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Background: Air pollution exposure may make people more vulnerable to COVID-19 infection. However, previous 
studies in this area mostly focused on infection before May 2020 and long-term exposure. 
Objective: To assess both long-term and short-term exposure to air pollution and COVID-19 incidence across four 
case surges from 03/1/2020 to 02/28/2021. 
Methods: The cohort included 4.6 million members from a large integrated health care system in southern Cal
ifornia with comprehensive electronic medical records (EMR). COVID-19 cases were identified from EMR. 
Incidence of COVID-19 was computed at the census tract-level among members. Prior 1-month and 1-year 
averaged air pollutant levels (PM2.5, NO2, and O3) at the census tract-level were estimated based on hourly 
and daily air quality data. Data analyses were conducted by each wave: 3/1/2020–5/31/2020, 6/1/202–9/30/ 
2020, 10/1/2020–12/31/2020, and 1/1/2021–2/28/2021 and pooled across waves using meta-analysis. 
Generalized linear mixed effects models with Poisson distribution and spatial autocorrelation were used with 
adjustment for meteorological factors and census tract-level social and health characteristics. Results were 
expressed as relative risk (RR) per 1 standard deviation. 
Results: The cohort included 446,440 COVID-19 cases covering 4609 census tracts. The pooled RRs (95% CI) of 
COVID-19 incidence associated with 1-year exposures to PM2.5, NO2, and O3 were 1.11 (1.04, 1.18) per 2.3 μg/ 
m3,1.09 (1.02, 1.17) per 3.2 ppb, and 1.06 (1.00, 1.12) per 5.5 ppb respectively. The corresponding RRs (95% CI) 
associated with prior 1-month exposures were 1.11 (1.03, 1.20) per 5.2 μg/m3 for PM2.5, 1.09 (1.01, 1.17) per 
6.0 ppb for NO2 and 0.96 (0.85, 1.08) per 12.0 ppb for O3. 
Conclusion: Long-term PM2.5 and NO2 exposures were associated with increased risk of COVID-19 incidence 
across all case surges before February 2021. Short-term PM2.5 and NO2 exposures were also associated. Our 
findings suggest that air pollution may play a role in increasing the risk of COVID-19 infection.   

1. Introduction 

The new Coronavirus Disease 2019 (COVID-19), caused by infection 
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
was first reported in China in December 2019 (Zhu et al., 2020a). Since 
then, there have been over 266 million cases and over 5.2 million deaths 
caused by COVID-19 infection all over the world (Dong et al., 2020; − 19 
Dashboard. G, 2020). In the United States, there have been consecutive 
case waves in 2020–2021 across seasons with the highest peak case 

numbers in December to January 2021 (Coronavirus in the:, 2021). A 
growing number of reports support a role for ambient air pollutant ex
posures on COVID-19 prevalence and mortality (Bontempi, 2020; Con
ticini et al., 2020; Fattorini and Regoli, 2020; Setti et al., 2020; Zoran 
et al., 2020a; Wu et al., 2020; Bianconi et al., 2020; Yao et al., 2020; 
Travaglio et al., 2021; Pozzer et al., 2020; Hutter et al., 2020; Cole et al., 
2020; Azuma et al., 2020; De Angelis et al., 2021; Zang et al., 2021; 
Marques and Domingo, 2022). Ecological studies reported before May 
2020 concluded that chronic exposure to ambient air pollutants was 
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associated with increased COVID-19 incidence (Hutter et al., 2020; 
Jiang et al., 2020; Li et al., 2020; Wang et al., 2020; Yao et al., 2021; 
Andrée, 2020). Long-term air pollution exposure may increase the risk of 
COVID infection through the chronic effect on preexisting comorbidities 
(Langrish et al., 2012; An et al., 2018; Lawal, 2017) and immune al
terations (Lin et al., 2018). However, most previous studies used 
aggregated air pollution exposure over long-term and COVID-19 cu
mulative case or incidence data from Europe and China and only 
investigated the associations in the early pandemic period. Few have 
investigated the role of air pollution from early 2020 to the more recent 
case peak in year 2021. One national study in Israel assessed the 
long-term averaged PM2.5 exposure with COVID-19 cases from 2020 to 
January 2021 (Levi and Barnett-Itzhaki, 2021). A second study assessed 
NO2 exposure in 2016 and COVID-19 case rate in Los Angeles County 
from March 2020 to February 2021 (Lipsitt et al., 2021). 

To our knowledge, the role of short-term air pollution exposure on 
COVID-19 incidence remained unclear. Limited evidence suggested that 
nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3) 
exposures up to 21 lagged days were associated with increased COVID- 
19 incidence (Zoran et al., 2020a; Yao et al., 2021; Adhikari and Yin, 
2020; Xing et al., 2021). Since COVID-19 intervention policies may in
fluence the ambient air quality during the pandemic year, the role of 
short-term air pollution may change over the time. A better under
standing of the effects of short-term ambient air pollutant exposures on 
COVID-19 risk over the long period of COVID-19 pandemic is needed as 
such exposure are modifiable and interventions to reduce exposures 
have the potential to reduce COVID-19 incidence. 

Additional limitations of previous studies of air pollution and 
COVID-19 incidence included limited diversity in geographic regions 
and population and potentially mismatching the exposure time windows 
and case diagnosis date limited by the publicly available population 
data. 

The purpose of this study was to assess both long-term and short- 
term air pollution exposure and COVID-19 incidence across four case 
surges from 03/01/2020 to 02/28/2021. Data were derived from a large 
integrated health care system with comprehensive electronic medical 
records (EMR) and 4.6 million members covering southern California 
and over 446,000 COVID-19 incident cases. COVID-19 case ascertain
ment was optimally defined using clinical diagnosis and date informa
tion from the EMR. The study is novel by investigating associations of 
both short- and long-term air pollution exposures with COVID-19 inci
dence in the large population of Southern California which is diverse in 
age, sex, and race/ethnicity. Also, comparing the air pollution effects 
between later and earlier COVID-19 pandemic periods is important to 
confirm the consistent effects of air pollution on COVID-19 incidence 
across dynamically changing conditions of pandemic, policy, environ
ment, and society. 

2. Materials and methods 

2.1. Population and COVID-19 case identification and incidence by 
month and census tract 

The study population is members of Kaiser Permanente Southern 
California (KPSC) between March 1, 2020 and February 28, 2021. KPSC 
is an integrated healthcare system with 4.6 million members across 
Southern California, representing approximately 20% of the southern 
California population. Social demographic characteristics of KPSC 
members are similar to the diverse population in southern California 
(Koebnick et al., 2012). 

KPSC members diagnosed with COVID-19 between March 1, 2020 
and February 28, 2021 were identified based on positive SARS-CoV-2 
polymerase chain reaction (PCR) lab test result or a diagnosis code 
(ICD-10 and internal KPSC codes) for COVID-19 (Supplement table 1). 
To avoid false positives, individuals with a negative lab result within 
two weeks following an asymptomatic COVID-19 diagnosis code were 

not considered as COVID-19 cases. The diagnosis date was the earliest 
lab order date for those with lab data or the earliest COVID-19 diagnosis 
code for those with only diagnosis codes. Individuals with COVID-19 
diagnosis were aggregated by census tract of residence by the month 
of diagnosis. No individuals had repeat COVID-19 infection within the 
study period. Incidence of COVID-19 at the month and census tract level 
was then calculated where the denominator was the KPSC member size 
at each month by census tracts and the numerator was the KPSC mem
bers with COVID-19 diagnosis in the corresponding month and census 
tract. 

2.2. Regional air pollution exposure 

Daily averages for air pollutant levels (PM2.5, NO2, and O3) by census 
tract were estimated based on hourly and daily air quality data from 
ambient monitoring stations reported to the U.S. Environmental Pro
tection Agency’s Air Quality System (Environmental Protec, 2021) and 
the California Air Resources Board’s Air Quality and Meteorological 
Information System. Air monitoring stations in California are spaced 
20–30 km (km) apart in populated areas, which provides a good char
acterization of regional air pollution gradients. PM2.5 is measured 
through Federal Reference Method (FRM) and Federal Equivalent 
Method (FEM) monitors, while NO2 and O3 are measured by the FRM 
monitors. Location data and daily air quality data were used in inverse 
distance-squared weighting algorithms to map exposures. The algorithm 
spatially interpolates air quality data from up to four monitoring stations 
within a 50 km radius of the tract centroid. Daily residential air quality 
data at the census tract level was further averaged to assign exposure 
levels during shorter- and longer-term periods prior to the month of 
COVID-19 diagnosis. 1-month averaged exposures were used as repre
sentative of shorter-term exposure (Chen et al., 2016; Fouladi et al., 
2020; Pegoraro et al., 2021) and 1-year averaged exposures were used as 
longer-term exposures. 

2.3. Meteorological factors 

Daily meteorological data was extracted from the national Gridset 
regional-scale reanalysis that provides spatially and temporally com
plete, high-resolution (4-km) gridded surface meteorological variables 
(temperature and relative humidity) (Abatzoglou, 2013). Average 
1-month temperature and minimum relative humidity at the census tract 
level prior to each month of COVID-19 diagnosis were obtained from the 
daily measures and were treated as covariates in the data analysis. 

2.4. Neighborhood characteristics 

Population density and public transportation use within the census 
tract were extracted from the 2019 US census American community 
survey (ACS). Neighborhood race/ethnicity, age, gender, and Medicaid 
status for the study population were extracted from KPSC patient self- 
reported and administrative data and aggregated to the census tract 
level. The neighborhood deprivation index (NDI), a composite measure 
including education, unemployment, crowding, female head of house
hold, income, poverty, public assistance, and occupation was calculated 
based on 2018 ACS data and divided into quintiles (Andrews et al., 
2020; Messer et al., 2006). The higher the NDI value, the higher the level 
of deprivation in the neighborhood (Andrews et al., 2020; Messer et al., 
2006). Tree canopy coverage was extracted from the California Healthy 
Places Index tree canopy measure based on the national land cover 
database. (Delaney et al., 2018; Homer et al., 2015). Percentage of 
smokers within the census tract was extracted from self-reported EMR 
data. Prevalence of obesity, diabetes, asthma, and hypertension were 
based on electronic medical records (EMR) and calculated based on 
healthcare effectiveness data and information set (HEDIS) definitions for 
the Kaiser Permanente Geographically Enriched Member Sociodemo
graphic (GEMS) data-mart. All these neighborhood characteristics were 
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treated as covariates in data analysis. 

2.5. Statistical analysis 

Data analysis used generalized linear mixed effects models with a 
Poisson distribution where the outcome variable was the number of 
COVID cases at each month for each census tract with the log of total 
KPSC member at the month and census tract as the offset, and the 
exposure variable was air pollution levels 1-month or 1-year prior to the 
month of COVID-diagnosis. Moran’s I was used to assess spatial auto
correlation among census tract and results (I = 0.53, p<0.0001) support 
clustered autocorrrelation (Mitchell, 2005); thus, the models included a 
random intercept of census tract and a spatial autocorrelation based on 
the latitude and longitude of the tract centroid with an exponential 
spatial covariance structure. To account for different COVID-19 surge 
patterns that could be influenced by various factors such as policy and 
lifestyle changes, the study cohort was divided into four waves: March to 
May 2020, June to September 2020, October to December 2020, and 
January to February 2021. The classification of waves was based on the 
peak number of cases. The cut between December and January was to 
account for vaccine availability that started in the beginning of 2021. 
Data analysis was conducted by each wave and results were pooled 
across all waves using meta-analysis techniques. All models were 
adjusted for month, minimum relative humidity and average tempera
ture in the prior month, population density, public transportation use, 
race/ethnicity, age, gender, NDI, tree canopy, and prevalence of smok
ing, obesity, diabetes, asthma, and hypertension within the census tract. 
For each air pollutant, heterogeneities of the associations between air 
pollutant and rates of COVID-19 cases across four waves were assessed 
using the I2 statistic (Deeks et al., 2021). The I2 statistic were all above 
75%, suggesting strong heterogeneities thus results were pooled across 
four waves with random effects meta-analysis using the 
DerSimonian-Laird estimators (DerSimonian RaL, 1986; Spiegelman 
EHaD, 2021). Results are presented as relative risks (RR) and 95% 
confidence intervals (CI) for an increase of one standard deviation (SD) 
of the corresponding exposure across all waves. Analyses were per
formed using ArcGIS Pro (Environmental Systems Research Institute 
(ESRI) Redlands, CA, USA) and SAS version 9.4 (SAS Institute Inc, Cary, 
NC, USA). 

3. Results 

A total of 446,440 KPSC members were identified as having a 
COVID-19 diagnosis during the study period. KPSC members live across 
4609 Southern California census tracts. The mean population per square 
mile in these tracts was 10,023 (SD 9532) people (Table 1). The average 
proportion of public transportation use was 4.1% (SD 5.9%) and 48.3% 
of tracts were predominantly Hispanic (Table 1). Also, 969 tracts (21%) 
had the highest level of neighborhood deprivation, while the mean adult 
obesity and diabetes prevalence of KPSC members across these census 
tracts were 38.1% and 9.3%, respectively (Table 1). 

The highest rate of COVID-19 cases was in December 2020 (37 new 
cases per 1000 members) followed by January 2021 (25 new cases per 
1000 members), November 2020 (11 new cases per 1000 members), and 
July 2020 (8 new cases per 1000 members) (Fig. 1). The prior 1-month 
mean (SD) PM2.5, NO2, and O3 exposures before COVID-19 diagnosis 
across all the waves were 12.8 (5.2) μg/m3, 11.9 (6.0) ppb, and 47.8 
(12.0) ppb respectively. The corresponding prior 1-year means (SD) 
were 11.2 (2.3) μg/m3 for PM2.5, 11.9 (3.2) ppb for NO2, and 46.9 (5.5) 
ppb for O3. Fig. 2 presents distribution of 1-month and 1-year PM2.5, 
NO2, and O3 across study periods by month. The highest correlations 
observed were between PM2.5 and NO2, with Pearson’s correlation co
efficient of 0.5 for 1-month exposures and 0.7 for 1-year exposures 
(Supplement Table 2). 

The wave stratified and pooled adjusted RR of COVID-19 incidence 
associated with each pollutant are displayed in Fig. 3. 1-month PM2.5 

exposure prior to diagnosis was positively associated with COVID-19 
incidence from March to December 2020. However, in January to 
February 2021, it was negatively associated with COVID-19 incidence. 
The pooled RR across four waves for a one SD (5.2 mg/m3) increase in 
PM2.5 was 1.11 (95% CI 1.03, 1.20). 1-month NO2 exposure was posi
tively associated with COVID-19 incidence from June 2020 through 
February 2021, the pooled RR across 4 waves for a one SD (6.0 ppb) 
increase was 1.09 (95% CI 1.01, 1.17). 1-month O3 was not associated 
with COVID-19 incidence in the pooled analysis (RR 0.96, 95% CI 0.85, 
1.08), although the associations fluctuated throughout the study periods 
(Fig. 3). 

For 1-year averaged exposures, all three pollutants were significantly 
associated with COVID-19 incidence in the pooled analysis over four 
waves. The pooled RR (95% CI) were 1.11 (1.04, 1.18) per one SD (2.3 
μg/m3) for PM2.5, 1.09 (1.02, 1.17) per one SD (3.2 ppb) for NO2, and 
1.06 (1.00, 1.12) per one SD (5.5 ppb) for O3 (Fig. 3). In the analysis by 
each wave, all three pollutants were positively associated with COVID- 
19 incidence in each wave except for O3, which was not associated 
from March to May 2020. The associations were generally smaller from 
January to February 2021, compared to the previous 3 waves in 2020. 

4. Discussion 

Based on this large and diverse population cohort in Southern Cali
fornia we found that both 1-year and 1-month averaged PM2.5 and NO2 
exposures were associated with increased risk of COVID-19 incidence in 
Southern California between March 2020 and February 2021. Signifi
cant associations were also observed for 1-year averaged O3 exposure 
during this period. The associations were lower during the recent case 
surge wave from January to February 2021 when the vaccination 
campaign started, compared to the waves from June to December 2020. 
The associations were also lower at the beginning of the pandemic from 
March to May 2020 for NO2 and O3, which could be explained by the 
small number of cases. The associations of 1-month O3 exposure fluc
tuated over the four waves, and overall was not associated with COVID- 
19 incidence in the pooled analysis. The fluctuation of the associations 
might be due to the large seasonal changes in O3 exposure. The air 
pollution associations were independent of socio-contextual variables 
such as neighborhood age, race/ethnicity, sex, socio-economic status, 
neighborhood deprivation (including crowding and poverty), public 

Table 1 
Census tract characteristics for Kaiser Permanente Southern California members.   

N = 4609 Census Tracts 

Population per square mile a 10,023 (9532) 
Public transportation users, percentage a 4.1 (5.9) 
Neighborhood race/ethnicity, highest percentage b 

Asian/Pacific Islander 272 (5.9) 
Black 128 (2.8) 
Hispanic 2225 (48.3) 
Non-Hispanic White 1984 (43) 

Age 65+, percentage a 15.5 (7.9) 
Males, percentage a 48.6 (3.5) 
Medicaid, percentage a 7.4 (4.2) 
Neighborhood deprivation index (NDI) quintile b 

1 (Lowest level of deprivation) 654 (14.2) 
2 988 (21.4) 
3 982 (21.3) 
4 1015 (22) 
5 (Highest level of deprivation) 969 (21) 

Tree canopy, percentage a 4.9 (2.8) 
Current smokers, percentage a 7.3 (2.5) 
Adult obesity, percentage a 38.1 (10.98) 
Adult diabetes, percentage a 9.3 (3.15) 
Adult hypertension, percentage a 10.9 (3.23) 
Asthma, percentage a 1.0 (0.52)  

a Mean (Standard Deviation). 
b Number of census tracts (%). 

M.A. Sidell et al.                                                                                                                                                                                                                                



Environmental Research 208 (2022) 112758

4

transportation use, comorbidity prevalence, as well as meteorological 
factors. Our findings suggest that long-term exposures to ambient air 
pollutants including PM2.5, NO2 and O3 may contribute to higher risk of 
COVID-19 infection. Short-term PM2.5 and NO2 exposures may also have 
an effect. 

The finding of air pollution association with COVID-19 incidence is 
consistent with findings from previous ecological analyses worldwide 
(Bontempi, 2020; Conticini et al., 2020; Fattorini and Regoli, 2020; Setti 
et al., 2020; Zoran et al., 2020a, 2020b; Marques and Domingo, 2022; 
Jiang et al., 2020; Li et al., 2020; Wang et al., 2020; Yao et al., 2021; 
Fronza et al., 2020; Zhu et al., 2020b). However, most previous studies 

have only investigated the earlier pandemic period before May 2020. 
Only two studies included cases during the surge in early 2021 (Levi and 
Barnett-Itzhaki, 2021; Lipsitt et al., 2021). One large national study in 
Israel found that long-term PM2.5 exposure was significantly associated 
with higher COVID-19 case numbers at the first three wave peaks before 
December 2020 but was not associated at the third wave peak in January 
2021. Our findings are consistent with this trend that the associations of 
1-year averaged exposures to PM2.5 and NO2 were generally larger from 
June to December 2020, while the association in January to February 
2021 was smaller but still statistically significant. In contrast, another 
study in Los Angeles, US assessed the association of historical NO2 

Fig. 1. a) Number of COVID-19 Cases and COVID-19 case rate per 1000 members in Kaiser Permanente Southern California census tracts by month and b) COVID-19 
rate per 1000 members by census tract from March 2020 through February 2021. 

Fig. 2. Distribution of 1-month and 1-year means for PM2.5 (ug/m3), NO2 (ppb), and O3 (ppb) by month.  
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exposure in 2016 with COVID-19 incidence and found that the effect 
sizes were similar before September 2020 compared to the later time till 
February 2021. We extended the analysis to a larger geographic area in 
Southern California and our meta-analysis pooling the associations over 
four waves suggest that long-term PM2.5, NO2 and O3 exposure all 
contribute to the risk of COVID-19 incidence. It is noted that during the 
later pandemic period, the long-term air pollution exposure effects on 
COVID-19 infection may be attenuated by the nonpharmaceutical in
terventions and vaccinations. The dynamic changes in new virus vari
ants and lifestyle and mobility patterns could also influence the 
associations. 

Potential pathophysiological mechanisms related to the long-term 
air pollution effects on COVID-19 infection include the chronic effects 
of air pollution on comorbidities such as respiratory and car
diometabolic diseases (Langrish et al., 2012; An et al., 2018; Lawal, 
2017). Air pollution exposure could also perturb immune response and 
increase the susceptibility of virus infection (Lin et al., 2018). Rodent 
studies have shown that PM2.5 and NO2 exposures increase the expres
sion of coronavirus binding receptor, angiotensin-converting enzyme 2 
(ACE-2) in the lung (Aztatzi-Aguilar et al., 2015; Sagawa et al., 2021; 
Meulenbelt et al., 1992; Patel et al., 1990). The effect of short-term air 
pollution on COVID-19 incidence is less studied and unclear, though fine 
particles in the ambient air may help to transport virus. A few studies in 
earlier pandemic period have shown that short-term up to 21-day prior 
exposures to PM2.5, O3, and NO2 were associated with increased 
COVID-19 incidence; however, many time-varying confounders such as 
the change in air quality due to lock-down policy, wearing masks, 
changes in mobility, and new variants may all affect the role of 
short-term air pollution (Coccia, 2021a, 2021b; Saini et al., 2021; 
Adhikari et al., 2020). Since meteorological factors have temporal cor
relations with short-term air pollution exposures, temperature and hu
midity are also key confounders. In this study, after adjusting for 
sociodemographic, comorbidity, and meteorological confounders, we 
observed significant associations with 1-month PM2.5 during March to 

December 2020 and with NO2 exposures during June 2020-Feburary 
2021. There was no association with 1-month O3 by pooling the data 
across four waves. Considering the correlations of short and long-term 
air pollution exposures, the association with short-term exposure may 
also be partially driven by the long-term air pollution effects. Taken 
together, our findings suggest that both long-term and short-term PM2.5 
and NO2 may play a role in increasing the risk of COVID-19 infection. 

The advantages of this study include a large and multiethnic popu
lation cohort based on over 4.6 million members and over 446,000 
COVID-19 cases from KPSC medical system in southern California. The 
analysis covers four major case waves from March 2020 to February 
2021, which allows the continuous assessment of air pollution effect in 
the ever-changing pandemic situations. Uniform guidelines were 
applied for testing and clinical diagnosis of COVID-19 across all KPSC 
medical centers, which minimize the bias in case ascertainment. To our 
knowledge, this is the first study assessing both long-term and short- 
term ambient air pollution effect on COVID-19 incidence in a large 
geographic area with diverse population adjusting for detailed socio- 
contextual, race/ethnicity, comorbidities, and meteorological 
covariates. 

We also acknowledge several limitations of this study. First, this is an 
ecological analysis based on air pollution exposure and COVID-19 
incidence rate aggregated by census tract. The aggregated exposure 
and outcome data may induce bias in the observed associations. Lon
gitudinal cohort studies with individual-level data are needed to 
corroborate our findings. The estimate of air pollution exposure based 
on central monitor data at census track level could be biased from in
dividual air pollution exposure. Within census tracks, the level of indi
vidual air pollution exposure is not only varied by the residential 
proximity to different air pollution sources such as industrial, com
mercial and transportation, but also influenced by individual time ac
tivity patterns, residential characteristics, window-opening time, 
occupation, and meteorological factors. Personal air pollution monitors 
for specific air pollutants are needed to accurately measure individual 

Fig. 3. Pooled and 4 time wave stratified (March–May 2020, June–Sept, 2020, Oct–Dec 2020, Jan–Feb 2021) relative risk of COVID-19 incidence at the census trace 
levels associated with 1 standard deviation (SD) increase in 1-month (top panel) and 1-year (bottom panel) average exposures from PM2.5, NO2, and O3 at the census 
tract levels, adjusted for month, population density, race/ethnicity, age, sex, neighborhood deprivation index, tree canopy, public transportation use, proportion of 
smoking, obesity, diabetes, asthma, hypertension, and spatial autocorrelation of census tract. The SDs were 5.2 μg/m3, 6.0 ppb, and 12.0 ppb for 1-month PM2.5, NO2, 
and O3, and 2.3 μg/m3, 3.2 ppb, and 5.5 ppb for 1-year PM2.5, NO2, and O3. 
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air pollution exposure. However, it is not feasible to monitor personal 
exposures to various air pollutants in a long-term period across a large 
population as the case in this study. Beyond three air pollutants: NO2, 
PM2.5 and O3 that were investigated in this study, other air pollutants 
including carbon monoxide (CO), particulate matter with a diameter less 
than 10 μm or less (PM10), and sulfur dioxide (SO2) are also important 
ambient air pollutants that have been investigated for their associations 
with COVID-19 prevalence and incidence, mostly in Europe and China. 
Several studies have found associations between exposure to PM10 and 
increased number of COVID-19 cases (Setti et al., 2020; Bianconi et al., 
2020; De Angelis et al., 2021; Jiang et al., 2020; Zhu et al., 2020b; 
Solimini et al., 2021; Sahoo, 2021; Zheng et al., 2021; Ma et al., 2021; 
Saez et al., 2020), while fewer studies have investigated the role of CO 
and SO2 for their associations with COVID-19 incidence and trans
missibility and results were inconsistent across studies (Meo et al., 2021; 
Ran et al., 2020). The associations of short- and long-term exposures to 
PM10, SO2 and CO in Southern California need to be investigated in 
future studies. In terms of the choice of short and long-term exposure 
time windows, we used 1-month and 1-year averaged exposures to 
represent exposure levels during a relatively shorter and longer-time 
period before the COVID-19 diagnosis date. We chose this method 
based on our ecological design. For future cohort studies with longitu
dinal data of COVID-19 incidence and daily air pollution exposure data, 
time-series analysis using distributed lag models can be considered to 
identify critical exposure time windows with consideration of other 
time-varying covariates such as time activity pattern and meteorological 
factors. Second, although a spectrum of key socio-characteristics and 
neighborhood-level covariates were adjusted for in this analysis, several 
potential confounders such as indoor air pollution, built-environment, 
traffic exposure, occupation, adherence to intervention policy and var
iants of virus were not available. Future studies are needed to investigate 
the role of these covariates in the associations between air pollution 
exposure and COVID-19 incidence. Third, although the pooled associa
tion with 1-month O3 exposure was not statistically significant, negative 
association between 1-month O3 and COVID-19 incidence was observed 
for later pandemic periods from October–December 2020 and Januar
y–February 2021. It is known that larger measurement error exists in O3 
exposure compared to NO2 and PM2.5 exposures when using outdoor 
exposure level to predict personal exposure level (Geyh et al., 2000). In 
general, O3 had less robust association with COVID-19 incidence 
compared to PM2.5 and NO2 in this study. Moreover, considering the 
negative correlations between O3 and NO2 due to the photochemical 
reactions and inconsistent associations observed for O3 from short to 
long-term exposure periods, the negative associations with 1-month O3 
need to be interpreted with caution. Lastly, due to the temporal corre
lations of air pollution exposure, our analyses could not fully dissect the 
long and short-term air pollution effects. Studies using individual 
exposure monitoring over the pandemic period will help to explore the 
independent effect of short-term air pollution exposure beyond the 
long-term effect. 

5. Conclusions 

Findings from this large EMR-based population cohort reveals that 
long-term exposures to PM2.5, NO2, and O3 are associated with increased 
risk of COVID-19 infection across all case surges before February 2021. 
The associations were smaller but still statistically significant in the 
recent surge during January–February 2021 compared to the associa
tions in 2020. Short-term PM2.5 and NO2 exposures may also contribute 
to the risk. The effect of air pollution was independent of key neigh
borhood characteristics such as race/ethnicity, age, sex, and socioeco
nomic status, as well as meteorological factors. Taken together, our 
findings indicate that reducing exposures and improving air quality 
need to be considered in the prevention of COVID-19 surges in the 
future. 
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