
Two-Sample Multivariable Mendelian Randomization Analysis 
Using R

Danielle Rasooly1,3, Gina M. Peloso2

1Division of Aging, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical 
School, Boston, Massachusetts

2Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts

Abstract

Mendelian randomization is a framework that uses measured variation in genes for assessing and 

estimating the causal effect of an exposure on an outcome. Multivariable Mendelian randomization 

is an extension that can assess the causal effect of multiple exposures on an outcome, and can 

be advantageous when considering a set (>1) of potentially correlated candidate risk factors in 

evaluating the causal effect of each on a health outcome, accounting for measured pleiotropy. 

This can be seen, for example, in determining the causal effects of lipids and cholesterol 

on type 2 diabetes risk, where the correlated risk factors share genetic predictors. Similar to 

univariate Mendelian randomization, multivariable Mendelian randomization can be conducted 

using two-sample summary-level data where the gene-exposure and gene-outcome associations are 

derived from separate samples from the same underlying population. Here, we present a protocol 

for conducting a two-sample multivariable Mendelian randomization study using the ‘MVMR’ 

package in R and summary-level genetic data. We also provide a protocol for searching and 

obtaining instruments using available data sources in the ‘MRInstruments’ R package. Finally, 

we provide general guidelines and discuss the utility of performing a multivariable Mendelian 

randomization analysis for simultaneously assessing causality of multiple exposures.

Basic Protocol: Performing a two-sample multivariable Mendelian randomization analysis 

using the ‘MVMR’ package in R and summarized genetic data

Support Protocol 1: Installing the ‘MVMR’ R package

Support Protocol 2: Obtaining instruments from the ‘MRInstruments’ R package

Keywords

causal inference; genetic epidemiology; instrumental variable analysis; mendelian randomization; 
multivariable; MVMR

3 Corresponding author: drasooly@bwh.harvard.edu.
Author Contributions
Danielle Rasooly: methodology, formal analysis, writing original draft, writing review and editing; Gina M. Peloso: methodology, 
writing review and editing.

Conflict of Interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Curr Protoc. Author manuscript; available in PMC 2022 December 01.

Published in final edited form as:
Curr Protoc. 2021 December ; 1(12): e335. doi:10.1002/cpz1.335.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Multivariable Mendelian randomization, an extension to the univariate Mendelian 

randomization approach of instrumenting genetic variants to probe the causal relationship 

of a single risk factor with an outcome, can simultaneously assess the causal effects 

of multiple risk factors or exposures on an outcome of interest (Burgess & Thompson, 

2015; Sanderson, Davey Smith, Windmeijer, & Bowden, 2019). Multivariable Mendelian 

randomization allows for a variation of the Mendelian randomization framework to be 

applied to cases where the assumptions necessary for performing a standard Mendelian 

randomization analysis do not hold, such as when two or more closely related, potentially 

correlated risk factors are associated with an outcome or when a risk factor mediates the 

effect of another risk factor on an outcome (Sanderson et al., 2019).

Rooted in econometric theory for instrumental variable (IV) analysis, Mendelian 

randomization relies on the random assortment of genetic variants during meiosis to source 

potential genetic variants as IVs for reliably predicting an exposure (Burgess, Small, & 

Thompson, 2017). IVs date back to the 1920s, originating from ‘causal path analysis’ 

developed by economist Philip Wright and his son, statistical geneticist Sewall Wright 

(Angrist & Krueger, 2001; Stock & Trebbi, 2003), and have since served as an integral part 

of econometrics for controlling for unmeasured confounding and measurement error bias in 

observational studies (Greenland, 2018). The concept underlying IV analysis in Mendelian 

randomization relies on the random assortment of genetic variants during meiosis as stated 

in Gregor Mendel’s principles of inheritance from the 19th century: namely, the Law of 

Independent Assortment, which states that alleles of different genes assort independently 

during gametogenesis, and the Law of Segregation, which states that the two copies or 

paired alleles of each genetic factor segregate during gametogenesis such that each offspring 

attains one allele (Davey Smith, 2007).

The random distribution of genetic variants in a population is analogous to the arms of a 

randomized controlled trial (RCT), the gold standard for evaluating causal relationships 

between interventions and an outcome, where carriers of the genetic variant can be 

followed up for an outcome measure which is compared to that of non-carriers (Lawlor, 

Harbord, Sterne, Timpson, & Davey Smith, 2008). Because genetic variants are fixed at 

conception and are not modified by the development of the outcome or by external (i.e., 

environmental) factors, they are largely assumed to be independent of confounding factors 

and reverse causation. Additionally, in the advanced era of genomic technologies, genotypes 

are likely not affected by measurement error, minimizing potential bias from measurement 

error. For these reasons, the implementation of genetic variants for serving as IVs in 

Mendelian randomization analyses presents a promising avenue for determining exposure-

outcome causality, while controlling for biases typically encountered in observational 

studies (Burgess et al., 2017).

To serve as a valid IV, a genetic variant G must meet criteria for three key assumptions (Fig. 

1).
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To reliably test for a causal effect of exposure X on outcome Y in the presence of 

confounder U, the following requisite IV conditions must be confirmed (Lawlor et al., 2008; 

VanderWeele, Tchetgen Tchetgen, Cornelis, & Kraft, 2014):

1. Relevance Assumption: The instrument G must be associated with the exposure 

X.

2. Independence or Exchangeability Assumption: The instrument G must be 

independent of all measured or unmeasured confounders U of the exposure-

outcome relationship.

3. Exclusion Restriction Assumption: The instrument G only affects the outcome 

through the exposure and therefore is independent of the outcome Y given the 

exposure X and all measured and unmeasured confounders U of the exposure-

outcome relationship.

When a genetic variant meets the three requisite IV conditions, then the effect of 

the exposure on the outcome can be reliably estimated in a Mendelian randomization 

framework. A genetic variant or set of genetic variants—usually, single nucleotide 

polymorphisms (SNPs)—can be selected as instruments from genome-wide association 

studies (GWAS) that detect association between genetic variants and traits. Individual-level 

GWAS data can be accessed by applying for controlled-access data at the dbGaP (Database 

of Genotypes and Phenotypes) repository (Tryka et al., 2014), while databases such as the 

NHGRI-EBI GWAS Catalog (Buniello et al., 2019) and GeneAtlas (Canela-Xandri, Rawlik, 

& Tenesa, 2018) offer open access to certain summary-level GWAS. Accelerated by the 

explosive growth in GWAS over the past decade spanning hundreds of complex human traits 

and diseases across a wide range of domains (Visscher et al., 2017) and the ease in utilizing 

these rich resources for conducting Mendelian randomization analyses, there has been an 

ever-increasing number of Mendelian randomization studies and IV approaches applied to 

medical sciences and public health (Sekula, Del Greco, Pattaro, & Köttgen, 2016).

However, there are also a number of scenarios in which the IV assumptions may be 

violated, and therefore a genetic variant may not serve as a valid IV for a Mendelian 

randomization analysis (Palmer et al., 2012; Smith & Ebrahim, 2004; VanderWeele et al., 

2014). For example, if a genetic variant G exerts a direct effect on the outcome Y (third 

assumption shown in Fig. 1), then the exclusion restriction assumption of IV analysis is 

violated. If a confounding variable U influences the genetic variant G and influences the 

outcome Y (second assumption shown in Fig. 1), then the independence/exchangeability 

assumption of IV analysis would be violated. Among the many methodological challenges 

of Mendelian randomization, a large extent of focus has been centered around pleiotropy—

the phenomenon of a single genetic variant affecting two or more phenotypic traits (Paaby & 

Rockman, 2013).

Classical univariate statistical techniques that model the effect of a single exposure on 

an outcome can attempt to detect and adjust for certain cases of pleiotropy to quantify 

an unbiased estimate (Hemani, Bowden, & Davey Smith, 2018). However, pleiotropy is 

pervasive across the human genome; in fact, the number of phenotypes per gene ranges 

from 1 to 53, and 44% of genes are associated with more than one phenotype (Chesmore, 
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Bartlett, & Williams, 2018; Jordan, Verbanck, & Do, 2019; Pickrell et al., 2016; Watanabe et 

al., 2019). Much of method development for Mendelian randomization, therefore, has been 

focused on adjusting for pleiotropy; for example, MR-Eggar is, one of these methods that 

has been widely employed and can be used to detect certain violations of the IV assumptions 

and assess directional pleiotropy to provide an estimate of the causal effect (Bowden, Davey 

Smith, & Burgess, 2015; Burgess & Thompson, 2017).

Evaluating the mechanisms of different pleiotropic relationships can identify scenarios that 

may lead to violated IV assumptions. There are two types of pleiotropy of concern in 

MR analysis: vertical and horizontal pleiotropy. If a genetic variant used as proxy for an 

exposure affects the outcome first via an effect on another, potentially biologically related 

exposure, which then has a downstream effect on the outcome (termed ‘vertical pleiotropy’), 

then the likely case is that the IV assumptions hold, and an unbiased effect estimate can 

still be obtained (Hemani et al., 2018). If, however, a genetic variant exerts an effect on 

two different exposures such that the effects of the multiple exposures are independent 

and each influences the outcome (termed ‘horizontal pleiotropy’), then the IV assumptions 

do not hold and a causal effect estimate may be biased (Cho et al., 2020). By directly 

considering associations of genetic variants with a trait such that the genetic variants are also 

associated with at least another trait included in the model (termed “measured pleiotropy”; 

Rees, Wood, & Burgess, 2017), multivariable Mendelian randomization presents an avenue 

for addressing cases where a standard Mendelian randomization technique would fail 

due to a violation of the exclusion restriction and/or the independence or exchangeability 

assumptions (Sanderson, 2021).

Genetic variants employed as IVs in a multivariable Mendelian randomization analysis 

must satisfy a set of assumptions similar to those expected in a univariate Mendelian 

randomization analysis (Fig. 2). To reliably test for a causal effect of exposures X1…n on 

outcome Y for n exposures in the presence of potential confounder U, the following IV 

assumptions must be met for each instrument G for i total number of genetic variants:

1. The instrument Gi must be associated with each exposure X 1…n given the other 

included exposures;

2. the instrument Gi must be independent of all observed or unobserved 

confounders U of any of the exposure-outcome relationships; and

3. the instrument Gi is conditionally independent of the outcome Y given all of the 

exposures and confounders (Burgess & Thompson, 2015; Sanderson, Spiller, & 

Bowden, 2021).

Like univariate Mendelian randomization, a one-sample or two-sample analysis may be 

performed. A one-sample study is conducted when individual level data on the genetic 

variants, exposures, and outcome are all available within the same study (Minelli et 

al., 2020). If, however, individual data are not available, then a two-sample study can 

be conducted using summary-level data (including beta coefficients and standard errors) 

for gene-exposure and gene-outcome associations from separate, non-overlapping studies 

derived from the same underlying population (Minelli et al., 2020).
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Here, we present a protocol for performing a two-sample multivariable Mendelian 

randomization analysis using summary-level GWAS data. We build on a previous protocol 

published for performing a univariate two-sample Mendelian randomization analysis using 

the R package ‘TwoSampleMR’ and GWAS summary statistics (Rasooly & Patel, 2019). 

In the protocols that follow, we demonstrate how to conduct a multivariable Mendelian 

randomization analysis using the ‘MVMR’ R package (Sanderson et al., 2021) to calculate 

inverse-variance weighted causal estimates. In the support protocols that follow, we 

demonstrate how to install the package ‘MVMR’ and how to extract instruments using 

available databases accessible through the ‘MRInstruments’ R package. Taken together, our 

protocols serve to guide you in performing your own two-sample multivariable Mendelian 

randomization analysis in the R statistical computing environment.

STRATEGIC PLANNING

A number of parameters should be considered when planning a multivariable Mendelian 

randomization experiment. First, it is necessary that there be at least as many instruments 

as exposures (Sanderson et al., 2021). Second, it is important to detect weak instruments, 

similar to a common procedure in univariate Mendelian randomization analysis. This can 

be done by comparing, for each included exposure, the first-stage F-statistic with a value of 

10, such that a value smaller than 10 denotes a weak instrument (Staiger & Stock, 1994). 

Further, the genetic variables used as IVs should predict each exposure conditional on the 

other predicted exposures included in the model, to address potential weak instrument bias 

(Sanderson et al., 2021). We recommend referring to previous articles by Sanderson and 

colleagues in assessing instrument strength and validity in the one-sample and two-sample 

multivariable Mendelian randomization settings (Sanderson et al., 2019, 2021).

For analytic guidelines on performing Mendelian randomization investigations, we 

recommend referring to the flowchart depicted in Figure 1 in an article by Burgess et al. 

(2019), as well as an article by Gagliano Taliun, and Evans (2021) summarizing ten simple 

rules for conducting a Mendelian randomization study.

BASIC PROTOCOL

PERFORMING A TWO-SAMPLE MULTIVARIABLE MENDELIAN RANDOMIZATION 
ANALYSIS USING THE ‘MVMR’ PACKAGE IN R AND SUMMARIZED GENETIC DATA

In this protocol, we show how to perform a two-sample multivariable Mendelian 

randomization study using available genome-wide association study (GWAS) summary 

statistics. We provide steps for estimating causal effects using the ‘MVMR’ R package 

as well as conducting a range of sensitivity analyses for evaluating the IV assumptions in the 

multivariable scenario.

We thank the developer of the ‘MVMR’ R package, Wes Spiller, for providing an easy-

to-use resource and extensive documentation for implementing a multivariable Mendelian 

randomization study (Sanderson et al., 2021), which this protocol is based on, and the 

authors of the multivariable Mendelian randomization approach (Burgess & Thompson, 

2015; Sanderson et al., 2019, 2021).
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The ‘MVMR’ package and related documentation are available at https://github.com/

WSpiller/MVMR (Sanderson et al., 2021).

Necessary Resources

Hardware: A computer environment capable of running R/RStudio

Software: R version >3.6, RStudio, ‘MVMR’ R package

Files: Summary statistics for exposures and outcome of interest. The data should include 

beta coefficient values and standard errors for genetic associations with each exposure, and 

beta coefficient values and standard errors for genetic associations with the outcome. A 

vector of names for the genetic variants (e.g., rsID) can also be included.

NOTE: It is important to harmonize the direction of the effects between the exposure and 

outcome associations of the summary statistic files such that the effect of a genetic variant 

on the exposure and the effect of that variant on the outcome correspond to the same effect 

allele. If not harmonized, then the effect allele should be included for harmonization.

1. Obtain summary statistics for your exposures (Fig. 2, X) and outcome (Fig. 

2, Y) of interest. These can be obtained through publicly available resources, 

such as the NHGRI-EBI GWAS Catalog (Buniello et al., 2019), GeneAtlas 

(Canela-Xandri et al., 2018), or MR-Base (Hemani et al., 2018).

NOTE: Please refer to Support Protocol 2 for detailed steps to obtain instruments 
using the databases accessible through the R Package ‘MRInstruments’.

2. Read in the exposure and outcome GWAS summary statistic data.

exposure_data<-read.table(“exposure_filename.txt”,

  head=T, sep=“\t”)

outcome_data<-read.table(“outcome_filename.txt”,

  head=T, sep=“\t”)

If using MR-Base (Hemani et al., 2018) to extract data, then 

the function mrmvinput_to_mvmr_format() can convert data to the 

‘MVMR’ readable format.

3. Determine usability of GWAS summary statistic data by ensuring that, at a 

minimum, beta coefficients and corresponding standard errors are available for 

each gene-exposure association and beta coefficients and corresponding standard 

errors are available for the gene-outcome associations. The rsID column is 

optional.

For the purposes of this illustration (Fig. 3), exposures are triglycerides 

(Willer et al., 2013), LDL-cholesterol (Willer et al., 2013), and body 

mass index (BMI; Locke et al., 2015), and outcome is type 2 diabetes 

(T2D) (Mahajan et al., 2018).
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4. Identify independent genetic variants that meet a P-value threshold of association 

(e.g., P < 10−5 for a lenient threshold, P < 10−7 for a more stringent threshold, or 

P < 5. 0 × 10−8 for genome-wide significance threshold).

Independent genetic variants—typically SNPs—that are GWAS-

significant for the exposure are instrumented as proxies for the 

exposure.

It is important to ensure that exposure and outcome datasets are 

harmonized such that the effect alleles from the datasets match.

5. Determine if the IV assumptions hold for multivariable Mendelian 

randomization, requiring each variant to be associated with at least one of 

the exposures, not associated with the outcome through confounders, and not 

associated with the outcome except through its association with one or more of 

the exposures included in your model.

6. Check if a covariance matrix for the effect of the genetic variants on each 

exposure is provided.

If not, generate a covariance matrix using the phenotypic correlations 

between the exposures and the standard error of the beta coefficients 

for genetic associations with the exposure using the function 

phenocov_mvmr().

7. Format summary statistic data to be read by the ‘MVMR’ package.

BXG refers to the beta coefficient values for the genetic associations 

with the exposure. In this example, there are three exposures of 

interest (i.e., triglycerides, LDL-cholesterol, and body mass index), 

and therefore three columns representing the beta coefficient values 

for the three exposures. BYG refers to the beta coefficient values 

for the genetic associations with the outcome (i.e., type 2 diabetes). 

seBXG refers to the corresponding standard error values for the beta 

coefficient values of each of the exposures of interest. As there are three 

exposures of interest in this example, there are, therefore, three columns 

representing the standard error values for the three exposures. seBYG 

refers to the standard errors corresponding to the beta coefficient values 

for the genetic associations with the outcome. RSID refers to the names 

of the genetic variants used in this analysis.

MVMR_formatted <- format_mvmr(BXGs = data[,c(1,3,5)],

  BYG = data[,7],

  seBXGs = data[,c(2,4,6)],

  seBYG = data[,8],

  RSID = data[,9])

8. Test the strength of the instruments for each exposure.
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strength_mvmr(r_input = MVMR_formatted, gencov = 0)

The F-statistic threshold of 10 can be used to identify weak instruments. 

Note that with individual-level data (in a one-sample, as supposed to a 

two-sample experiment as shown here), weak instruments can be tested 

using the Sanderson-Windmeijer conditional F-statistic Fsw (Sanderson 

et al., 2019; Windmeijer & Sanderson, 2013). Conditional instrument 

strength can be tested by calculating the conditional F-statistic, where a 

threshold of 10 can test for a weak instrument.

9. Test for horizontal pleiotropy.

pleiotropy_mvmr(r_input = MVMR_formatted, gencov =

  0)

If testing for horizontal pleiotropy in the presence of potentially 

weak instruments (as identified in the previous step), it is advised to 

perform Q-minimization. Please refer to Sanderson et al. (2021) and the 

‘MVMR’ documentation for further details if this is the case (Sanderson 

et al., 2021).

10. Compute effect estimate. This method utilizes the inverse-variance-weighted 

(IVW) estimator.

ivw_mvmr(r_input = MVMR_formatted)

If there is substantial heterogeneity in your data, compute the effect estimates 

through Q-statistic minimization.

qhet_mvmr(r_input = MVMR_formatted)

SUPPORT PROTOCOL 1

INSTALLING THE ‘MVMR’ R PACKAGE

This support protocol describes how to install the necessary packages and dependencies 

for performing a multivariable Mendelian randomization analysis using the “MVMR” R 

package.

Necessary Resources

Hardware: A compute environment capable of running R/RStudio

Software: R version >3.6, RStudio, “MVMR” R package, “remotes” R package

Rasooly and Peloso Page 8

Curr Protoc. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Files: None

1. Install the ‘MVMR’ package.

install.packages(“remotes”)

remotes::install_github(“WSpiller/MVMR”)

2. Load the ‘MVMR’ package.

library(MVMR)

All functions within the ‘MVMR’package are explained in the R 

Documentation. Please refer to the R Documentation for ‘MVMR’for a 

complete list of the parameters, options, and additional details regarding 

each function within the program. Further details of particular functions 

can be accessed through the help page. The help page can be accessed 

by prepending a question mark before the function name within the R 

interface.

SUPPORT PROTOCOL 2

OBTAINING INSTRUMENTS FROM THE ‘MRInstruments’ R PACKAGE

The R package ‘MRInstruments’ can be utilized to access a number of datafiles from various 

sources to search for instruments to be used in a two-sample Mendelian randomization 

study. Contents include methylation QTL data from the ALSPAC Accessible Resource 

for Integrated Epigenomics Studies (ARIES; Gaunt et al., 2016), the NHGRI-EBI GWAS 

catalog (Buniello et al., 2019), and GTEx eQTL (Lonsdale et al., 2013). Here, we provide 

a protocol for obtaining instruments from publicly available GWAS summary statistics from 

the NHGRI-EBI GWAS catalog (Buniello et al., 2019) for “Type 2 diabetes.”

Necessary Resources

Hardware: A compute environment capable of running R/RStudio

Software: R version >3.6, RStudio, “MRInstruments” R package, “remotes” R package

Files: None

1. Install and load ‘MRInstruments’ R package.

install.packages(“remotes”)

  remotes::install_github(“MRCIEU/MRInstruments”)

  library(MRInstruments)

2. View existing datasets in the ‘MRInstruments’ package (Fig. 4).
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data(package = “MRInstruments”)

3. Read in GWAS catalog data.

data(gwas_catalog)

4. Extract summary statistic data by searching for relevant criteria.

subset(gwas_catalog, Phenotype == “Type 2 diabetes”)

The IEU OpenGWAS project contains a database of genetic 

associations from GWAS summary statistics that can be queried 

or downloaded. They are accessible here and also via API: https://

gwas.mrcieu.ac.uk/.

GUIDELINES FOR UNDERSTANDING RESULTS

The ‘MVMR’ package outputs estimated causal effects for each of multiple exposures using 

an inverse-variance-weighted (IVR) model. For example, a study examining three exposures 

would output three causal effect estimates, where each is interpreted as the direct effect of 

each exposure on the outcome, conditional on the other exposures included in the model. 

The direct effect measures the effect of the exposure on the outcome per unit increase of 

the exposure and absent a mediator. The direct effect sums with the indirect effect, which 

measures the effect of the exposure on the outcome via the mediator, to equal the total 
effect of the exposure on the outcome. Multivariable Mendelian randomization contrasts 

with univariate Mendelian randomization in that the former estimates the direct effect of 

each exposure included in the model on the outcome while the latter estimates the total 

effect of the exposure on the outcome (Sanderson, 2021).

In cases where the IV assumptions for performing a multivariable Mendelian randomization 

experiment are not fully validated, a robust estimate can be derived through Q-statistic 

minimization (Sanderson et al., 2021). The output of this estimation is interpreted in the 

same manner, where each effect estimate is interpreted as the direct effect of that exposure 

on the outcome. It is also imperative to test for possible observed heterogeneity, which 

would result in a violation of the IV assumptions and therefore bias the estimated causal 

effect. The critical appraisal checklist (Box 2) provided by Davies and colleagues offers a 

list of key questions spanning the core IVs assumptions, characteristics of the two sample 

study populations, data presentation, interpretations, and clinical implications that can assist 

in evaluating and interpreting Mendelian randomization findings (Davies, Holmes, & Davey 

Smith, 2018).
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COMMENTARY

Background Information

Observational research such as cohort studies or population-based, cross-sectional studies 

that assess the health status or behavior of a cohort at a single point in time are susceptible 

to biases such as reverse causation and confounding (Grimes & Schulz, 2002). Stemming 

from the IV method commonly applied in econometrics, Mendelian randomization presents 

a strategy for minimizing the effects of unobserved and observed confounding, reverse 

causation, and measurement error that may bias the effect of an exposure on an outcome 

of interest. Mendelian randomization provides a method for making causal inferences about 

the effect of an exposure on an outcome in the presence of confounding and other biases 

by instrumenting genetic variants, which are randomly distributed at conception and can 

be reliably associated with risk factors (Davies et al., 2018). Genetic variants that are 

known to reliably predict the exposure of interest and do not have an effect on the outcome 

through any other pathway can serve as valid IVs in a Mendelian randomization analysis for 

obtaining unconfounded estimates of the causal effect of the exposure on the outcome.

As we have previously shown in a protocol, a two-sample Mendelian randomization analysis 

can be easily conducted using publicly available summary association results from large 

genome-wide association studies (GWAS; Rasooly & Patel, 2019), where the genotype-

exposure and genotype-outcome estimates are derived from separate, non-overlapping 

cohorts taken from the same underlying population (Hartwig, Tilling, Davey Smith, 

Lawlor, & Borges, 2021). At the crossroads of genetics and epidemiology, GWAS have 

revolutionized our understanding of human health and genetic basis of disease, discovering 

associations between genetic variants—usually single-nucleotide polymorphisms (SNPs)—

and phenotypes, and shaping our view of the genetic architecture of complex human traits 

and diseases (Visscher et al., 2017). The exponential growth in both the number of new 

GWAS generated as well as new meta-analyzed multi-study GWAS performed, accelerated 

by the reduction in the cost of genotyping, promises unprecedented opportunities for 

discovery of causal relationships through Mendelian randomization-based methods, and for 

realizing yet another avenue for genetics to impact human health and medicine.

Two-sample multivariable Mendelian randomization is an extension to the univariate two-

sample Mendelian randomization framework, addressing the use case of simultaneously 

estimating the effect of multiple exposures or risk factors on an outcome using potentially 

overlapping sets of genetic variants (Burgess & Thompson, 2015; Sanderson, 2021). 

A central advantage of applying multivariable Mendelian randomization is examining 

exposures or risk factors that are a priori hypothesized to be closely related (e.g., effects 

of lipids and cholesterol on type 2 diabetes). Another advantage of the method is its 

applicability for investigating a risk factor that mediates the relationship of another risk 

factor and outcome. This can be further illustrated in the case of horizontal and vertical 

pleiotropy (Fig. 5).

In vertical pleiotropy, a genetic variant is associated with a risk factor that exerts a 

downstream causal effect on another, potentially closely related risk factor, which then 

exerts a causal effect on the outcome (Hemani et al., 2018; Fig. 5A). In horizontal 
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pleiotropy, a genetic variant may influence multiple risk factors through independent 

biological pathways (Hemani et al., 2018; Fig. 5B). While the former may not lead 

to a violation of the IV assumptions, the latter case of horizontal pleiotropy can 

violate the IV assumptions, leading to a biased derived causal estimate (Bowden et al., 

2015). Multivariable Mendelian randomization can assist in studies susceptible to such 

circumstances by simultaneously estimating the direct effect of each risk factor on an 

outcome from a set of two or more risk factors.

To date, several studies have applied the novel multivariable Mendelian randomization 

approach for jointly estimating multiple causal effects. Davies and colleagues analyzed data 

from the UK Biobank to study the potential causal effects of intelligence and education, 

two traits that are phenotypically and genetically correlated, on health outcomes, including 

mental and physical health, socioeconomic measures, and longevity (Davies et al., 2019). 

In a multivariable Mendelian randomization study, they estimated the total and direct effect 

of intelligence and educational attainment on socioeconomic and health outcomes, utilizing 

genetic variation information that explains a sufficient proportion of the variation in both 

of the studied risk factors conditional on the other risk factor (Davies et al., 2019). They 

found that intelligence exhibited a positive direct effect on income and was substantially 

attenuated compared to the total effects, suggesting that a substantial fraction of the total 

effects of intelligence on health and social outcomes may be mediated by education (Davies 

et al., 2019). In another study, the causal effects of educational attainment and intelligence 

on Alzheimer’s disease were examined; a multivariable Mendelian randomization analysis 

suggested an independent, causal effect of intelligence in lowering risk for Alzheimer’s 

disease (Anderson et al., 2020).

Pedron and colleagues performed a joint assessment of the causal effect of body mass 

index and type 2 diabetes on socioeconomic outcomes, identifying negative effects of body 

mass index and a null effect of diabetes on household income and regional deprivation 

(Pedron, Kurz, Schwettmann, & Laxy, 2021). Luo and colleagues studied a dozen red blood 

cell traits known to be highly genetically and phenotypically correlated in a multivariable 

Mendelian randomization framework, which suggested that endogenous hemoglobin was 

the most relevant red blood cell attribute for venous thromboembolism (Luo, Au Yeung, 

Zuber, Burgess, & Schooling, 2020). Lord and colleagues used knowledge that blood 

metabolites have been previously associated with midlife cognition to evaluate multiple 

blood metabolites as causal candidates for Alzheimer disease, identifying glycoprotein 

acetyls and extra-large high-density lipoproteins as the highest-ranked causal metabolites 

among 19 studied metabolites (Lord et al., 2021). As can be seen by these recent 

applications, extending Mendelian randomization analyses from the univariable to the 

multivariable setting can be a useful tool for disentangling complex relationships involving 

multiple risk factors and understanding the role each risk factor plays with regards to a 

health outcome.

Critical Parameters

While multivariable Mendelian randomization offers an attractive approach for estimating 

causality of multiple exposures simultaneously, there are a number of challenges and 
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limitations that must be considered. Many of the limitations and concerns with respect 

to the validity of the IV assumptions for multivariable Mendelian randomization are shared 

with univariate Mendelian randomization and have been discussed at length in other articles 

(Smith & Ebrahim, 2004; Zheng et al., 2017). An awareness of these limitations is essential 

in interpreting findings derived from Mendelian randomization-based methods.

For one, it is imperative to conduct a review of the assumptions necessary for conducting 

a multivariable Mendelian randomization analysis (Fig. 2). These assumptions are largely 

based on those for univariate Mendelian randomization. Table 1 from Labrecque & Swanson 

(2018) presents a summary of strategies and related tools for assessing the three core IV 

assumptions, and provides context for deepening understanding of the assumptions, which 

can be extended to the multivariable case. Understanding the genetic variants used as IVs 

and assessing them in the context of the assumptions and prior biological information 

can further assist in drawing meaningful interpretations from a multivariable Mendelian 

randomization study.

Further, much attention should be paid to the selection of instruments (e.g., SNPs) and 

to any underlying biological information and critical parameters that may inform the 

Mendelian randomization study design as well as any inferences and interpretations drawn 

from findings. Please refer to the illustrative guide presented in Figure 3 from Swerdlow 

et al. (2016) that provides an outline of some of the key decisions in the selection of valid 

instruments. Other limitations include insufficient statistical power and weak instrument 

bias. To ensure adequate statistical power, Mendelian randomization studies need large 

sample sizes. To ensure that a genetic variant is not a weak instrument, and that the 

instrument is strongly associated with the corresponding exposure conditioning on the other 

exposures, the conditional F-statistic should exceed 10. Further, substantial weak-instrument 

bias may arise if large numbers of genetic variants are used (Burgess & Thompson, 2015; 

Burgess et al., 2011). Please refer to Sanderson et al. (2021) for further detail regarding 

correcting for weak instrument bias in the multivariable Mendelian randomization setting. 

Further, while multivariable Mendelian randomization accommodates pleiotropy to the 

extent that it allows for a priori information and known variables inputted in a model, it 

does not take into account unknown pleiotropy, which may bias the causal estimate (Burgess 

& Thompson, 2015).
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Figure 1. 
Illustration of the instrumental variable (IV) assumptions for univariate Mendelian 

randomization as diagrammed by a directed acyclic graph. To be a valid IV, a genetic variant 

G must be (1) associated with the exposure X, (2) independent of possible confounders 

U, and (3) not be associated with the outcome Y directly. The three IV assumptions are 

annotated accordingly, with dotted lines representing violations of the second and third 

assumptions.
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Figure 2. 
Illustration of the instrumental variable (IV) assumptions for multivariable Mendelian 

randomization as diagrammed by a directed acyclic graph showing the relationship between 

genetic variant G, exposures (X through X for n exposures), confounding factor U, 1n, and 

outcome Y.
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Figure 3. 
First few rows of an example dataframe in preparation for a multivariable Mendelian 

randomization study on three exposures. Columns 1, 3, and 5 show the beta coefficient 

values for the three different exposures (triglycerides, LDL-cholesterol, and body mass 

index), columns 2, 4, and 6 show the corresponding standard error values, and columns 7 

and 8 show the beta coefficient and corresponding standard error of the outcome (type 2 

diabetes). Column 9 shows the rsID.
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Figure 4. 
Datasets available in the MRInstruments R package.
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Figure 5. 
Illustration of vertical (A) and horizontal (B) pleiotropy as diagrammed by directed 

acyclic graphs. Depiction shown for genetic variant G, exposures X1 and X2, outcome 

Y, confounder of the X1-outcome association U1, and confounder of the X2-outcome 

association U2. In the vertical pleiotropy case illustrated in A, genetic variant G is associated 

with exposure X1, which exerts a downstream causal effect on exposure X2, which then 

exerts a causal effect on outcome Y. In the horizontal pleiotropy case illustrated in 

B, genetic variant G is associated with exposure X1 and independently associated with 

unrelated exposure X2, both exposures of which are associated with outcome Y.
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