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Structured Abstract

BACKGROUND: Historical accounts linking cancer and microbes date as early as four millennia 

ago. Post establishment of the germ theory of infectious diseases, clinical research of microbial 

influences on cancer began in 1868, when William Busch reported spontaneous tumor regressions 

in patients with Streptococcus pyogenes infections. Over the next century, the role of bacteria 

in carcinogenesis and cancer therapy was discounted due to poor reproducibility, erroneous 

microbiological claims, and severe toxicity in patients. However, these provided some of the 

first crude demonstrations of cancer immunotherapy. Contemporaneously, the viral theory of 

cancer began to flourish, spurred by the 1911 discovery of Rous Sarcoma Virus (RSV), which 

transformed benign tissue into malignant tumors in domestic fowl. The subsequent decades-

long search to find a virus behind every human cancer ultimately failed, and many cancers 

have been fundamentally linked to somatic mutations. Now the field is encountering intriguing 
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claims of the importance of microbes, including bacteria and fungi, in cancer and cancer 

therapy. This Review critically evaluates the evidence for these claims in light of modern 

cancer biology and immunology, and delineates the roles of microbes in cancer by examining 

recent advances in proposed mechanisms, diagnostics, endogenous modulation approaches, and 

exogenous therapeutic strategies.

ADVANCES: Few microbes directly cause cancer, but many seem complicit in its growth, often 

acting through the host’s immune system; conversely, several have immunostimulatory properties. 

Mechanistic analyses of gut microbiota-immune system interactions have demonstrated powerful 

effects on innate and adaptive immunity by modulating primary and secondary lymphoid tissue 

activities against cancer and tumor immunosurveillance. Many of these pathways invoke Toll-like 

receptor (TLR)-initiated cytokine signaling, but microbial metabolic effects in dietary energy 

harvest and short-chain fatty acid production, and antigenic mimicry with cancer cells, are also 

important. In preclinical models, microbial metabolites also regulate phenotypes of tumor somatic 

mutations and modulate immune checkpoint inhibitor efficacy.

Emerging evidence also suggests the existence and functional activity of intratumoral 

bacteria, with overlapping immunohistochemistry, immunofluorescence, electron microscopy, and 

sequencing data on them in ~10 cancer types. Preliminary studies also suggest that fungi and 

bacteriophages contribute to gastrointestinal cancers. However, the estimated cellular abundances 

of intratumoral microbes is low relative to cancer cells, and knowledge of their functional 

repertoire and potency remains limited. Further validation of their prevalence and impact is needed 

in diverse cohorts and therapeutic contexts.

The immunomodulatory effects of host microbiota have reinvigorated efforts to change their 

composition as a form of immunotherapy. Despite extensive preclinical evidence, translation of 

microbiota modulation approaches into humans has yet to broadly materialize into commercialized 

therapies. Synthetic biology approaches are also gaining traction, however, with engineered 

bacterial cancer therapies in preclinical and clinical trial settings.

OUTLOOK: A better understanding of the roles of microbes in cancer has the opportunity 

to improve each stage of the cancer care cycle, but major challenges must be surmounted. 

Concerted efforts to characterize cancer-associated microbiota among tumor, stool, and blood 

samples with gold-standard contamination controls would tremendously aid this progress. This 

would be analogous to The Cancer Genome Atlas (TCGA)’s and International Cancer Genome 

Consortium (ICGC)’s roles in characterizing the cancer somatic mutation landscape. Large-scale 

clinical trials are currently testing the efficacy of microbiota modulation approaches, ranging 

from dietary modifications to intratumorally-injected, engineered bacteria. These bacterial cancer 

therapies, if safe and effective, could tremendously expand the cancer therapy armamentarium. 

Altogether, integrating the host-centric and microbial viewpoints of cancer may improve patient 

outcomes while providing a nuanced understanding of cancer-host-microbial evolution.

Graphical Abstract
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Opportunities for microbes to impact cancer care. Diagnosis: Cancer-specific, blood-borne 

microbial DNA may complement cell-free tumor DNA (ctDNA). Prognosis: Gut and intratumoral 

microbiota may stratify patient outcomes; (N)R=(non)responder; TME=tumor microenvironment. 

Therapy: Intratumor injection of CD47 nanobody (CD47nb)-producing E. coli may create 

systemic antitumor immunity by enhancing dendritic cell (DC) phagocytosis, lymph node (LN) 

antigen (Ag) presentation, and cytotoxic T lymphocyte (CTL) activity.

Abstract

Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed 

for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi 

are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat 

metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis 

remains small. Critically evaluating and building frameworks for such evidence in light of modern 

cancer biology is an important task. In this Review, we delineate between causal and complicit 

roles of microbes in cancer and trace common themes of their influence through the host’s 

immune system, herein defined as the immuno-oncology-microbiome (IOM) axis. We further 

review evidence for intratumoral microbes and approaches that manipulate the host’s gut or tumor 

microbiome while projecting the next phase of experimental discovery.

The histories of cancer and human microbiota are intimately interwoven. Writings as 

early as 1550 BCE in the Ebers Papyrus, attributed to the Egyptian physician Imhotep 

(c 2600 BCE), suggest a crude treatment for tumors (swellings) involving application of 

a poultice to the site followed by an incision, causing an infection (1, 2). In the 13th 

century, Peregrine Laziosi described spontaneous regression of his septic, ulcerative tibial 

bone malignancy that would have required amputation (2), for which he was canonized in 

1726. After establishment of the germ theory of infectious disease, Wilhelm Busch and 

Friedrich Fehleisen independently reported in the late 1800s that Streptococcus pyogenes 
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infections were associated with spontaneous tumor regressions in several patients (3, 

4). Shortly thereafter, William Coley started testing a highly contentious and sometimes 

lethal vaccine of live or heat-killed Streptococcus and Serratia species on terminal 

cancer patients, which was only later shown to yield >10-year disease-free survival 

in ~30% of them (60 of 210 total), representing the first intentional demonstration of 

immunotherapy (5). Contemporaneously, Thomas Glover and Virginia Livingston-Wheeler 

claimed, controversially, that bacteria were cultivable from tumors and that bacterial 

vaccines were effective against tumors, and suggested a universal bacterial origin of cancer 

(6, 7). These early treatment approaches and theories were fraught with error: Livingston-

Wheeler’s bacterial “cause” of cancer, Progenitor cryptocides, turned out to be the skin 

commensal Staphylococcus epidermidis (a frequent contaminant), and Glover’s findings 

were not reproducible by researchers at the National Institutes of Health (7). With no 

mechanistic evidence, irreproducible results, and hazardous therapies, the bacterial theory of 

cancer was dismissed.

The viral theory of cancer gained traction after Peyton Rous’s 1911 discovery of a 

transmissible oncogenic virus in chickens (8). The subsequent decades-long search to find 

a virus behind every cancer linked Epstein-Barr, human papilloma, and hepatitis viruses to 

carcinogenesis (9) but failed to find a viral cause for most human cancers, and the theory 

was overtaken by the somatic mutation hypothesis.

Now, after decades of research thoughtfully characterizing the hallmarks of human cancer 

through somatic mutations and other host-centric perspectives (10, 11), the field is 

encountering nuanced claims that microbes may play a broad role in cancer diagnosis, 

pathogenesis, and treatment (12–26). This reappraisal stems from greater appreciation of 

the number of microbes that inhabit the human body (roughly equal to the number of 

human cells), their gene count that exceeds the human genome’s gene count by ~100-fold 

and enables diverse metabolic programming, and their effects on host immune system 

development and activity, including antitumor immunosurveillance (27–31). Although most 

proposed cancer-microbe relationships focus on gut microbiota (30, 32, 33), recent studies 

also contentiously suggest the existence, metabolic activity, and functional importance 

of intratumoral microbiota using a combination of imaging, sequencing, and cultivation 

techniques, and genetically-engineered and germ-free mouse models (12–14, 18–20, 23, 34). 

These studies raise many questions about microbes and cancer. How should microbes be 

viewed in light of known host-centric cancer characteristics? To what extent are microbes 

causal agents, complicit actors, or passive bystanders? If intratumoral microbes exist, do 

they have therapeutic implications? What role do microbes play in patient management? 

With these questions in mind, this Review aims to critically evaluate the known roles of 

microbes in cancer, and to outline the next steps for evaluating their clinical utility.

Overview of the cancer microbiome

Of the estimated ~1012 distinct microbial species on earth (35), just 11 are labeled human 

carcinogens, or “oncomicrobes,” by the International Association for Cancer Registries 

(IACR) (36). These oncomicrobes cause an estimated 2.2 million cases per year (~13% of 

global cancer cases), and their epidemiology, molecular mechanisms, and clinical studies 
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have been extensively reviewed (36). Strong experimental evidence suggests that additional 

microbes initiate cancer through genotoxin-mediated mutagenesis; in particular, colibactin (a 

DNA alkylator), cytolethal distending toxin (CDT; direct DNAse activity), and Bacteroides 
fragilis toxin (Bft; ROS producer) cause mutational signatures found in colorectal, head 

and neck, and urinary tract cancers (22, 37–41). Experimental evidence also implicates 

several microbes with virulence factors that amplify tumorigenesis via E-cadherin/Wnt/β-

Catenin signaling, including FadA from Fusobacterium nucleatum and AvrA from several 

Salmonella strains (42, 43). A few dozen microbial species can thus directly cause cancer, 

based on current epidemiological and experimental evidence.

Increasing evidence suggests an important additional category of “complicit” microbes 

and microbial functions that promote carcinogenesis but are insufficient to cause cancer 

(18, 20, 25, 38, 44–47). This category encapsulates many immunomodulatory functions 

of microbiota and their bioactive metabolites in tumor development, and may be linked 

to the immune system’s role in solid tumorigenesis; the immune system rarely initiates 

the incipient lesion but can facilitate progression through tumor-stroma feedback loops, 

inflammation, or dysfunctional immunosurveillance (11). One example is that common 

p53 mutations are only carcinogenic in the presence of microbially-produced gallic 

acid and protective otherwise in the gut, both in vivo and in organoids, suggesting 

a microbiome-functional genomic interaction (44). A second is microbially-produced 

secondary bile acids, which reduce hepatic sinusoidal CXCL16 expression (the sole ligand 

for CXCR6) and prevent CXCR6+ natural killer T (NKT) cell aggregation and liver cancer 

immunosurveillance — this carcinogenic effect is eliminated by vancomycin treatment (45). 

A third comes from the inability of Kras mutation and p53 loss to produce lung cancer 

in germ-free or antibiotic-treated mice: commensal lung microbiota promote expansion and 

activation of γδ T cells, which drives tumor-promoting inflammation via local IL-17 and 

IL-23 release (18). These examples illustrate how microbes or microbial functions can be 

complicit in cancer rather than directly causal.

In contrast to the few bona fide oncomicrobes, the many “complicit” microbes and their 

functions are broad and under-studied. Complicit microbes require mediators to promote 

tumor development, but modulate tumor progression and therapeutic efficacy locally or 

from a distance. Complicit microbes are also least understood, requiring comprehension 

and integration of host and microbial biology, so we emphasize them in this Review. 

Together with known causal mechanisms, the diversity of these “complicit” mechanisms and 

their relationships to host-centric cancer hallmarks (10, 11) are notable (Fig. 1), but they 

will require more rigorous experimentation and cross-cohort validation to establish clinical 

prevalence and utility.

Understanding the distribution of microbes across the body is important for understanding 

their relationships to cancer. Approximately 4×1013 microbial cells spanning ~3×103 species 

inhabit the human body: ~97% of these cells are bacteria in the colon, ~2–3% extra-colonic 

bacteria (proximal gut, skin, lungs, etc.), and ~0.1–1% archaea and eukarya (including 

fungi) (27, 48). Human-infecting virus and phage counts and diversity may be greater (49). 

The high density of colonic bacteria is thought to drive the majority of known microbial 

immunomodulatory effects in the mammalian intestinal tract, the largest immune organ in 
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the body (50), but organ-specific commensals may exert their own overriding influence 

(18, 46). Intratumorally, Nejman et al. used quantitative PCR (qPCR) of 16S rRNA to 

estimate the number of bacteria relative to 40 nanograms of DNA in melanoma, lung, 

ovarian, glioblastoma, pancreatic, bone, and breast cancer tissue sections (12). Assuming 

tissue homogeneity and 8 picograms of DNA per cancer cell (based on 2.36 average tumor 

ploidy from the Pan-Cancer Analysis of Whole Genomes project) (51), the Nejman et 
al. data suggest an average pan-cancer percent bacteria composition at 0.68% bacterial 

(bootstrapped 95% CI of mean:[0.52%, 0.87%], 1000 iterations), with individual tumors 

ranging from no bacteria to nearly 70% bacterial by cell count (12). Applying this percent 

bacterial composition to three dimensional and planar contexts equates to ~105-106 bacteria 

per palpable 1 cm3 tumor (52) or ~34 bacteria/mm2 (assuming 5000 cells/mm2 (53)), the 

latter of which is comparable to the average PD1+ T lymphocyte tumor core density of ~21 

cells/mm2 from a recent pan-cancer cohort (54). Importantly, these bacterial composition 

estimates remain to be confirmed in other cohorts and cancer types and validated with 

orthogonal methods. Furthermore, which of these microbial taxa and functions can affect the 

host despite their low abundances remains unknown, as does the proportion that are merely 

passengers in a nutrient-rich and immunosuppressed space.

Mechanisms and interactions between the gut and tumor microbiome

Gut microbiota can regulate many functions of the tumor-bearing meta-organism, typically 

through immunomodulation, and putative intratumoral microbes may also be important (31, 

55). Known microbial mechanisms can manipulate non-hematopoietic and hematopoietic 

components of the gut epithelial barrier, modulate primary and secondary lymphoid organ 

activities, and regulate immune tone of the tumor microenvironment (TME). We define 

these immune-mediated interactions and collective feedback loops as the immuno-oncology-

microbiome (IOM) axis (Fig. 2). Gut-TME crosstalk, especially in non-gastrointestinal 

cancers, remains a key area of discovery.

The effects of gut microbiota on primary lymphoid organs—Following allogeneic 

hematopoietic stem cell transplantation (HSCT), robust immune reconstitution governs 

both relapse and transplant-related patient mortality (56, 57). A recent multi-center, 

multinational clinical trial demonstrated that higher diversity of intestinal microbiota is 

significantly associated with lower patient mortality following allogeneic HSCT (58). 

Moreover, in an allogeneic HSCT trial that co-analyzed daily changes in patient differential 

blood counts with >10,000 longitudinal fecal samples, immune-reconstitution dynamics 

were closely linked to gut microbiota composition (59). Links between gut microbiota, 

nutrition, post-transplant bone marrow (BM) and thymic cellularity, and lympho- and 

myelopoiesis, have also been demonstrated in mouse models (57). Gut microbe depletion 

impairs systemic infection clearance after BM transplant, and sensitizes mice to semi-lethal 

doses of radiation. Microbiota-derived compounds can protect against irradiation-induced 

hematopoietic injury (60–62) through producing propionate and tryptophan metabolites 

(63) or by releasing MAMPs known to maintain BM-derived myeloid cells and neutrophil 

function (64, 65). This effect may be explained in part by the delivery of endogenous ligands 

for RIG-I (such as 3pRNA and RNA derived from viruses, phages, or bacteria) that can 

induce protective type I interferon (IFN-I) signaling in enterocytes and intestinal barrier 
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repair (66). Post-transplant lymphopoiesis also depends on energy harvest from the diet and 

potentially on genera whose genomic repertoires encode carbohydrate-active enzymes (57).

The effects of gut microbiota on adaptive immunity—The gut microbiota has broad 

effects contributing to host immune tone at steady state and during tumorigenesis (30, 

67). Anti-cancer therapies have demonstrated strong links between distinct commensals and 

protective antitumor T cell responses: (i) Cyclophosphamide enables Enterococcus hirae 
to translocate and stimulate pathogenic TH17 responses and IFN-producing CD8+ T cell 

effectors that check tumor growth in sarcoma and lung adenocarcinoma models (68, 69); 

(ii) in some patients with melanoma, CTLA-4 blockade allows fecal relative enrichment 

of B. thetaiotaomicron and B. fragilis that mediates TLR4- and IL-12-dependent TH1 

responses and therapeutic efficacy (70); (iii) PD-(L)1 inhibition leads to T cell priming 

against melanoma and is more effective when hosts harbor Bifidobacteria species in their 

microbiome (21, 71); (iv) adoptive T cell transfer efficacy against melanoma after total body 

irradiation depends upon the composition of the microbiota, the translocation of gut bacteria, 

and host TLR4 signaling (72–74); (v) oxaliplatin-induced cell death of ileal enterocytes 

inversely governs the immunogenic Erysipelotrichaceae and tolerogenic Fusobacteriaceae 
proportions in the ileum, dictating the balance between antitumor follicular T helper cells 

(TFH) and deleterious TH17 responses in colon cancer (75).

In most of these models, dendritic cells (DC) from the gut-associated lymphoid 

tissue (GALT), spleen, or tumor draining lymph node (LN) sense various commensals 

(Bifidobacterium spp., B. fragilis, A. muciniphila, B. rodentum, Bacteroidales S24–7), 

catalyzing immune responses via IFN-I and IL-12-mediated pathways (17, 70–72, 75–77). 

Apart from providing DC adjuvants, the gut microbiota represent an antigen source that 

can elicit commensal-specific T cell responses systemically (55, 78). In the context of 

homologous self-antigens, these commensal-specific immune responses can be deleterious 

or protective for the host, depending on the involved peptide(s). For instance, Gil-

Cruz and colleagues demonstrated how homology between B. thetaiotaomicron-derived 

β-galactosidase and host cardiac myosin heavy chain 6 could drive lethal autoimmune 

inflammatory cardiomyopathy (79); conversely, Nanjundappa and others reported how 

cross-reactivity between Bacteroides species-derived integrase and host islet-specific 

glucose-6-phosphatase catalytic subunit-related protein (IGRP) could hijack autoreactive 

CD8+ T cells to instead suppress colitis (80). Recent studies have further expanded this 

cross-reactive homolog list to include exogenous dietary antigens, notably between gliadin 

epitopes and gut Pseudomonas fluorescens-derived succinyl-glutamate desuccinylase in the 

context of HLA-DQ2.5-mediated celiac disease (81). Molecular mimicry between cancer 

and microbial antigens has also been hinted (82) and recently studied in-depth (83). H-2Kb-

restricted T cell immune responses against a phage that infects distinct strains of enterococci 

(E. hirae) cross-reacted with an oncogenic driver (PSMB4). Oral administration of E. hirae 
strains containing this phage then boosted phage-specific T cell responses effective against 

extra-intestinal tumors overexpressing PSMB4 during therapy with cyclophosphamide or 

anti-PD1 antibodies (83). Similarly, T cells targeting an epitope, SVYRYYGL (SVY), 

expressed in the commensal bacterium Bifidobacterium breve, cross-reacted with a model 

neoantigen, SIYRYYGL (SIY), expressed by mouse melanoma B16-SIY (73). Moreover, 
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some human T cells specific for naturally processed melanoma epitopes were found to 

recognize microbial peptides (83), suggesting clinical significance. However, mechanisms 

outside of molecular mimicry that boost antitumor immunity must also exist. For example, 

Tanoue and colleagues identified an 11-bacteria cocktail that increased tumor antigen-

specific CD8+ IFN-γ+ T cells in the context of immune checkpoint blockade that were 

not cross-reactive with microbial antigens and did not originate from the colon (84).

Gut-derived metabolites can also modulate immune responses. Radiotherapy of 

tumor lesions was more effective when vancomycin eliminated Clostridiales-derived 

immunosuppressive metabolites (butyrate and propionate), putatively by increasing DC 

antigen presentation and concomitant CD8+ T cell priming (72); conversely, gut microbial-

derived propionate and tryptophan pathway metabolites (1H-indole-3-carboxaldehyde, 

kynurenic acid) were shown to provide long-term radioprotection in vivo (63). High blood 

butyrate and propionate levels were also associated with resistance to CTLA-4 blockade 

in mice and melanoma patients, with concomitantly increased Treg proportions, reduced 

DC and effector T cell activation, and lower responses to IL-2 (85), although they were 

also found to be associated with longer progression-free survival during anti-PD-1 treatment 

(86). Moreover, prebiotic mucin increasing ex vivo outgrowth of A. muciniphila decreased 

growth kinetics of aggressive melanoma in a gut microbiota and T cell-dependent manner, 

reducing serum levels of pro-inflammatory and immunosuppressive IL-6, IL-1α, IL-10, 

IL-17A, IL-23 cytokines (87); notably, prebiotic inulin operated through a different mode of 

action, facilitating the dominance of Bifidobacteria species in the intestines, boosting splenic 

cytotoxic T lymphocyte functions, and overcoming melanoma resistance to MEK inhibitors 

(87).

The effects of gut microbiota on the tumor microenvironment—The intestinal 

ecosystem can influence both local and distant neoplasia by impacting their immune context, 

influx of myeloid and lymphoid cells, and inflammatory and metabolic patterns. Secretory 

components of gut microbiota can be important: for example, outer membrane vesicles 

(OMVs) can reprogram the tumor microenvironment (TME) towards a pro-TH1 pattern 

(CXCL10, IFNγ) (88), or metabolites including butyrate and niacin can mediate Gpr109a-

dependent induction of IL-18 in colonic epithelium and suppress colitis and colon cancer 

(89).

Tumor-associated, NOX2-mediated, myeloid cell ROS production is reduced by antibiotic 

administration or germ-free status, reducing oxaliplatin’s capacity to mediate early tumor 

genotoxicity (90). Similarly, commensal microbiota primed tumor-associated innate myeloid 

cells for TNFα (IL-1β, IL-12 and Cxcl10) production in response to anti-IL-10R/CpG-ODN 

treatment, and antibiotics, germ-free, or TLR4−/− status attenuated this response and the 

TNF-dependent early tumor necrosis (90). Supporting the adjuvant role of commensals 

against developing cancers, pasteurized A. muciniphila or its pili-like TLR2 agonist blunted 

azoxymethane-induced colitis and colon carcinogenesis by inducing TNFα-producing 

cytotoxic T lymphocytes in mesenteric lymph nodes (mLNs) that eventually reached 

the colonic mucosa (91). Spontaneous gut bacterial translocation in Tet2−/− mice also 

drove pre-leukemic myeloproliferation (PMP), which leads to leukemia if unchecked, in 

an IL-6-dependent manner (47). PMP was reversible with antibiotics and abolished in 

Sepich-Poore et al. Page 8

Science. Author manuscript; available in PMC 2022 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



germ-free mice, suggesting new clinical management opportunities. However, an intact gut 

microbiome was later shown to be necessary to prevent leukemia progression in genetically 

predisposed mice (92).

Non-hematopoietic components of the intestinal mucosa are also linked to the TME (77). 

Gene deficient mice and BM chimeras identified a role for RNF5, an E3 ubiquitin ligase, 

in immunosurveillance of severe melanoma. Rnf5−/− mice exhibited decreased secretion 

of antimicrobial peptides and increased cell death in the ileal crypts, causing changes in 

intestinal microbiota community composition. This bowel injury amplified mobilization of 

CCR7-expressing DCs to Peyer’s patches, mLNs and melanoma-draining LNs, increasing 

IFNγ-producing T lymphocyte tumor infiltration. Confirming a Rnf5−/−-specific microbial 

effect, co-housing Rnf5−/− mice with wild type mice, or administering antibiotics, restored 

tumor aggressiveness while oral gavage with 11 species overrepresented in Rnf5−/− animals 

(Bacteroides and Parabacteroides spp.) into germ-free wild type mice recapitulated tumor 

immunosurveillance (77). In another study, oxaliplatin-induced caspase 3/7-dependent 

ileal apoptosis of crypts coincided with immunogenic bacteria dominance in the ileal 

mucosa (75). These commensals regulated TFH cell priming in mLNs, culminating in 

B cell activation, Ig production and infiltration of colon cancers with tumor-infiltrating 

lymphocytes (TILs) in mice and patients. Anti-CTLA-4-induced gut barrier dysfunction 

was also critical for systemic translocation of Bifidobacterium-derived inosine, in turn 

promoting TH1 activation and antitumor immunity by agonizing T cell-specific A2AR 

signaling in the context of DC costimulation (93). These examples illustrate that barrier 

injury is accompanied by a deviation of the local microbiome or translocation of microbial 

metabolites, that, in turn, mobilizes DCs to and outside the GALT and contributes to tumor 

bed infiltration by activated helper or cytotoxic T cells.

The TME comprises not only stromal, tumor, endothelial cells, and hematopoietic 

progenitor-derived immune components, but also a dense network of adrenergic nerve 

fibres that influence oncogenesis in brain and non-brain cancers (94–97). Interestingly, 

enteric nervous system neurons are both affected by the gut microbiota and functionally 

tuned according to their location in the gut. A subset of microbiota-responsive neurons 

could influence metabolic control independent of the central nervous system (98). These 

findings suggest intimate relationships between mucosal or tumoral commensals and tumor 

innervation that need further study.

Gut microbiota-mediated effects on anti-cancer drugs—Gut microbes are 

intimately involved in biotransformation of xenobiotics, including cancer drugs, with 

unintended consequences for clinical cancer control (99). For example, in prostate cancer, 

abiraterone acetate (AA) was used as an energy source by A. muciniphila and inhibited 

Corynebacterium species relying on AA-inhibited androgens for growth (100). Because A. 
muciniphila is anti-inflammatory and Corynebacterium species are pro-inflammatory, this 

change in their relative abundances increased pharmacologic efficacy of AA therapy. A. 
muciniphila’s immunomodulatory effects (78), including association with responders during 

PD-1 blockade (17), has prompted speculation that increased A. muciniphila may explain 

the efficacy of AA in androgen-independent prostate cancer (100), although this remains 
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to be tested in large patient cohorts. These types of bidirectional drug-microbiota feedback 

loops warrant further study.

Intratumor microbiota effects on the tumor microenvironment—Mechanistic 

studies of live microbiota within diverse tumor types have been limited, particularly outside 

the aerodigestive tract, but many of their effects on the TME appear to suppress local 

antitumor immunity (15, 23, 34, 46, 75, 101, 102). Additionally, intratumor microbes 

have been reported to have cancer-specific effects on (i) gastrointestinal and urinary tract 

mutagenesis via secreted genotoxins, most notably pks+ E. coli-derived colibactin and 

B. fragilis-derived toxin (22, 37, 38, 40, 41); (ii) CagA-mediated or IL-17-producing 

γδ T cell-mediated inflammation in stomach and lung cancers, respectively (18, 103); 

(iii) chemoresistance via direct microbial metabolism (cytidine deaminase degradation of 

gemcitabine) in pancreatic cancer or indirect amplification of cancer cell autophagy in 

colorectal cancer (14, 104); (iv) tumor proliferation via fungal activation of the host’s C3 

complement cascade in pancreatic cancer (20); and (v) metastasis through upregulating 

tumor matrix metalloproteinases in breast cancer or reducing tumor immunosurveillance 

in lung cancer (34, 46). Immunologically, intratumor microbes often create tolerogenic 

programming through PRR ligation with lower proportions of TILs, including CD8+ T cells, 

and occasionally more CD4+CD25+FoxP3+ Tregs, as observed in colorectal, pancreatic, 

breast, and lung cancers (18, 23, 34, 46, 75, 101, 102). However, in certain cases, injection 

of intratumoral bacteria or their antigens may conversely provide immunostimulatory 

effects, as demonstrated by Coley’s toxins and recent developments in bacterial cancer 

therapy (5, 105, 106). In breast cancer, experiments comparing SCID-beige and C57BL/6 

mice with intratumor Fusobacterium suggested lymphoid-lineage cells as key mediators 

of intratumor microbiota-derived effects on tumor immunosurveillance (34). There are 

also associations between intratumor microbiota and immunogenicity, including differential 

melanoma immunotherapy response and triple-negative breast cancer associations, but their 

underlying mechanisms remain uncharacterized (12).

Extra-intestinal barriers and cancer microbiota—Given that the intestinal barrier 

offers the largest host-microbial interface and greatest microbial diversity, investigations on 

the potential impact of the microbiota in oncogenesis or cancer prognosis have primarily 

focused on this barrier (107). These studies could unveil cause-effect relationships between 

gut microbial composition changes and compromised tumor immunosurveillance, even in 

extraintestinal malignancies. However, it is noteworthy that extra-intestinal cancers can 

develop within tissues that harbor their own microbiome and may play a role in the 

exacerbation of neoplasia (12, 18, 25, 46).

For instance, the lungs’ surface approximates 1 m2/kg of body weight and is not sterile 

(108). Experimental evidence in oncogene-driven autochthonous lung cancer models in 

mice unveiled that local commensals may be perturbed by carcinogenesis, triggering an 

inflammatory cross-talk between alveolar macrophages and IL-17 producing lung resident 

γδ T cells contributing to tumor progression (18). The clinical significance of this 

observation has been recently brought up in 83 lung cancer patients (25). Tsay et al. 
highlighted that microaspiration of supraglottic commensals in lung cancer patients can 
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affect response to therapies and overall survival, due to a TH17-mediated exacerbated 

inflammation corollary to immune checkpoint inhibition (25).

Skin is also recognized as our largest and outermost organ, maintaining host homeostasis 

through tight interconnections between its resident microbes, keratinocytes, and skin 

immune components through metabolic, innate, and cognate immune responses (109). 

Compositional shifts in the skin microbiota appear to influence non-melanoma skin 

carcinogenesis (110). Similarly, cervical cancer caused by persistent high-risk human 

papillomavirus infection is often associated with a deviated cervical microflora (111, 

112). The intertwined/interkingdom relationships between commensals and virus-associated 

cancers, and their synergistic effects on tumorigenesis need further study, and exploration of 

cancer-microbe interactions at other extra-intestinal barriers is warranted.

Cancer microbiome diagnostics

Variation in human microbiome composition among body sites (113) contrasts with stable 

human genetics exhibiting only minor variation resulting from somatic mosaicism and 

clonal hematopoiesis (114). Because both host tissues and microbiota are affected by 

carcinogenesis, the genetic heterogeneity of microbes may provide an opportunity to 

diagnose and locate disease. For example, a blood-derived TP53 mutation can indicate host 

cancer status but implicates >25 cancer types (115); conversely, Streptococcus gallolyticus 
(formerly S. bovis) bacteremia can reflect host cancer status and type (colon cancer) 

based on its gastrointestinal origin (116, 117). Many challenges exist for microbial-based 

diagnostics, including low biomass relative to host and confounding from reagent or 

environmental contaminants. Many questions about their uniqueness, prevalence, stability 

during cancer treatment, or utility during antibiotic administration remain to be answered 

and must be addressed before clinical deployment.

Nearly all microbial-based cancer diagnostics are sequencing-based and have focused on 

tumors within the aerodigestive tract (31), such as colorectal (118–121), pancreatic (122, 

123), and lung cancer (124–126). It was only recently suggested that cancer types outside 

of the aerodigestive tract, such as breast or brain cancer, may also harbor microbiota 

with unique compositions. Nejman et al. (12) and Poore et al. (13) suggest distinct 

intratumoral microbiomes among >30 cancer types (Fig. 3), proposing their applicability 

to blood-based diagnostics and providing imaging evidence of these microbes’ intratumoral 

spatial distribution and intracellular localization in seven cancer types, although imaging 

evidence remains lacking for most cancer types.

Combining multi-region 16S rRNA amplicon sequencing, qPCR, immunohistochemistry 

(lipopolysaccharide [LPS], lipoteichoic acid [LTA]), immunofluorescence (16S rRNA), 

cultivation, and electron microscopy, Nejman et al. (12) surveyed 1010 tumors for bacteria 

across melanoma, lung, ovarian, glioblastoma, pancreas, bone, and breast cancers. They 

included 811 experimental controls, covering DNA extraction, PCR amplification, and 

paraffin embedding, removing 94.3% of bacteria as contaminants. Examining the residual 

528 bacterial species revealed significant differences in composition, diversity, and inferred 

metabolic functionality between cancer types. Histologic imaging revealed heterogeneous 
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microbial spatial distributions (Fig. 3B) and their frequent intracellular localization in 

cancer and immune cells (Fig. 3C). As described above in the Overview of the cancer 
microbiome section, qPCR estimated the number of bacteria per tissue section, which we 

have graphically depicted as percent bacterial composition per cancer type assuming tissue 

homogeneity and 8 picograms of DNA per cancer cell (Fig. 3D). Applying their pipeline to 

a melanoma immunotherapy cohort suggested microbiome differences between responders 

and non-responders, but not yet a mechanism. Because bacteria were cultured from only 

five human breast tumors, the widespread viability of intratumoral bacteria from this study 

was unclear, particularly in cancers with reportedly fewer bacteria. However, other studies 

have indeed shown cultivable bacteria in breast (127–129), lung (18), prostate (130, 131), 

pancreas (14, 15), and colon cancers (19, 132), suggesting broad microbial viability. Still, 

basic questions remain about the functional impacts of these intratumoral microbiota and 

whether they are parasitic, symbiotic, or passive passengers, and a biopsy specimen is 

required for analysis, limiting its diagnostic utility.

Poore et al. (13) took a different approach by harvesting all treatment-naive whole genome 

and transcriptome studies from The Cancer Genome Atlas (TCGA) (n=18,116 samples; 33 

cancer types) to study bacterial, viral, and archaeal nucleic acids. Because no experimental 

controls were available, they filtered out historically-known reagent contaminants and 

inferred other contaminants using per-sample DNA and RNA concentrations; these 

steps removed up to 91.3% of microbial taxa. Machine learning revealed intratumor, 

cancer-specific microbial signatures. Because colon cancer is epidemiologically linked 

to clinical bacteremia (116, 117), they explored TCGA blood-derived normal samples 

(n=1,866 samples) for cancer-specific microbial DNA and reported highly-accurate cancer 

discrimination. They validated this blood-based diagnostic approach by comparing plasma-

derived cell-free microbial DNA from 100 patients with lung, prostate, or melanoma cancers 

to those from 69 HIV-negative, healthy patients while implementing necessary experimental 

contamination controls. Although closer to a practical diagnostic approach, the absence of 

experimental controls in TCGA, sole reliance on deep sequencing data without orthogonal 

approaches, and current lack of explainable mechanism(s) by which microbial DNA enters 

into and survives circulation limits these findings. We speculate that the intracellular bacteria 

in cancer and immune cells identified by Nejman et al. (12) may provide one source, 

though this remains to be demonstrated. A rigorous evaluation alongside blood samples from 

patients with non-lethal bodily infections, septic patients, and patients receiving antibiotics 

during cancer care are necessary preconditions to broad clinical utility.

Modulation of the cancer microbiome

The associations between certain gastrointestinal microbiota and the activity of systemic 

lymphoid tissues have stimulated interest in microbial modulation as a powerful 

immunotherapeutic modality. If intratumoral microbiota are eventually verified to be 

prevalent and immunologically active across most patients, as preliminary data suggest 

(12, 13), such interventions must account for microbial niches and their crosstalk (Fig. 

4). These dynamics sometimes appear related; for example, modulation of gut microbiota 

influences the composition of the intratumoral microbiome in pancreatic cancer, presumably 

via pancreatic duct communication (15, 20, 23). However, in other cases, these changes 
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are incongruent; for instance, antibiotics appear to abrogate immunotherapy response 

by inhibiting the gut microbiome (133), but paradoxically they improve immunotherapy 

efficacy by upregulating PD-1 expression when eliminating the pancreatic intratumoral 

microbiome (23). These complexities necessitate more in-depth mechanistic studies of 

modulation approaches and better clinical understanding before applying prebiotics, 

probiotics, postbiotics, and antibiotics in the setting of cancer.

Antibiotics and the cancer microbiome

The use of antimicrobial therapy in cancer is limited to addressing or preventing known 

microbial carcinogens. This includes treating H. pylori-derived gastric lymphomas with 

triple or quadruple antibiotic therapy, administering direct-acting antivirals against active 

Hepatitis C virus, and vaccinating against major human papillomavirus serotypes and 

hepatitis B virus to prevent urogenital, cervical, head and neck, and liver cancers (36, 134, 

135). Excluding antibiotic-derived chemotherapies (e.g. doxorubicin), there is circumstantial 

and conflicting evidence for the use of antibiotics in solid tumors. Several studies in 

lung, colon, and pancreatic cancer suggest that eliminating intratumoral microbiota can 

check tumor-promoting inflammatory processes, reduce cellular proliferation, or convert a 

tolerogenic TME to an immunogenic one (18, 19, 23, 46). However, increasing clinical 

evidence suggests that systemic antibiotics abolish immune checkpoint blockade efficacy 

and decrease patient survival (133, 136, 137). In hematologic malignancies, preclinical 

evidence suggests a careful balance, where either antibiotics or gut bacterial translocation 

can trigger leukemic progression in genetically-predisposed hosts (47, 92).

Prebiotics, postbiotics, and dietary interventions to modify the microbiome are also 

promising. Dietary effects on cancer were recently reviewed in detail, with many 

epidemiological associations but few causal mechanisms (138). Difficulties in dietary 

data collection have impeded strong conclusions, but metabolomic data that can reveal 

dietary intake and concomitant small molecule effectors may help in the future. 

Prebiotics (molecules that promote growth of beneficial microbes) such as resistant starch, 

inulin, and mucin are promising in preclinical models, improving antitumor immunity 

and therapy response in melanoma and colon cancer (87), and are in clinical trials 

(e.g. NCT03870607, NCT03950635). Experimental evidence of postbiotic compounds 

(microbial-derived molecules) is limited in cancer, but they may provide advantages through 

defined composition and manufacturing reproducibility (139).

Gut microbiota can also be modulated in cancer through fecal microbiota transplantation 

(FMT), administration of defined microbial consortia, and commercial probiotics. FMT 

treats Clostridium difficile (now Clostridioides difficile) colitis effectively (140), with 

some efficacy in the treatment of immunotherapy-associated colitis (141). The long-term 

efficacy and stability of FMT remain unknown (142). Targeting gut microbes clinically is 

complicated by factors such as antibiotic pre-conditioning, administration route, frequency 

of modulation, and dietary recommendations (142). Ongoing clinical trials suggest that FMT 

from donors responsive to immunotherapy may enhance antitumor immune and potentially 

clinical responses (NCT03353402, (143)). Additional clinical trials are evaluating the impact 

of transferring microbial consortia, ranging in complexity from monoclonal bacterial strains 
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to multiplexed consortia. Few commercially available probiotic formulations have been 

tested for impact on antitumor and systemic immunity, with certain formulations actually 

increasing tumorigenesis (144). In critically ill patients, commercial probiotic use may even 

cause bacteremia (145). Therefore, indiscriminate administration of commercially available 

probiotics in cancer patients should be discouraged.

Cancer therapy using exogenous microbiota

Major strides have been made towards engineering exogenous bacterial and viral agents 

for cancer therapy, particularly as powerful immunotherapy options or neoadjuvants. Two 

such agents have FDA approval: oncolytic viral therapy for advanced melanoma using 

talimogene laherparepvec (T-VEC) (146), and bacterial cancer therapy for high-risk, 

non-muscle invasive bladder cancer using live-attenuated Mycobacterium bovis (BCG 

vaccine) (147). Because oncolytic viruses are non-commensals and have been reviewed 

elsewhere in detail (148–150), we focus our attention on bacterial cancer therapies 

(BCTs). Though historically contentious, BCT is re-gaining attention through synthetic 

biology techniques that programmatically limit systemic toxicities while enhancing regional 

antitumor immunity (105, 106). Regulatory challenges for BCT agents are considerable 

(Fig. 5A), and despite ongoing clinical trials (e.g. NCT04167137), they have yet to be 

commercially surmounted (151).

Engineered microbes as cancer drugs

Natural bacterial mechanisms for tumor tropism are numerous (Fig. 5B), with intratumoral 

or intravenous injection often leading to ~10,000-fold accumulation in tumors relative to 

matched liver, spleen, and lung tissues (152, 153). This affinity for tumor tissue provides 

a creative drug chassis and natural bridge from synthetic biology to cancer therapies, 

whereby cytotoxic payloads can be encoded for programmed delivery by tumor-homing 

bacteria (Figs. 5C–G). Thus far, genetically attenuated, auxotrophic, and inducible versions 

of Escherichia, Bifidobacterium, Listeria, Shigella, Clostridium, Lactococcus, Vibrio, and 

Salmonella species have been engineered and shown antitumor efficacy in preclinical 

models with intravenous, intratumor, and oral delivery routes (147). While some approaches 

are based on intracellular delivery of drugs via phagocytic uptake of bacteria, others 

program bacteria to act as “intratumoral bioreactors” that continuously produce and release 

payloads extracellularly as part of colonization. An interesting general approach implements 

engineered bacterial lysis, which enables antitumor protein production or release only when 

a predefined population density of bacteria is reached (154–157). This dramatically reduces 

bacterial colony size and prevents systemic toxicities. Din and colleagues were the first to 

demonstrate how non-pathogenic E. coli and Salmonella could be engineered to lyse at a 

threshold population density, releasing a chemokine, hemolysin, or pro-apoptotic protein, 

or all three, into the TME at desired periodic intervals (155). The drugs are delivered 

cyclically as the bacterial population is programmed to generate growth-death-regrowth 

cycles. Chowdhury et al. then used this design to produce and release an antibody-fragment 

nanobody against CD47, which tumors can overexpress to inhibit DC phagocytosis (156). 

Intriguingly, this stimulated a tumor-antigen-specific CD8+ T cell response that prevented 

metastasis and mediated an abscopal effect, which regressed distal non-injected tumors as 
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well. This approach further precluded host anemias and thrombocytopenias usually seen 

with systemic CD47 antagonism, suggesting a clinical opportunity. If intratumoral bacteria 

prove to be prevalent across various cancer types, lysis circuit designs may also provide an 

opportunity to flexibly engineer patient-specific, tumor-specific commensal strains (Fig. 5E) 

or several strains in feedback with each other (Fig. 5F) to regulate payload release. Given 

the many encodable cytotoxic payloads (Figs. 5G), a clear demonstration of BCT clinical 

efficacy with minimal systemic toxicities could considerably increase the cancer therapy 

armamentarium.

Outlook for the cancer microbiome

The last 15 years of microbiome research provide intriguing, though still controversial, 

evidence of the relationships between microbes and cancer and the nuances of these 

relationships. Few microbes directly cause cancer, but many more seem complicit, and, 

perhaps counterintuitively, several promote host antitumor immunity. This complexity may 

reflect shared evolutionary dynamics between the host’s immune system, its commensal 

microbiota, and tumorigenic processes that we are just beginning to uncover (158–160).

A substantial literature gap still separates clinical observations and clinical interventions 

targeted at microbiota in cancer. Although gut microbiota modulation in murine 

immunotherapy models provides tantalizing results, they have not yet translated to 

commercial therapeutic interventions in humans. Moreover, observations in humans and 

mice of gut microbes that stratify therapy response, particularly immunotherapy (16, 17, 

21, 26), have not uncommonly shown varying taxonomic differences that persist despite 

uniform bioinformatic re-analyses, although there is greater concordance when examining 

functional profiles (161, 162). Thus, many of the key problems that plagued researchers 

in the early 20th century — contamination, irreproducibility, patient toxicities — remain 

challenges today for microbially-based cancer diagnostics, prognostics, and exogenous 

microbial therapeutics. Additional cohorts with carefully curated samples to limit and 

mitigate potential contamination are needed to help characterize and understand the impact 

of intratumoral microbes on carcinogenesis, cancer progression, and therapy response. Other 

efforts are needed to examine non-bacterial relationships with cancer, gastrointestinally 

and intratumorally, and their functions, particularly in relationship with known bacterial 

functions. Further consortium-level efforts are necessary to assess the quantitative impact 

of technical variables (e.g. DNA extraction, sample handling, bioinformatic protocols) on 

cancer microbiome data and guide the selection of “gold-standard” pipelines, analogous to 

the Microbiome Quality Control consortium’s analysis of fecal amplicon sequencing among 

15 laboratories and nine bioinformatic protocols (163).

Many of these challenges would be aided by a multi-center, longitudinal, concerted effort to 

study microbiota in cancer, analogous to TCGA’s role in elucidating the somatic mutation 

landscape, with joint tumor, blood, and stool collection, multi-omic data generation, 

and incorporation of experimental contamination controls (Fig. 6) (164). Concurrent meta-

analyses of existent cancer datasets with uniform in silico host depletion, decontamination, 

taxonomy calling, and functional profiling may be able to identify global microbial drivers 

in cancer pathogenesis and treatment despite technical variation between individual studies 
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(13, 118, 119, 165–167). Completion of microbiota modulation trials are additionally crucial 

for guiding clinical applications and increasing the cancer therapy armamentarium (142), 

with new evidence demonstrating that modulation of the gut microbiota using FMT in 

immunotherapy-refractory melanoma patients is associated with clinical responses and 

changes in the gut and tumor immune microenvironment (143) (Davar et al., In press). 

In-depth functional analyses at community and per-microbe scales are likely necessary 

to elucidate microbial-immune-cancer cell mechanistic interactions and emerging spatial 

multi-omic tools may prove invaluable here (168, 169). Engineered organoids with immune 

and microbiota niches or metabolites may further help validate or refute microbial causality 

or complicity in carcinogenesis, as recently demonstrated by colibactin mutagenesis studies 

(22, 170). In sum, although many challenges remain, building a better understanding of the 

roles of microbes in cancer may enable a powerful new toolkit for improving patient care.
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Fig. 1. Examples by which microbial mechanisms intersect with key cancer pathways (10, 11).
Microbiota-derived metabolites, genotoxins, and antigens influence host antitumor 

immunity, inflammation, energetics, cellular signaling, and metastasis. Abbreviations: 

MMP=matrix metalloproteinases; SCFAs=short-chain fatty acids; mAb=monoclonal 

antibody.
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Fig. 2. Defining the immuno-oncology-microbiome (IOM) axis.
Gut and TME microbiota regulate host metabolism and immunity, which ultimately 

influence antitumor immunity. (A) Gut microbial metabolites and byproducts influence host 

lympho- and myelopoiesis, including during allogeneic HSCT and radiotherapy (59, 63). 

(B) Cyclophosphamide (CTX)-derived gut epithelial damage enables E. hirae translocation 

and antitumor immunity (68, 69). (C) Gut translocation of Bifidobacterium species or 

its antigens can increase IFN-I signaling and antitumor immunity (73, 76). (D) Microbes 

within the tumor microenvironment (TME) can be either immunosuppressive (often PRR-

mediated) or immunogenic, including shaping response to immunotherapy (12, 23). Cancer 

(neo)antigens may share epitopes with microbes through molecular mimicry (73, 83). 

Microbial hematogenous spread (117, 171, 172) or colonized micrometastases (19) may 

complete this feedback loop that originated in the gut. Abbreviations: MAMPs=microbe-

associated molecular pattern; SCFAs=short-chain fatty acids; GALT=gut-associated 

lymphoid tissue; mLN=mesenteric lymph node; DC=dendritic cell; OMVs=bacterial outer 

membrane vesicles; NK=natural killer cell; PRR=pattern recognition receptor; TIL=tumor-

infiltrating lymphocytes.
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Fig. 3. Current landscape of the cancer microbiome.
(A) Body diagram of all cancers currently linked to microbiota, where the colored dots 

reflect reference numbers and are colored according to the major theme of the referenced 

paper (diagnosis, mechanism, prognosis, treatment). Dots are included based on existing 

preclinical and clinical data. (B) Representative histology, immunohistochemistry (IHC) for 

lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and immunofluorescence (IF) for 

bacterial 16S rRNA in six cancers. (C) Representative transmission electron microscopy 

(TEM) images with overlaid 16S rRNA immunofluorescence of intracellular bacteria 

(arrows) in breast cancer. (D) Estimation of tumor percent bacterial composition across 

seven cancer types assuming tissue homogeneity and 8 picograms of DNA per cancer cell. 

Black lines depict distributional quantiles (25%–50%–75%); white dots reflect averages. 

(B-D) Adapted from Nejman et al. (12)
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Fig. 4. Considerations when modulating the endogenous cancer microbiome.
Diet, medications, and prebiotics, postbiotics, probiotics, and antibiotics all have the 

capacity to modify the gut and tumor microbiomes. Bi-directional influences may exist 

between these microbiomes and cancer therapies (chemotherapy and immunotherapy). For 

instance, chemotherapy can cause compositional changes in the gut microbiome, which 

in turn enhance treatment efficacy (75); in other cases, chemotherapy may be degraded 

by microbes (14). Thus, modification of the gut and/or tumor microbiomes may be 

advantageous for one modality of therapy while disadvantageous for another. Dotted arrows 

denote gaps in the literature.
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Fig. 5. Synthetic biology for exogenous cancer therapeutics.
(A) Regulatory considerations for engineering bacteria against cancer (151). (B) Diverse 

sources of intratumoral bacteria include organ-specific commensals (18, 19, 25, 46, 112), 

gut communication (15, 20, 23), hematogenous spread (171, 172), and intra-metastatic 

spread (19). (C) Some probiotics, such as E. coli Nissle 1917, possess strong safety records 

(173), have been shown to naturally migrate to solid tumors in animal models, and can be 

programmed to produce and deliver therapies from within solid tumors (155). (D) Complex 

population dynamics can be engineered to generate the cyclical delivery of therapeutics 

(155, 156, 174). (E) Future efforts will likely center on engineering and testing strains that 

are found naturally in patient-specific tumors. (F) Engineered ecologies can be designed to 

create tailored, tumor-specific therapeutic cocktails (175, 176). (G) Multiple drug payloads 

can be encoded by one or more engineered strains against tumors.
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Fig. 6. Study design for characterizing cancer-associated microbiota and their functional 
impacts.
Opportunities exist to perform large-scale identification of the presence and function 

of cancer-associated microbiota, beginning with longitudinal cohorts and multi-region 

sampling. Existing tools can be used to gather multi-omic information on host immune 

cells, cancer cells, microbiota, and metabolites (51, 177, 178). In vitro and in vivo disease 

models of a patient’s tumor and intestine can then be used to verify or rebut the predicted 

functional impact and mechanism(s) of a given microbe (or its metabolites) and its causality 

in carcinogenesis (160, 170).
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