 . Let

 

l ∈ R 

H×W ×C denote the output feature map from the CPA decoder 

odule. 

The attention mechanism is formed at the pixel level, as shown 

n Fig. 6 . Every pixel ( i, j ) in the output map d l is a result of at-

ending to the aligning 3 × 3 spatial window from the region con- 

ext maps r l 
1 
, r l 

2 
, r l 

3 
. Let p = {1,2,3} be used to identify the cor-

esponding region context features r l p . Then, to decode a pixel at 

patial position ( i, j ) , salient region information around that po- 

ition is drawn from each p th region context map, r l p , via an at- 

ention model. Fig. 6 presents the internal processing of this at- 

ention strategy for r l p . Specifically, for the input pixel features 

 

l ( i, j ) ∈ R 

C , the attention model decodes the matching 3 × 3 re- 

ion from each r l p to yield attentive feature vector A 

l 
p ( i, j ) ∈ R 

C for

ach p . As shown in Fig. 5 , such attention features A 

l 
p derived for

ach p are densely aggregated to render the decoded map d l . 

Fig. 6 describes the attention mechanism to create attention- 

eighed features A 

l 
p from the p th region context map, i.e. r l p . 

irstly a 1 × 1 convolution is applied to pixel features u l at posi- 

ion ( i, j ) to form the query vector Q ∈ R 

C . Similarly, a 1 × 1 con-

olution performed over the 3 × 3 corresponding region from r l p , 

onstructs the set of keys K p ∈ R 

3 ×3 ×C . Then, an additive attention 

cheme is defined over the query Q and keys K p . The query vector 

is first added to every spatial location in the 3 × 3 region K p 

 The resulting map is scaled by the hyperbolic tangent activation 

nd linearly projected to a 3 × 3 matrix of attention weights. This 

inear transformation is parameterized in W ∈ R 

C×1 and shown as 
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Fig. 5. Schematic diagram of the proposed CPA decoder. 

Fig. 6. Pixelwise attention module. 
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 × 1 convolution in Fig. 6 . Upon spatial softmax normalization, 

he attention coefficient matrix αp ( i, j ) ∈ R 

3 ×3 is obtained. The 

ositional index ( i, j ) denotes that the attention coefficients are 

ormed for a 3 × 3 window around that pixel. Eq. (3) presents the 

omputation steps for deriving αp ( i, j ) . 

p ( i, j ) = sof tmax ( W × tanh ( Q � K p ) ) (3) 

Here, � denotes the pixel-wise sum between the query and 

eys. Softmax scaling is performed over the spatial locations. The 

yperbolic tangent activation is employed because it includes both 

ositive and negative values into the non-linearity and regulates 

radient-flow. Identical to the keys K p derivation, a new set of em- 

eddings V p ∈ R 

3 ×3 ×C are calculated for the 3 × 3 region corre- 

ponding to the position ( i, j ) in r l p . As shown in Fig. 6 , V p is

btained via convolution with 1 × 1 filters. These values V p are 
7 
ombined with the attention weights α as a weighted linear sum 

o render the final attended feature vector A 

l 
p ( i, j ) for the position 

 i, j ) . This is given in Eq. (4) . 

 

l 
p ( i, j ) = GSP ( αp ( i, j ) � V p ) (4) 

here � denotes pixelwise multiplication and GSP denotes Global 

um Pooling. The overall A 

l 
p feature map computed overall ( i, j ) in 

he image is collected from region context map r l p . 

As shown in Fig. 5 , the CPA decoder forms a dense convolution 

f u l stacked on top of these A 

l 
p attentive feature maps. The dense 

tack is transformed by a 1 × 1 convolution layer to emit the de- 

oded feature map d l ∈ R 

H×W ×C from level l . In effect, the contour- 

ware decoder inspects the region context feature maps through a 

recise attention model fit local to each pixel in the input. As a 

esult of such a dense attention fusion, the decoder can efficiently 
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Table 1 

3D CT scan datasets curated from different sources. 

S.No Source Details 

Number of COVID-19 

labeled 3D scans 

Average number 

of slices per 

scan Average 2D resolution 

1 Jun Ma benchmark 

dataset [30] 

3D scans from Corona 

cases Initiative 

10 258 550 × 550 

Annotated scans from 

Radiopaedia 

10 94 550 × 550 

2 MosMedData [31] Municipal hospitals in 

Moscow 

50 41 

512 512 
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iscriminate the infection boundary pixels and produce accurate 

egmentation. 

. Results and discussions 

In this section, the efficacy of the proposed CNN is evaluated via 

blation experiments. We also present a quantitative performance 

omparison of the CNN with state-of-the-art semantic segmenta- 

ion methods. In each performance analysis sub-section, the obser- 

ations are substantiated with relevant discussions on the architec- 

ural elements. 

.1. Data collection 

The two data sources used to train and evaluate the proposed 

NN are given in Table 1 . The COVID-19 lung infection segmenta- 

ion dataset by Jun Ma consists of 20 COVID-19 regions annotated 

D CT scans [30] . The infected regions were delineated by radiolo- 

ists on 20 CT scans sourced from Corona cases Initiative and Ra- 

iopaedia. The average 2D spatial resolution was 550 × 550. The 

ther data source, MosMed CT scans, was acquired from munici- 

al hospitals in Moscow [31] . Out of 1110 studies, a subset of 50

amples has been labeled with COVID-19 affected areas and fa- 

ilitates use in segmentation tasks. The corresponding COVID-19 

atients were diagnosed with mild corona symptoms and typical 

hest CT manifestations were that of ground-glass opacities and 

onsolidation. Under all experiments discussed in the subsequent 

ections, the results are reported for the model trained on these 

wo data sources - Jun Ma dataset and MosMed data individually, 

s well as on the combined set. The3D CT scans were split in the 

atio 70:10:20to create training, validation, and testing sets respec- 

ively. Then, the 3D scans under each partition were converted to 

D slices for training and testing the proposed CNN. 

.2. Data augmentation 

To solve the challenge of data insufficiency and improve gen- 

ralizability of predictions to real-world CT scan, this work uti- 

izes various data augmentation techniques to enable model fitting 

n a larger set of samples. The dataset was augmented by apply- 

ng random rotation, translation, shearing, and horizontal flipping. 

he parameter range for these affine transformations was chosen 

uch that the infection surface is not distorted on the binary mask. 

hese matrix functions are parameterized as an angle of rotation 

n the range of −10 
◦

to 10 
◦
, translation change along x-y direc- 

ions are within 10% of the image’s height and width, horizontal 

nd vertical shear factors are between −tan ( 5 
◦
) and tan ( 5 

◦
) for

he shear angle of 5 
◦
, and randomized horizontal flipping with a 

0% probability. The four transformations were serially applied to 

ata batches sampled in the training phase. For validation and test- 

ng, raw CT samples were used. 
8 
.3. System setup 

The proposed CNN was trained on dual 12GB NVIDIA Tesla K80 

PUs in a VM instance rented on Google Cloud. The models were 

mplemented in PyTorch. The upsampler and decoder logic was de- 

igned as torch network modules that can be plugged into the base 

NN. The system specifications are as follows: Ubuntu 18.04, 4vC- 

Us, and 16GB RAM. For all experiments, the models were trained 

ith Adam optimizer with an initial learning rate of 0.01. The 

earning rate decay was scheduled to drop by a factor of 0.1 when 

o improvement is seen in validation dice over 10 epochs. To bal- 

nce the proportion of samples with small and large net infection 

urface area in a single batch, the stratified data sampling tech- 

ique was used. Such a weighted-class sampling approach guar- 

ntees an equal number of small and large infection samples in a 

atch. 

.4. Ablation experiments 

In this section, the effectiveness of the two building blocks of 

he proposed CNN, i.e. CCAF upsampler and CPA decoder are in- 

ividually determined. Further, the performance of the two mod- 

les is compared against the state-of-the-art upsampling/decoding 

chemes. In the final sub-section, the training and validation re- 

ults of the proposed CNN are discussed. 

.4.1. Effectiveness of the upsampler 

To ensure fair comparison, the performance mainly due to in- 

lusion of CCAF upsampler in the proposed CNN has to be mea- 

ured. For that reason, a modified form of the proposed CNN (in 

ig. 1 ) is instantiated with the following changes: 1) the MKE en- 

oder blocks are retained in-place. 2) CPA decoder and contour re- 

ion feature extraction are eliminated from the network. We term 

his modified CNN as the ‘CCAF upsampler CNN’. Thus the effec- 

iveness of incorporating the CCAF upsampling logic can be esti- 

ated by evaluating this model. 

These results are compared to similar upsampling models in 

he literature, in terms of two metrics- Dice Similarity Coefficient 

DSC) and Intersection over Union (IoU). Table 2 compiles the per- 

ormance obtained for different upsampling strategies on the in- 

ividual Jun Ma, MosMed data source, also on the set formed by 

ombining those two sources. All the compared methods were im- 

lemented and run on the prepared dataset at hand. The same 

raining, validation, and testing partitions were used in all experi- 

ents. The metric values projected in Table 2 are recorded on the 

ommon test set. Of these methods reported in Table 2 , the first 

wo methods directly reconstruct the feature map to a higher res- 

lution. The remaining methods combine lower-order feature maps 

rom the respective encoder level. 

To ensure a fair comparison of these upsampling schemes with 

he CCAF upsampler CNN, an experimental procedure was estab- 

ished. As per this, for each upsampling method (listed in Table 2 ) 
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Table 2 

Comparison of various upsampling schemes for semantic segmentation. The results are presented both on the individ- 

ual MosMeddata and Jun Ma datasets as well as on the combined set. The same test set partition is used to test the 

model. 

S. 

No. Method 

Jun Ma dataset [30] MosMedData [31] Combined dataset 

DSC IoU DSC IoU DSC IoU 

1 Bilinear upsampling 70.49 58.80 63.54 52.17 66.27 53.15 

2 Sub-pixel shuffling dense upsample [20] 73.52 59.69 67.83 55.47 69.12 57.77 

3 Global Attention Upsample [18] 71.63 57.56 70.97 58.38 71.35 60.01 

4 Attention-guided dense-upsampling [19] 78.17 66.32 73.02 58.97 74.86 61.88 

5 Data-dependent Upsampling [31] 77.31 64.80 74.95 58.62 75.92 63.12 

6 Proposed CCAF upsampler CNN 80.43 69.87 75.19 65.30 77.67 65.79 

Table 3 

Analysis of the proposed CPA decoder with existing decoder architectures used for semantic segmentation on datasets described in 

Section 4.1 . To ensure fair comparison the models were trained and tested on the same data partitions. 

S.No. Method 

Jun Ma dataset [30] MosMedData [31] Combined dataset 

DSC IoU DSC IoU DSC IoU 

1 Point-wise attention decoder [32] 75.19 64.35 72.77 62.08 73.77 62.98 

2 Stride spatial pyramid pooling and dual attention decoder [23] 79.33 67.29 74.14 65.24 76.25 67.85 

3 Cross-granular attention decoder [33] 78.13 69.81 83.85 73.19 78.89 68.65 

4 Proposed CPA decoder 82.63 72.20 83.49 72.78 80.12 70.42 

Table 4 

Observations of the Ablation studies. The results are grouped dataset-wise. The proposed models were trained and tested under each dataset. 

S No Dataset Method DSC IoU Precision Sensitivity Specificity AUC 

1 Jun Ma dataset [30] CCAF upsampler CNN 80.43 69.87 78.85 82.46 99.75 77.00 

CPA decoder CNN 82.63 72.20 80.26 96.06 99.76 81.69 

Proposed CNN 88.01 75.03 85.57 90.05 99.77 85.03 

2 MosMedData [31] CCAF upsampler CNN 75.19 65.30 73.11 77.32 99.70 77.34 

CPA decoder CNN 83.49 72.78 84.66 82.19 99.75 83.26 

Proposed CNN 83.71 71.51 82.43 84.58 99.75 82.21 

3 Combined dataset CCAF upsampler CNN 77.67 62.65 76.32 79.21 99.72 75.60 

CPA decoder CNN 80.12 68.70 80.96 79.39 99.79 78.69 

Proposed CNN 85.43 73.44 81.23 89.88 99.77 84.61 
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 new model is created by modifying the proposed CNN as fol- 

ows: 1) MKE module is unaltered, while the CFE network and CPA 

ecoder are removed. 2) the specific upsampling module is em- 

edded in place of the CCAF module in the CNN. For the com- 

ared upsampling techniques that access the lower-order feature 

ap (methods 3,4,5 in Table 2 ), the respective encoded map x l is 

assed into that module. 

Bilinear interpolation achieves a DSC of 66.27% on the com- 

ined dataset and it is established as a baseline for comparing en- 

ancements from neural network-based upsampling schemes. Bi- 

inear upsampling is faced with two limiting factors: 1) it does not 

xploit the structural properties and semantic context of the im- 

ge, 2) places a tight upper limit for reconstruction and loses in- 

ormation. The sub-pixel dense upsampling proposed by Chen et al. 

ields 69.12% DSC. It is a special form of deconvolution that inter- 

eaves pixel features from different channels [20] . But it suffers 

rom checkerboard/block artifacts when used without a corrective 

echanism or appropriate kernel initialization. Especially in the 

ulti-step reconstruction of medical images, it is prone to intro- 

uce artifacts due to gradient saturation. 

In contrast, infusing salient low-level features enrich upsam- 

ler learning. Global Attention Upsampling (GAU) creates global 

hannel descriptors for low-level feature maps and attentively 

ombines this fine-grained information to reconstruct infected re- 

ions. It reaches a high DSC of 71.35% on the joint dataset due 

o the inclusion of low-level features and global context aggrega- 

ion. The GAU conceptually covers design aspects of attention up- 

ampling, but it offers large scope for architectural enhancements. 

he attention-guided dense upsampling proposed by Sun et al. 

nhance this model by applying dense convolution and Squeeze- 
9 
xcitation-based channel-wise attention. Thus it improves GAU’s 

SC by 4.92% for COVID-19 segmentation on the combined set. 

ompared to global channel-attention, it is observed that spatial 

ttention applied over neighboring pixels produces finer upsam- 

led features. Also, compared to fusing low and high-level features 

ia addition or dense convolution, the proposed Query-Key-Value- 

ased cross attention model has yielded better representational ca- 

ability. 

A new form of Data-Dependent approach to upsampling was 

roposed by Tian et al. [31] . An inverse projection matrix tech- 

ique was employed to recover the upsampled pixels from low- 

esolution data [31] . It obtains a DSC of 75.92% which is closest to 

he proposed work. While it is computationally efficient and uses 

ub-region aggregation, in the context of COVID-19 segmentation 

xploring ‘multiple’ fine-grained deep structural encoder represen- 

ations has led to better performance. This is because the CCAF up- 

ampler not only learns selective feature recovery but also imparts 

ome level of class-awareness to the MKE encoder whose learning 

omplements that of the upsampler. Compared to data-dependent 

psampling, the CCAF upsampler exhibits better adaptive scaling of 

econstruction parameters which account for the 2.30% increase in 

SC. 

.4.2. Effectiveness of the decoder 

In this section, the efficacy of the CPA decoder is analyzed by 

pawning an altered form of the proposed CNN. 

In the modified network, the CCAF upsampler block is substi- 

uted with the following configuration: 1) the input u l+1 is bilin- 

arly upsampled and densely stacked with respective encoder fea- 

ures x l , 2) the result is convolved with 3-by-3 convolution to re- 
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Table 5 

Learning curves showing epoch-wise trends in the decay of cross-entropy loss and evolution of DSC. Additionally, the PR curve recorded on the 

validation set is provided. 

Table 6 

Experimental observations of model training, validation, and testing evaluated on Dice and IoU scores. Additional runtime analysis including Inference times, Number of 

learnable parameters and number of floating-point operations (FLOPs) are also computed for the ablation models. 

S.No Experiment 

Dice-coefficient (%) Mean IoU (%) Inference Time 

(milliseconds/image) 

Number of Parameters 

(in millions) 

Giga 

FLOPs 
Training Validation Testing Training Validation Testing 

1 CCAF 

upsampler 

CNN 

81.68 80.11 77.67 66.52 65.99 62.65 20.47 18.82 7.04 

2 CPA Decoder 

CNN 

85.42 83.76 80.12 73.19 71.61 66.70 26..95 22.45 8.55 

3 Proposed CNN 88.01 87.54 85.43 77.57 76.73 73.44 38.24 30.51 13.78 
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uce channel depth by half. The new network is called the ‘CPA de- 

oder CNN’. Given these changes, it is ensured that only enhance- 

ents offered by the decoder are reflected in the results. 

Table 3 provides a comparison of the different decoder ap- 

roaches in the literature. As discussed in Section 4.4.1 , the exper- 

ments were orchestrated in a way that gains exclusively due to 

ecoder are fairly compared across different works. In that view, 

he decoder strategies compared in Table 3 are incorporated into 

he proposed framework as follows: 1) the CCAF upsampler and 

PA decoder blocks in Fig. 1 are entirely replaced with the decoder 
10 
odel considered for comparison, 2) multi-scale encoder feature 

aps x l are made available to the decoder logic when fusing low- 

evel features. 

The point-wise decoder aggregates features of different resolu- 

ions progressively via point-wise attention gating [32] . It achieved 

 DSC of 73.77% on the combined dataset. The point-wise oper- 

tions apply dedicated attention weights to map every point in 

he feature map. But it is observed that learning dense attention 

eighing over local/global context for a pixel yields higher perfor- 

ance. 
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Table 7 

Visual comparison of COVID-19 segmentations results from different experiments. 
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On the other hand, generating multi-scale semantic information 

rom a high-level feature map was attempted by Peng et al. using 

tride spatial pyramid pooling [23] . Due to multi-scale feature fu- 

ion via dual attention, it achieves a high DSC of 76.25% on the 

ombined set. But for COVID-19 segmentation, further region re- 

nement through explicit edge context has improved finer bound- 

ry discrimination. The proposed CPA decoder has shown better 

ensitivity to exploit coarse contour region maps for segmentation 

efinement. 

The cross-granularity attention decoder proposed by Zhu et al. 

ubstantiates this argument by learning a mesh network to prop- 

gate semantically and contour region features across layers [33] . 

oundary awareness in the deeper layers is achieved by applying 

upervision to the contour attention branch with Sobel edges. The 

S

11 
ross-granular decoder achieves a DSC of 78.89%, which is close to 

he proposed CPA decoder in the given architectural setting. The 

PA decoder outperforms the cross-granular decoder by 1.56%, ow- 

ng to the pixelwise attention-based refinement of semantic de- 

ails. Further extracting multiple contour region feature maps in 

he same layer builds high scale adaptability than deep supervi- 

ion. 

.4.3. CNN training and validation 

This section presents the empirical results of the proposed 

ontour-enhanced Attention CNN. We investigate the two ma- 

or design blocks of the proposed CNN, i.e. CCAF upsampler and 

PA decoder modules. These modules were evaluated as stan- 

alone CNN models as per the experimental settings described in 

ections 4.4.1 and 4.4.2 respectively. 
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Fig. 7. Effectiveness of the proposed modules in improving segmentation performance for small and large infection regions (in terms of surface area). 
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These three models were evaluated on the common test set of 

amples using evaluation metrics such as Dice Similarity Coeffi- 

ient (DSC), Precision, Sensitivity, Specificity and Area under Curve 

AUC). Batch sizes of 128, 40, and 16 were used for training the 

hree models on GPU respectively. The test set results of the three 

blation experiments are tabulated in Table 4 . 

From Table 4 , it is evident that the CPA decoder is highly 

recise in limiting false positives. This can be attributed to the 

ttention-based boundary refinement strategy in the decoder. It 

elineates complicated infection morphologies. The proposed CNN 

isplays the highest overall metrics in terms of DSC and IoU. The 

igh recall score of 89.88% on the combined dataset resonates with 

he DSC. Furthermore, it can be inferred that when the CCAF up- 

ampler is coupled with the CPA decoder, it significantly boosts 

he sensitivity factor of the CNN. The proposed CNN also inher- 

ts the precise region distinction offered by the CPA decoder. The 

pecificity is high in all experiments, which reinforces the mod- 

ls’ ability to identify unaffected pixels. The Area Under the PR 

urve (AUC) quantifies the extent of class separability, by drawing 

 trade-off between precision and sensitivity for pixel classifica- 

ion. The PR curve is a suitable choice of metric given the large im- 

alance in the proportion of infected to non-infected pixels. In the 

rder of experiments listed in Table 5 , the AUC scores of 75.60%, 

8.69%, and 84.61% testify progressive refinement in class discrim- 

nability displayed by the three models. 

Table 5 presents the training and validation trends in loss and 

SC tracked through epochs. Moreover, the Precision-Recall curve 

or the infection class is measured on the validation set. When 

raining the CCAF upsampler CNN, convergence was attained in 

3 epochs. The increase in DSC values with training epochs was 

mooth and consistent. Besides, the model generalized excellently 

o the test set with a DSC of 77.67%. On the other hand, the CPA

ecoder learnt precise attention weighing over the contour region 

ontextual maps in 96 epochs. It took extra time for the pixelwise 

ttention model to converge on the optimal parameter set. Com- 

ared to the previous two experiments, the proposed CNN con- 

erged at 120 epochs. This is because of reduced training batch 

ize on GPU due to additional parameterization. Also, the multi- 

evel attention structures demanded a longer time to converge. The 

roposed CNN had the least validation loss and converged in a 

ustained manner. For all the models, the effective divergence be- 

ween the training and validation dice was minimal in the second 

alf of training. The mean pixel-wise cross-entropy training loss 

ecayed consistently in all experiments. 

Table 6 summarises the experimental results across training, 

alidation, and testing over the dice and IoU metrics. It is evident 

w

12 
hat the training and validation dice scores matched closely for all 

odels, while the test scores slightly differed from the validation 

cores. Additionally, the inference times and parameters were also 

ecorded under each ablation experiment. The proposed CNN took 

40 ms to generate segmentation for a 256 × 256 CT image on 

VIDIA Tesla K80 GPU. 

Visualizations of the predicted segmentation maps are provided 

n Table 7 . The samples are chosen in a way that diversity and het-

rogeneity of infection spread are well captured for a holistic view. 

n many cases, the CCAF upsampler CNN predictions have lower 

ecall than the other models. In some cases, the CCAF upsampler 

NN predicted regions have dilated boundaries exceeding the ac- 

ual boundary traced by the infection islands. These irregularities 

re overcome by the CPA decoder CNN, in which the shape bound- 

ries are comparatively well delineated. In addition to lesser false 

ositives, the CPA decoder CNN also detects minuscule infection 

pots. It exploits the contour features well to discriminate well be- 

ween COVID and other artifacts. By far, the proposed CNN has the 

ost accurate infection annotation over the previous models. The 

roposed CNN segmentations meticulously capture the COVID-19 

orphologies on CT. Even subtler holes, cuts, spills within the in- 

ected area are precisely expressed. It shows excellent sensitivity 

o minor regions same as the CPA decoder CNN. 

The CT infections can be broadly classified based on size. Split- 

ing on the 50th percentile of the infection surface areas, they can 

e small or large infections. Fig. 7 shows the mean DSC registered 

y the three models in capturing small and large infection spread. 

he proposed CNN displays high sensitivity towards small infection 

ocalization, similar to the CPA decoder CNN. For large infections, 

t exhibits high detectability in the same manner as the CCAF sam- 

ler CNN. 

.5. Performance analysis 

The proposed CNN is compared with the state-of-the-art 

ttention-based segmentation models. The comparison is further 

xtended to other supervised and semi-supervised CNN architec- 

ures for semantic segmentation. All the compared models were 

irectly re-implemented for the COVID-19 CT dataset. The results 

ere demonstrated on a test dataset common across all experi- 

ents. The metrics described in Section 4.4.3 were used for the 

valuation. 

.5.1. Comparison with state of the art attention-based semantic 

egmentation models 

This section compares the performance of the proposed CNN 

ith state-of-the-art attention models on the COVID-19 infection 
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Table 8 

Quantitative comparison of the proposed attention model with state-of-the-art attention models for semantic segmentation. The experiments are grouped by the dataset. 

Results are shown for both individual Jun Ma and Mosmed data, also on the set formed by combining these two sources. 

S 

No Dataset Method DSC IoU Precision Sensitivity Specificity AUC 

1 Jun Ma dataset [30] FocusNet [34] 75.67 66.38 73.64 77.17 99.67 73.45 

Dual Attention 

Network [35] 

80.15 70.61 77.82 81.49 99.72 79.09 

Asymmetric Non-local 

networks [36] 

81.12 71.78 80.16 82.08 99.73 82.03 

Multi-scale self-guided 

attention [37] 

86.67 75.31 88.42 84.05 99.75 84.45 

Criss Cross Attention 

[38] 

85.58 74.60 82.84 88.12 99.75 83.21 

Semi Inf Net [8] 88.45 76.07 90.47 85.11 99.78 86.55 

Proposed CNN 88.01 75.03 85.57 90.05 99.77 86.74 

2 MosMedData [31] FocusNet [34] 73.49 63.23 71.22 75.88 99.70 71.54 

Dual Attention 

Network [35] 

75.02 61.00 74.82 75.70 99.71 72.10 

Asymmetric Non-local 

networks [36] 

82.17 69.19 83.25 80.67 99.74 81.67 

Multi-scale self-guided 

attention [37] 

80.97 68.78 80.24 81.33 99.72 77.34 

Criss Cross Attention 

[38] 

82.32 70.05 84.68 80.92 99.74 80.64 

Semi Inf Net [8] 83.23 72.55 85.76 79.61 99.74 82.50 

Proposed CNN 83.71 71.51 82.43 84.58 99.75 81.49 

3 Combined dataset FocusNet [34] 73.81 62.13 68.41 80.15 99.71 71.95 

Dual Attention 

Network [35] 

77.39 64.16 74.59 80.42 99.68 76.23 

Asymmetric Non-local 

networks [36] 

81.96 66.08 80.25 83.74 99.72 78.76 

Multi-scale self-guided 

attention [37] 

82.05 71.17 79.47 84.79 99.75 80.49 

Criss Cross Attention 

[38] 

83.85 72.54 79.68 88.47 99.73 82.75 

Semi Inf Net [8] 84.56 72.32 80.50 89.05 99.74 83.71 

Proposed CNN 85.43 73.44 81.23 89.88 99.74 84.57 

Table 9 

Runtime analysis of the attention-based CNN models considered for comparison in Table 7 . To maximum possible extent, in most experiments 

the backbone was uniformly chosen to be ResNet50 in order to enable comparison of different attention approaches on top of the same CNN. 

S. No. Method Backbone 

Inference time 

(millisec- 

onds/image) 

Number of 

Parameters (in 

millions) Giga FLOPs 

1 FocusNet [34] SE-Net50 12.38 26.82 2.74 

2 Dual Attention 

Network [35] 

ResNet50 35.45 49.51 14.27 

3 Asymmetric 

Non-local 

networks [36] 

ResNet50 52.78 44.04 12.57 

4 Multi-scale 

self-guided 

attention [37] 

ResNet50 60.73 38.78 10.19 

5 Criss Cross 

Attention [38] 

ResNet50 25.14 28.18 6.32 

6 Semi Inf Net [8] Res2Net 44.23 33.12 7.36 

7 Proposed CNN Inception-ResNet- 

V2 based MKE 

module 

38.24 30.51 13.78 
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egmentation dataset. The results of the models’ test-set perfor- 

ance are tabulated in Table 8 . All the compared methods were 

mplemented and run over the datasets prepared in this work to 

enerate these results. Under each dataset, the compared mod- 

ls were trained and evaluated on the same training and testing 

artitions. A runtime analysis of these models, including inference 

ime, number of parameters, and FLOPs is presented in Table 9 . 

he inference time for single CT image prediction was calculated 

n NVIDIA Tesla K80 GPU. 

From Tables 8 and 9 , the FocusNet CNN based on residual cum 

queeze net architecture, exhibited the least runtime complexity 
nd a fair DSC of 73.81% on the combined dataset. It transfers se- 

13 
ective semantic details to the encoder via a gated attention model, 

hus offers good recall for infection segmentation. The Dual At- 

ention network (DAnet) leverages global self-attention in spatial 

nd channel dimensions to capture long-range feature dependen- 

ies [35] . It offers the highest learning complexity, nevertheless 

un predictions at faster inference rate. It detects COVID-19 infec- 

ion at a mean DSC of 77.39%on the merged dataset, whereas its 

SC in tracing large lesions was only 69.24%. The DANet doesn’t 

xplore multi-scale feature fusion, therefore, it does not lend to 

edical imaging data, where the target structures diversely vary 

n size, contrast, morphology. The proposed CCAF upsampler over- 
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omes this by attentively exploiting variable spatial scale informa- 

ion present in the multiple encoder maps. 

The multi-scale self-guided attention model [37] is an enhanced 

ersion of the DANet that builds a global context from multi-scale 

eature maps. It also explores semantic-guided refinement of the 

ttentive features and consequently improves DSC by 6.02% com- 

ared to DANet on the combined dataset. It displays highest infer- 

nce time owing to the attention refinement. In contrast, since the 

roposed CPA decoder also draws explicit region awareness to con- 

our region features, it exhibits an even higher sensitivity to even 

inuscule infection areas. 

By using spatial pyramid pooling to sample fewer pixel lo- 

ations as representative features, asymmetric non-local network 

aptures long-range spatial dependencies [36] . At the same time, 

t fuses low-level features to enhance semantic details. This ap- 

roach achieved a DSC of 81.96% in segmenting COVID-19, which 

as very close to [37] . Criss-Cross (CC) attention also accumu- 

ates global contextual information efficiently, as a two-step re- 

urrent operation [38] . CC-attention on top of ResNet50 resulted 

n better DSC than the multi-scale attention approach [37] . It has 

he least attention model running complexity over the ResNet but 

ielded the highest performance. Although Asymmetric Non-local 

etworks and CC-net accurately focus on relevant pixels, in some 

ases they predict smoother segmentations for large lesions and 

ose fine boundary information. Although global context is useful 

n creating robust representations, with respect to medical image 

egmentation, efficient multi-step local feature reconstruction at 

ecoder enables recovery of finer structure details. The proposed 

CAF upsampler and CPA decoder modules carry out this progres- 

ive refinement of the discriminative regions with explicit bound- 

ry awareness leading to sharp infection segmentation. 

Semi-supervised attention-guided refinement of coarse localiza- 

ion maps was carried out by Fan et al. [8] . Recurrent reverse at-

ention and edge-attention guidance techniques were applied to 

efine the rough encoder estimation. It obtains a DSC of 84.56% 

nd optimal inference times which is close to that of the pro- 

osed CNN. It exhibited almost the same precision as the proposed 
o

Table 10 

Performance comparison of the proposed work against state-of-the-art segmentation me

listed in Table 1 , also on the combined set. The results are grouped dataset-wise. 

S No Dataset Method D

1 Jun Ma dataset [30] U-Net [39] 6

Attention U-net [40] 7

R2U Net [41] 7

FCN8s (ResNet50 backbone) [42] 7

Wang et al. [47] 7

DeepLabV3 (ResNet50 backbone) [43] 7

Link Net [44] 7

PSPNet [45] 8

Proposed CNN 8

2 MosMedData [31] U-Net [39] 6

Attention U-net [40] 7

R2U Net [41] 7

FCN8s (ResNet50 backbone) [42] 7

Wang et al. [47] 7

DeepLabV3 (ResNet50 backbone) [43] 7

Link Net [44] 7

PSPNet [45] 7

Proposed CNN 8

3 Combined dataset U-Net [39] 6

Attention U-net [40] 7

R2U Net [41] 7

FCN8s (ResNet50 backbone) [42] 7

Wang et al. [47] 7

DeepLabV3 (ResNet50 backbone) [43] 7

Link Net [44] 7

PSPNet [45] 8

Proposed CNN 8

14 
NN. However, the proposed model scores better recall mainly due 

o the pixelwise attention correlation amongst the region context 

aps. 

.5.2. Comparison with state of the art CNN architectures for 

emantic segmentation 

Table 10 presents a comparison of different segmentation tech- 

iques that were fit to the COVID-19 segmentation task. Table 11 

ives the runtime analysis of these compared techniques. 

From Table 11 it is clear that PSPNet has the lowest run- 

ime complexity and better accuracy compared to other methods. 

eepLabV3, Attention U-Net has a large learning complexity, while 

he R2U Net generates more inference time due to recurrent resid- 

al connection. 

From Table 10 , performance of the U-net CNN with DSC of 

5.00% is taken to be the baseline for comparing proposed ar- 

hitecture. The Attention U-net refines the U-net design by intro- 

ucing additive attention gates to process coarser features. Due 

o the attention gating, it improved the U-net DSC by 10.4% on 

he combined dataset. In contrast, the Residual Recurrent convo- 

utional network (R2U Net) employs recurrent convolution logic 

ver residual links leading to a high DSC of 72.18% dice and pre- 

ision of 77.27%. On the other hand, FCN8s with ResNet50 back- 

one use large strides to generate pixel-wise semantic predic- 

ions from encoded features. It exhibits sharp precision in draw- 

ng object shapes, which is evident from precision of 77.13%. The 

eakly-supervised DeCovNet proposed by Wang et al. based on 

D residual network reached a DSC of 75.31%, which comes close 

o DeepLabV3.The DeepLabV3 applies multi-grid atrous convolu- 

ions and spatial pyramid pooling to learn from multi-scale fea- 

ures. It obtains a DSC of 76.78% on the COVID-19 test set, which is 

arginally better than FCN8s for the same ResNet50 backbone. In 

omparison to FCN8s, DeepLabV3 detects a larger share of COVID- 

9 infections. The Linknet CNN links the output from the encoder 

ith a full convolution at the corresponding decoder block. It im- 

roved the DeepLab’s DSC by 0.87%, owing to the high precision 

f 81.67%. In contrast, the PSP Net uses variably sized sub-region 
thods. All the models were freshly instantiated and run on the individual datasets 

SC IoU Precision Sensitivity Specificity AUC 

8.98 52.96 65.38 72.24 99.50 64.72 

2.45 58.32 70.66 74.34 99.67 70.76 

7.14 64.91 79.12 74.78 99.76 76.13 

5.56 63.65 75.32 74.81 99.70 73.49 

8.98 65.81 74.45 83.71 99.77 77.01 

7.41 64.37 75.09 78.91 99.75 77.19 

9.09 65.99 75.76 81.92 99.78 77.45 

4.56 72.38 85.90 83.31 99.82 80.33 

8.01 75.03 85.57 90.05 99.77 86.17 

2.77 48.79 60.23 64.73 99.53 60.81 

0.41 55.08 75.86 65.13 99.61 68.39 

0.11 57.34 69.51 70.47 99.69 69.63 

1.36 58.47 78.44 65.33 99.65 69.23 

3.99 60.00 75.57 72.33 99.70 72.72 

6.46 62.80 77.21 75.37 99.74 74.22 

6.94 64.15 74.83 79.10 99.76 74.51 

9.29 64.80 76.78 81.44 99.78 78.10 

3.71 71.51 82.43 84.58 99.82 81.18 

5.00 51.91 61.08 69.48 99.44 60.40 

1.76 55.52 65.09 79.50 99.46 66.97 

2.18 57.83 77.27 67.79 99.70 71.34 

3.24 60.28 77.13 69.95 99.89 73.10 

5.31 65.82 73.60 77.10 99.69 76.15 

6.78 63.47 74.50 79.17 99.71 75.56 

7.45 65.36 81.67 73.65 99.76 76.51 

1.32 67.38 81.12 81.50 99.75 79.97 

5.43 73.44 81.23 89.88 99.74 84.57 
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Table 11 

Inference time analysis of the CNN models compared in Table 10 recorded on NVIDIA Tesla K80 GPUs. In all the compared methods, ResNet50 was used as the common 

backbone. 

S. No. Method Backbone Inference time (milliseconds/image) Parameters (in millions) Giga FLOPs 

1 U-Net [39] ResNet50 encoder 34.37 32.51 10.56 

2 Attention U-net [40] ResNet50 encoder 47.12 36.07 12.45 

3 R2U Net [41] ResNet50 57.80 27.31 15.80 

4 FCN8s [42] ResNet50 25.54 26.10 7.71 

5 DeCovNet [47] ResNet50 20.25 22.12 6.36 

6 DeepLabV3 [43] ResNet50 62.09 39.62 40.71 

7 Link Net [44] ResNet50 27.25 31.17 10.63 

8 PSPNet [45] ResNet50 11.05 24.29 2.83 

9 Proposed CNN Inception-ResNet-V2 based MKE module 38.24 30.51 13.78 
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verage pooling over the DeepLab encoded feature map, which re- 

ults in a competitive DSC of 81.32%. The proposed CNN outper- 

orms these models by a large DSC margin, which can be attributed 

o a high recall score of 89.88%. The highly accurate segmentations 

ere a result of the coupled attention upsampling/decoding mod- 

les. They jointly learnt to focus on salient regions by attending to 

ifferent contextual feature maps. 

. Conclusion 

In this work, a novel attention-guided upsampler and decoder 

mbedded CNN modelwas proposed for segmenting COVID-19 in- 

ected regions from chest CT. The key takeaways are the following: 

) Learning a cross-correlation of encoder feature maps via atten- 

ion helps extract salient contextual details that directly improves 

psampling accuracy at the decoder. Pixels on the upsampled map 

re a result of aggregating variably sized receptive fields from di- 

erse low-level encoder feature maps. 2) Introducing boundary, 

hape awareness into the decoding scheme through a specialized 

ixel-locality attention model greatly improves infection segmen- 

ation results. The CT contour regions offer explicit low-level cues 

o focus on infected tissues. The attention decoder exploits these 

ontour features by forming a dense fusion over a localized spa- 

ial window around the pixel locations. It complements upsampler 

earning in the final CNN layers, thereby achieves strong discrim- 

nability of COVID-19 and precise delineation of intricate COVID-19 

orphology. 

From the experimental results, it is evident that the proposed 

NN has learned highly accurate COVID-19 segmentation that cap- 

ures even subtler holes, minor distortions within the infected 

rea. As future work, the proposed CNN can be experimented with 

o segment other types of interstitial lung abnormalities from CT. 

lobal context aggregation and channel-wise attention techniques 

an be explored to further enhance the design. Architectural fusion 

ith different encoder backbones can be tried to study the role of 

he encoder structure in enhancing the upsampler performance. 
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