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Abstract

Lysine crotonylation (Kcr) is a newly discovered type of protein post-translational modification and has been reported to be
involved in various pathophysiological processes. High-resolution mass spectrometry is the primary approach for
identification of Kcr sites. However, experimental approaches for identifying Kcr sites are often time-consuming and
expensive when compared with computational approaches. To date, several predictors for Kcr site prediction have been
developed, most of which are capable of predicting crotonylation sites on either histones alone or mixed histone and
nonhistone proteins together. These methods exhibit high diversity in their algorithms, encoding schemes, feature selection
techniques and performance assessment strategies. However, none of them were designed for predicting Kcr sites on
nonhistone proteins. Therefore, it is desirable to develop an effective predictor for identifying Kcr sites from the large
amount of nonhistone sequence data. For this purpose, we first provide a comprehensive review on six methods for
predicting crotonylation sites. Second, we develop a novel deep learning-based computational framework termed as CNNrgb
for Kcr site prediction on nonhistone proteins by integrating different types of features. We benchmark its performance
against multiple commonly used machine learning classifiers (including random forest, logitboost, naïve Bayes and logistic
regression) by performing both 10-fold cross-validation and independent test. The results show that the proposed CNNrgb
framework achieves the best performance with high computational efficiency on large datasets. Moreover, to facilitate
users’ efforts to investigate Kcr sites on human nonhistone proteins, we implement an online server called nhKcr and
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compare it with other existing tools to illustrate the utility and robustness of our method. The nhKcr web server and all the
datasets utilized in this study are freely accessible at http://nhKcr.erc.monash.edu/.

Key words: deep learning; crotonylation; protein post-translational modification; bioinformatics; nonhistone proteins;
sequence analysis

Introduction
As an important type of post-translation modification, lysine
crotonylation (Kcr) is evolutionarily conserved, and it was origi-
nally identified on histone proteins [1]. Histone crotonylation is
enriched on sex chromosomes and can act as a critical indicator
for male germ cell differentiation [1]. It also plays an important
role in other biological processes such as driving male hap-
loid cell gene expression [2] and stimulating transcription [3].
Recently, several studies have started to explore Kcr in non-
histone proteins as well as its functional implications [4–8]. It
has been reported that crotonylated nonhistone proteins are
involved in diverse cellular functions and signaling pathways [7].

To understand the functional roles of crotonylated proteins
and the regulation mechanism of different enzymes on diverse
cellular process, large-scale analysis of Kcr in the proteome
has been carried out recently. Wei et al. [5] studied Kcr in the
nonhistone proteins of HeLa cells and identified 1185 Kcr sites in
453 proteins after treatment with sodium crotonateb. Xu et al. [7]
generated a much larger dataset with 2696 Kcr sites in 1024 pro-
teins. Wu et al. [6] comprehensively studied lysine crotonylome
in both histone proteins and nonhistone proteins and identified
10 163 Kcr sites in A549 cells by Suberoylanilide hydroxamic
acid (SAHA) treatment. In addition, Huang et al. [4] identified
816 unique Kcr sites in 392 proteins in mammalian cells. Yu
et al. [8] identified 14 311 Kcr sites across 3734 proteins in HeLa
cells and provided by far the largest Kcr dataset. Although these
studies have expanded our understanding of Kcr at a proteomics
scale, future investigations are warranted to characterize the
functional role of Kcr in diverse cellular pathways.

According to previous researches, there are some specific
amino acid preferences adjacent to the crotonylation sites. For
instance, it has been discovered that negatively charged glu-
tamate (E) residues were overrepresented at the −1 and +1
positions of Kcr sites [7]. In another work, Li et al. [9] reported that
AF9 YEATS domain was a selective histone crotonylation reader.
They further demonstrated that the histone acetylation-binding
double PHD finger (DPF) domains of human MOZ and DPF2
accommodate a wide range of histone lysine acylations with
the strongest preference for Kcr [10]. Meanwhile, Andrews et al.
[11] reported the Taf14 YEATS domain engages crotonyllysine
and acts as an effective reader of Kcr. Furthermore, Yu et al.
[8] identified ‘EKxxxxxK’, ‘KExxxK’ and ‘KxxxEK’ as significantly
overrepresented sequence motifs for Kcr sites, and structural
analysis revealed that 30% of the Kcr sites were found in helices,
6% were located in strands, while the remaining 64% were seen
in disordered coils. These characteristic biases implied that the
computational methods for identification of Kcr sites are com-
plementary with the time-consuming and labor-intensive exper-
imental methods.

Compared to the alternative computational methods,
experimental methods for identifying Kcr sites are often time-
consuming, labor-intensive and expensive. To date, there exist
several tools that have been developed to predict crotonylation
sites on human proteins. Huang and Zeng [12] proposed the first

predictor, named CrotPred, to identify the Kcr sites in proteins.
Recently, Qiu et al. [13] proposed a new sequence encoding
scheme called the position weight amino acid composition
(PWAA) and further developed a support vector machine (SVM)-
based approach for predicting Kcr sites in histone proteins. In
another recent work, Malebary et al. [14] incorporated various
position and composition relative features along with statistical
moments (SMs) into the pseudo amino acid composition
(PseAAC) to develop a Kcr site prediction tool called iCrotoK-
PseAAC. However, all of the above three methods do not provide
online servers, which are not convenient for experimental
biologists to study crotonylation. Subsequently, Ju et al. [15]
proposed CKSAAP_CrotSite to identify Kcr sites based on the
composition of k-spaced amino acid pair encoding scheme and
SVM. By using PWAA, Qiu et al. [16] presented iKcr-PseEns based
on ensemble random forest (RF) algorithm to predict Kcr sites.
Most recently, Lv et al. [17] developed a deep learning-based
method termed Deep-Kcr for the detection of Kcr sites in both
histone and nonhistone proteins and achieved an area under
the receiver-operating curve (ROC) curve (AUC) value of 0.859 on
the independent test.

Although the performance of previously developed methods
was generally good based on the datasets they used, there is a
strong need for the development of new methods based on the
most recent experimental datasets with improved performance.
Such methods can be better applied for the identification of
novel Kcr sites on the proteomic scale. Another issue in using
the existing methods is that they are designed for predicting
Kcr sites on either histone proteins, or those mixed with non-
histone proteins. None of the existing predictors was specifi-
cally designed for predicting Kcr sites on human nonhistone
proteins. In addition to the crotonylated histone proteins, a
massive number of crotonylated nonhistone proteins need to
be explored. Hence, a predictor that could identify Kcr sites in
nonhistone proteins would be more desirable for experimen-
tal biologists. We, herein, propose a predictor named nhKcr
which aims to identify Kcr sites in human nonhistone proteins
precisely. By designing and using a new deep learning-based
framework called CNNrgb, we show that nhKcr achieves an
improved performance than previously reported methods. In
addition, we also implement an online web server which is pub-
licly available at http://nhKcr.erc.monash.edu/ to enable online
high-throughput prediction of Kcr sites in nonhistone proteins.
We anticipate that nhKcr will serve as a useful bioinformatics
tool for accurate identification of Kcr sites and help to narrow
down highly reliable candidates for experimental validation.

Materials and methods
Benchmark dataset construction

In the current study, non-redundant experimentally verified Kcr
sites on human nonhistone proteins were collected to construct
the benchmark datasets. In total, five different datasets which
were originally produced in previous literatures were extracted,
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including 19 287 Kcr sites identified in 4230 nonhistone proteins
across HeLa cell, lung cell, A549 and HCT116 cell [4–8], respec-
tively. All the above protein sequences were then downloaded
from the UniProt database [18], using their UniProt IDs. The CD-
HIT program [19] was used to remove the sequence redundancy
and to avoid the overestimation caused by sample similarity by
setting the cutoff threshold of sequence identity to 30%. Then,
the processed sequences were truncated into 29-residue-long
sequence segments with the residue K located at the center. The
segments were defined as positive samples if the central K was
crotonylation, and the remaining lysine sites were defined as
negative samples. Finally, 15 603 positive samples and 164 709
negative samples were obtained. The negative samples were
randomly selected with five times of the positives to construct
the training dataset and the independent testing dataset. As
a result, 12 262 positive and 60 101 negative segments were
subjected to 5-fold cross-validation; 3343 positive and 15 010
negative segments were utilized as the independent test set
(the curated datasets can be downloaded at http://nhKcr.erc.
monash.edu/). In addition, in order to illustrate the preferences
of neighboring residues flanking the crotonylation sites on the
histone and nonhistone proteins, the same procedures were
applied to the above five datasets and Qiu’s dataset [13] to extract
the Kcr sites on human histone proteins.

Feature encoding schemes employed

In order to develop a well-performing machine learning method
for Kcr prediction, in this study, a number of different feature
encoding schemes have been employed to encode the 21 types of
amino acids, including the gap (O) [20]. In the current study, we
have applied 10 encoding schemes which can be grouped into
three major types. The first type is derived from protein primary
sequence, such as binary encoding (BE) scheme, composition of
k-space amino acid pairs (CKSAAP) [21], amino acid composition
(AAC) [22], enhanced amino acid composition (EAAC) [23], di-
peptide composition (DPC) [24] and enhanced grouped amino
acids content (EGAAC) [25]. The second type is extracted from
physicochemical properties such as amino acid index (AAindex)
[26] and Z-scale [27]. The third type is BLOSUM62 [28] which is
derived from the protein position-specific scoring matrices.

Protein primary sequence

Binary encoding

BE is the most popular and the easiest encoding method to trans-
form protein sequences into numeric vectors. It simply converts
each amino acid by a 21-dimensional binary vector, for example,
A (100000000000000000000), C (010000000000000000000), . . . , O
(000000000000000000001), etc. This encoding has been used to
encode amino acid sequence as the input feature for training
the classifiers in a number of our previous studies [29–32]. Hence,
each Kcr site is represented by a fragment of 2n + 1, and the total
dimension of the proposed binary feature vector is 21 × 2n (here,
‘n’ represents the maximum length of each side of the Kcr site).

Composition of k-space amino acid pairs

The CKSAAP encoding has been widely used in numerous post-
translational modification (PTM) prediction studies [21, 32–34] as
it could effectively describe the short-range interaction between
the amino acids surrounding the predicted site. The value of k
represents the space between two amino acids. When k = 0, there
will be 441 0-spaced amino acid pairs (i.e. AA, AC, AD, . . . , OO).

Similarly, ‘AxA, AxC, AxD, . . . , OxO’ will be for k = 1 and so
on. Then the feature vector can be calculated by the following
equation:

(
NAA

NTotal
,

NAC

NTotal
,

NAD

NTotal
. . .

NOO

NTotal

)
441

,

where NTotal represents the total number of residue pairs in a
fragment [for instance, when a sequence window length L is 51
and space k = 0, 1, 2, 3, 4, 5, then NTotal = (L − k − 1) will be 50,
49, 48, 47, 46 and 45, respectively]. In the present study, the total
dimension of the CKSAAP-based feature vector is 441 × (kmax + 1),
which is 441 × 6 = 2646.

Amino acid composition and EAAC

AAC is a commonly used encoding scheme for examining sub-
strate site motifs [22]. It calculates the probability of amino acids
occurring in the sequence fragment surrounding PTM sites. By
calculating the number of each specific amino acid occurring
in the fragment, the composition of the 21 amino acids can be
transformed to a 21-dimensional numeric vector. EAAC encoding
is developed based on AAC. The main difference is that EAAC
is calculated in a fixed-length sequence window continuously
sliding from the N-terminus to the C-terminus of each peptide
[23]. For instance, if the sliding window size was fixed as 6,
and the length of the fragment was 51, then there will be 46
(51 − 6 + 1) sliding windows. The dimension of the EAAC encod-
ing was 46 × 21 (amino acids) = 966.

Di-peptide composition

DPC is another widely used encoding scheme for PTM site pre-
diction [24, 35, 36], which reflects the global information about
each protein sequence as well as the local order information of
amino acids within the protein by calculating the percentages of
the 400 (20 × 20) dipeptide combinations. In other words, DPC is
identical with the 0-spaced CKSAAP.

Protein physicochemical properties

Enhanced grouped amino acids content

The EGAAC encoding [25] is based on the grouped amino
acids content (GAAC) features in which the 20 amino acid
types are categorized into five major groups according to their
physicochemical properties, including GAVLMI, FYW, KRH, DE
and STCPNQ. The frequency of each group is calculated for each
position in the flanking region of PTM sites. For the EGAAC
features, the GAAC values are calculated in a fixed-length
sequence window (the default value is 5) continuously sliding
from the N-terminus to the C-terminus of each peptide.

Amino acid index

AAindex [26] is a public database of AAindexes representing
various physicochemical and biochemical properties of amino
acids (https://www.genome.jp/aaindex/). After the removal of
properties with ‘NA’ in the AAindexes, 531 physicochemical
properties from the AAindex database remained and were used
for further encoding analysis.

Six_letter encoding

Six_letter encoding is another form of BE based on a reduced
alphabet [37]. In this encoding scheme, the 20 amino acids are
categorized into five groups according to their physical charac-
teristics, which include aliphatic (AVLI), charged (RKDE), polar
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(STNQ), cyclic (FHYW) and other (GPMC). With the addition of
the letter ‘O’ to represent an empty position, we obtained a total
of six groups.

Z-scale

In this encoding, each amino acid is characterized by five physio-
chemical descriptor variables, which were proposed by Sandberg
et al. in 1998 [27]. Specifically, each Z-scale represents an amino-
acid property as follows: Z1 (lipophilicity), Z2 (steric bulk/polar-
izability), Z3 (electronic properties) and Z4 and Z5 relate to elec-
tronegativity, heat of formation, electrophilicity and hardness.

Protein position-specific scoring matrices

BLOcks SUbstitution Matrix (BLOSUM62)

BLOSUM62 matrix is generally used by the Basic Local Alignment
Search Tool (BLAST) program. Here, we adopted it to transform
the primary protein sequence to represent the similarity of two
sequence fragments. It is a substitution matrix for studying
protein sequence conservation in large databases of related
proteins. It is generally used to score alignments between evo-
lutionarily divergent protein sequences, and it has been widely
used in many predictors [28, 38].

Machine learning algorithms employed

As listed in Table 1, all the computational approaches for
crotonylation site prediction were built using well-established
machine learning algorithms such as SVM [21], RF [23], LightGBM
[39] and artificial neural networks (ANNs) [14]. In the current
study, we employed stochastic gradient descent (SGD) [40],
multilayer perceptrons (MLPs) [41], RF [23], logistic regression (LR)
[42], convolutional neural network (CNN) [43], LightGBM [39, 44,
45] and XGBoost [46] to predict Kcr sites on human nonhistone
proteins. These algorithms are briefly described below.

Stochastic gradient descent

SGD [40] is an iterative method that has been applied to many
large-scale problems in machine learning and data analysis due
to its scalability and efficiency. It is a variation on gradient
descent, which is a popular optimization technique. Gradient
descent seeks to minimize the cost function by iteratively updat-
ing each parameter by a small amount based on the nega-
tive gradient of a given dataset. In contrast, SGD modifies the
batch gradient descent algorithm by calculating the gradient for
only one training example at each iteration to solve the local
minimum problem and decreases the computational time.

Random forest

RF [23] is one of the most popular algorithms for addressing
many prediction problems because of its flexibility and sim-
plicity. It is essentially an ensemble of decision trees and can
be applied to deal with both classification and regression prob-
lems. In the RF algorithm, a large number of decision trees are
constructed and then the prediction from each of them will be
obtained and averaged to overcome the over-fitting. To achieve
a better performance or to make the model faster, understand-
ing the hyperparameters of scikit-learn’s built-in RF function is
very important. For instance, the n_estimators hyperparameter
denotes the number of trees the algorithm builds before tak-
ing the maximum voting or taking the averages of predictions.
Another important hyperparameter is max_features, which is

the maximum number of features RF considers to split a node.
The last important hyperparameter is min_sample_leaf, which
determines the minimum number of leaves required to split an
internal node.

Convolutional neural networks

As one of the most successful deep learning-based methods,
CNNs have been applied in many different prediction studies
[43]. CNNs are composed of multiple layers, including convolu-
tional layers, non-linear layers, pooling layers and output layers.
In addition, there is an activation layer, which applies different
layer activation functions, such as ReLu, to increase the non-
linearity of the network without affecting the receptive fields of
convolutional layers.

Multilayer perceptrons

Multilayer perceptrons (MLP) is flexible to be applied to different
types of data and is suitable for both classification problems
and regression problems [41, 47, 48]. MLP is composed of more
than one perceptron. It is a linear classifier to classify the input
samples by separating two categories with a straight line and
generating a single output based on several real-valued inputs
by forming a linear combination using its input weights. By
increasing the number of perceptrons and hidden layers, MLP
becomes more powerful in solving difficult classification tasks.

Logistic regression

LR is a popular algorithm for binary classification problems
based on a set of independent variables [42]. There are two
phases in LR. The first phase is training, which gets the weights
and bias term by using SGD and the cross-entropy loss. The sec-
ond phase is testing, which computes and returns the probability
for the predicted label. LR could explain the relationship between
one dependent binary variable and one or more independent
variables and as such it is very popular.

Extreme gradient boosting algorithm

Extreme gradient boosting algorithm (XGBoost) is a decision-tree
based machine learning algorithm [46], which has been widely
used for many classification problems and provides state-of-the-
art results [49–51]. It is very flexible to use in many different
programming languages including R, Python, C, JVM, etc. Before
running XGBoost, three types of parameters need to be set,
including the general parameters, booster parameters and task
parameters. The general parameters determine which boost to
use, commonly tree or linear model. Then, different booster
parameters need to be selected according to different boosters.
The task parameters are used to specify the learning task and
the corresponding learning objective. Taken together, XGBoost
is efficient in reducing the computing time and the memory
cost and thus is very fast compared to other implementations
of gradient boosting.

Light Gradient Boosting Machine (LightGBM)

LightGBM [39, 44, 45] is also a boosting algorithm that is very
similar to XGBoost. However, they are different from each other
in a few specific ways, especially in how the trees are grow-
ing: XGBoost applies level-wise tree growth which is horizontal,
whereas LightGBM applies leaf-wise tree growth which is ver-
tical. Usually, the leaf-wise approach is mostly faster than the
level-wise approach, which is why LightGBM is always faster
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Figure 1. Overview of the nhKcr methodology.

than XGBoost in practical applications. However, XGBoost has
recently introduced a new tree growing method similar to the
one LightGBM uses. They both have advantages and disadvan-
tages; choosing the right framework for the right job is crucial
[44, 45].

An improved convolutional neural network (CNNrgb)

In this work, we introduce a novel method nhKcr for predicting
Kcr sites, which is based on an improved CNN termed
CNNrgb. It takes the AAindex, Binary and Blosum62 encoding
schemes as three arrays of the matrix of red, green and blue
(RGB) color channels. An overview of the architecture of the
proposed deep learning framework of nhKcr is provided in
Figure 1.

More specifically, for the AAindex encoding scheme, we first
normalized it with the z-score method and then utilized 1000
trees in RF to calculate the AUC value for each physicochemi-
cal property. Then, the top 29 physicochemical properties were
selected to encode the sequence fragment. If duplicated physic-
ochemical properties exist, we will choose the one with the
best performance. In our study, the length of sequence fragment
was equal to 29, the amino acids surrounding the central K
could be represented as a 29 × 29-dimensional matrix. For the BE
scheme, to construct the 29 × 29 dimensional matrix, we filled
the remaining gaps with the average of the binary vector, which
is 0.05. As for BLOSUM62, we first normalized the element value
of the matrix in the range of 0–1. Next, we filled the remaining
gaps to build the 29 × 29-dimensional matrix with the average of
BLOSUM62, which is 0.267. The three types of encoding schemes
were deemed as the RGB channels of a color image and were

processed by a two-dimensional convolution including three
following layers (Figure 2):

(i) Input layer: Three 29 x 29 matrices corresponding to the RGB
channels of a color image were utilized as the inputs in this
layer.

(ii) Convolutional layers: This layer included three sequentially
connected blocks. Each block included a convolution layer
and a max pooling layer. The rectified linear unit (ReLU)
[52] was considered as its activation function, the number
of convolution kernels was set as 128 and the convolution
kernel size was set as 5. The size of max pooling size was
set as 2.

(iii) Fully connected layer: This layer took the output from the
above layers, flattened them and turned them into a single
vector, which comprised of 64 neurons and was activated by
the ReLU function.

(iv) Output layer: This layer contained only one neuron, which
output the final probability score indicating the likelihood
of the lysine residue in the center to be crotonylated. The
‘sigmoid’ function was utilized as the activation function in
this layer, which was expressed as follows:

sigmoid(x) = 1
1 + e−x

.

The CNN model was developed using PyTorch [53].

Performance evaluation strategies

Two performance evaluation methods, namely 5-fold cross-
validation and independent test, were used to derive compara-
tive metrics (values) of our predictors. A detailed interpretation
of the evaluation strategies can be found in [54].
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Figure 2. Flowchart of the new proposed CNN-based framework CNNrgb.

Six performance measurements, including sensitivity (Sn),
specificity (Sp), Matthew’s correlation coefficient (MCC), accu-
racy (ACC), AUC and area under precision-recall curve (AUPRC),
which are commonly used in other studies, are applied to eval-
uate the prediction performance. The definitions of Sn, Sp, ACC
and MCC are given as follows:

Sn = TP
TP + FN

,

SP = TN
TN + FP

,

ACC = TP + TN
TP + FP + TN + FN

,

MCC = TP × TN − FN × FP√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

,

where TP, FP, FN and TN denote the numbers of true positives,
false positives, false negatives and true negatives, respectively.
The MCC value ranges from −1 to 1, and a higher value indicates
a better prediction performance, where a coefficient of +1 means
a perfect prediction, while −1 indicates a total disagreement
between the prediction and the observation. The prediction
performance was also measured using the ROC analysis, which
plots the true positive rate (i.e. Sn) as a function of the false
positive rate (i.e. 1 − Sp) for all possible thresholds. We also
calculate the AUC to quantify the prediction performance of the
proposed method. Generally, the closer the AUC value to 1, the
better the prediction performance of the proposed method.

Results
Motif conservation analysis of Kcr sites in nonhistone
proteins

To illustrate the different distribution and preference of the
flanking residues of crotonylation sites on nonhistone proteins,
we used the Probability Logo Generator (pLogo) [55] algorithm
to compare the amino acid sequences around the observed Kcr
sites against non-Kcr sites sequences, which is presented in
Figure 3A. The default values ±4.08 were used as the thresholds
for significantly overrepresented and underrepresented amino
acids, respectively. As can be seen from Figure 3, charged
residues K, D, F, R and E are predominantly different between
Kcr sites and non-Kcr sites. For instance, it was observed that
the residue K was more overrepresented at positions +8, +11
and −5 with the frequency equal to 13.6%, 12.5% and 10.4%,
respectively. In addition, both residues K and R were most
underrepresented on the position −1. We also found that residue
E was overrepresented at the −1 and +1 positions of the Kcr
sites. Meanwhile, the hydrophobic amino acid P rarely occurred
on positions +1, +3 and + 6. It has been reported that the
motifs ‘EKxxxxxK’, ‘KExxxK’ and ‘KxxxEK’ were identified as
significantly overrepresented hotspots for Kcr sites. A recent
crotonylation study [4] also determined the similar enriched
motifs within the identified Kcr substrates. These results are in
agreement with our observations on the benchmark datasets
curated in this study.

In addition, we used the same strategy to analyze the differ-
ent frequencies of each type of residue surrounding Kcr sites on
histone proteins. The results clearly showed that the Kcr sites
in nonhistone proteins (Figure 3A) exhibited different patterns
from those in histone proteins (Figure 3B). As it can be seen,
the residues K, A, G and P were largely enriched in histone
proteins across the majority of the positions (Figure 3B). Such
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Figure 3. Motif conservation analysis of Kcr sites on (A) human nonhistone proteins and (B) histone proteins. The sequence logos were generated with pLogo with

scaled better data visualization. The red horizontal lines on the sequence logos denote the P < 0.05 threshold.

differential patterns in Kcr sites between the nonhistone and
histone proteins highlight the need and further motivate us to
develop a predictor specifically for the Kcr sites on nonhistone
proteins independently.

Performance evaluation on 5-fold cross-validation and
independent tests

In this section, we evaluated the prediction performance of
10 different encoding schemes using RF by conducting 5-fold
cross-validation. Figure 4A showed the mean ROC curves for
each encoding scheme. As can be seen, the area under the

EAAC_RF curve (AUC = 0.8228) is remarkably largest among all
the encoding schemes. Moreover, we utilized the same evalua-
tion strategy to assess the performance on the BE using seven
different machine learning algorithms. We can see that the
traditional CNN model achieved the best performance with a
mean AUC of 0.8231 (Figure 4B). We also performed 5-fold cross-
validation and the independent test to evaluate the prediction
performance of nhKcr. The results are provided in Table 2. We
can see that nhKcr achieved a remarkable performance, with
AUC equal to 0.882 and 0.878, respectively, which is superior
to those of the above encoding schemes and machine learning
methods.
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Figure 4. The performance of (A) prediction models trained using different sequence encoding schemes and the performance (B) of the BE-based model trained using

different machine learning algorithms. On each panel, colored lines represent the different methods. Diagonal gray dashed lines represent the performance of a random

classifier. Each legend box contains the AUC for each method and the average of them.

Table 2. Prediction performance of nhKcr in terms of five major performance metrics, that is, Acc, Sn, Sp, MCC and AUC

Acc Sn Sp MCC AUC

5-fold
cross-validation

85.40 62.86 90.00 0.506 0.882

Independent test 84.33 58.90 90.00 0.482 0.878

Performance comparison between nhKcr and the
state-of-the-art predictors

To illustrate the predictive capability and robustness of nhKcr,
we further compared the performance of nhKcr with other state-
of-the-art predictors. According to Table 1, there exist six Kcr
predictors developed to date. However, only three of them are
available now. Deep-Kcr is the latest developed tool for predict-
ing Kcr sites in mixed histone and nonhistone proteins. In this
predictor, the authors randomly divided 9964 positive samples
and 9964 negative samples into the training dataset and inde-
pendent test dataset according to the positive-to-negative ratio
of 7:3. After removing those Kcr sites from the test dataset that
existed in their training dataset, we obtained an independent
test set for a fair comparison. Figure 5 shows that our method
nhKcr clearly outperformed Deep-Kcr in terms of predicting the
Kcr sites on nonhistone proteins. The results again highlight
the necessity of developing a precise predictor for the Kcr sites
on nonhistone proteins alone. In addition, to better assess and
understand the performance of nhKcr, we also used the three
encodings as the conventional direct input to train the deep
learning model (termed DirectInput-CNN) and compared with
nhKcr and Deep-Kcr. The statistical significance between the
prediction results of the three models Deep-Kcr, nhKcr and
DirectInput-CNN in terms of P-value was calculated to evaluate
whether the pair-wise performance comparison between the

two methods was statistically significant or not. As can be seen
from Figure 5, the AUC of DirectInput-CNN was 0.8392, which
was 3% lower than that of nhKcr (P-value = 2.42e-08), which indi-
cates that our proposed algorithm nhKcr performed significantly
better than DirectInput-CNN.

Taken together, we conclude that nhKcr achieved a remark-
able performance due to the following three primary reasons: (1)
the use of large-scale training dataset could help us to improve
the generalization and robustness of the deep learning model of
nhKcr; (2) the idea of converting three encoding schemes into
three channels of RGB picture proved to be an effective strategy
and (3) our predictor was designed particularly for predicting
Kcr sites on nonhistone proteins, and accordingly, it achieved
a better performance compared to the other predictor that was
designed for predicting the Kcr sites on mixed histone and
nonhistone proteins.

Implementation of the nhKcr web server

As an implementation of the proposed methodology, a user-
friendly web server has been developed and made publicly
accessible at http://nhKcr.erc.monash.edu/. The screen copy of
the server user interface together with an example prediction
output is displayed in Figure 6. The web server is maintained
by the cloud computing facility supported by the eResearch

http://nhKcr.erc.monash.edu/
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Figure 5. Performance comparison of the proposed nhKcr, the state-of-the-art predictor Deep-Kcr and the DirectInput-CNN. (A) ROC curves. Colored lines represent

the different predictors. Diagonal gray dashed lines represent the performance of a random classifier. Legend box contains the AUC for each predictor. (B) pair-wise

performance comparison between three methods in terms of P-value.

Centre at Monash University and is equipped with 16 cores,
64 GB memory and a 2 TB hard disk. It was developed on the
open-source web platform Linux–Apache–MySQL–PHP (LAMP)
and has been tested using several commonly used web browsers,
including Internet Explorer (≥v.7.0), Microsoft Edge (Microsoft
Corp.), Mozilla Firefox, Google Chrome and Safari. The server
uses the optimal model to identify Kcr sites from the protein
sequences for the submitted tasks. At the index webpage,
users can input one or more protein sequences (a maximum
number of 100 sequences is allowed for each submission) in
the FASTA format in the textbox. To control FP predictions,
two different cutoff values are provided (i.e. ‘HIGH’ =90%
Sp and ‘MEDIUM’ = 80% Sp). The prediction results can be
directly visualized within the web server containing detailed
information regarding the positions of predicted modification
sites, scores and the prediction results. The generated prediction
results can also be downloaded in plain text format for
users’ follow-up analysis. Moreover, the curated benchmark
datasets and the independent test dataset in this study can
be downloaded from the nhKcr web server as well.

Discussion
An increasing number of deep learning-based methods have
been recently developed for predicting PTM sites. For instance,
Baisya et al. [56] used a deep learning architecture called
DeepPTM for predicting histone protein PTMs from the tran-
scription factor binding data and the primary DNA sequence.
DeepPPSite [57] is another deep learning-based model using
a stacked long short-term memory recurrent network for
predicting phosphorylation sites. Thapa et al. [58] developed
DeepSuccinylSite that combined deep learning and embedding
to identify the succinylation sites in proteins based on their
primary structure. RBPsuite [59], employed two deep learning-
based methods iDeepS and CRIP for RNA-protein binding sites
prediction. Hong et al. [60] utilized a protein encoding strategy
together with a deep learning algorithm to control the false

discovery rate for the functional annotation of protein sequence.
These studies show that deep learning methods are suitable for
PTM prediction problems and can lead to favorable performance
compared with traditional machine learning methods.

Up until now, a variety of predictors have been developed for
Kcr sites’ prediction. However, none of them were developed
specifically for predicting nonhistone Kcr sites. Recently,
Kcr substrates have been expanded to nonhistone proteins.
However, due to the lack of high-quality pan-antibodies for Kcr
in nonhistone proteins, large-scale characterization of Kcr sites
at the proteomic level remains a challenge. In this work, we
have developed a novel bioinformatics tool called nhKcr which
is based on an improved CNN method, termed CNNrgb, for the
effective prediction of Kcr sites on human nonhistone proteins.
To the best of our knowledge, nhKcr is the first predictor that has
been developed specifically for the prediction of crotonylation
sites on nonhistone proteins in mammals. We have compared
its predictive performance with different encoding schemes and
traditional machine learning methods. Benchmarking results
on the independent test dataset show that nhKcr achieved the
best performance compared to the state-of-the-art predictor,
Deep-Kcr, which could predict Kcr sites in both histone proteins
and nonhistone proteins based on a typical CNN model.
The results also demonstrate that our method exhibited a
great superiority in identifying the Kcr sites in nonhistone
proteins.

Due to the limited availability of Kcr site data on histone
proteins, the predictors such as CKSAAP CrotSite, iKcr-PseEns
and LightGBM-CroSite could only use small datasets, includ-
ing 169 positive and 847 negative samples, to train and test
their models, resulting in unsatisfactory prediction performance
when tested on the independent test dataset. Although iCrotoK-
PseAAC expanded the dataset by adding the Kcr sites on nonhis-
tone proteins, there were only 378 positive samples and 500 neg-
ative samples for training and testing, which is still insufficient
to develop a robust and accurate predictor. The state-of-the-
art predictor, Deep-Kcr, was developed based on a large dataset
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Figure 6. Screenshots of the developed nhKcr web server for prediction Kcr sites on human nonhistone proteins. (A) The interface of the nhKcr web server, (B) the

example prediction output of the web server.

including 9964 positive and 9964 negative samples and achieved
a more competitive performance than the existing predictors.
However, it was not designed particularly for predicting the
Kcr sites on nonhistone proteins and hence did not achieve a
satisfactory performance.

Although our method has achieved a satisfactory perfor-
mance in Kcr site prediction on nonhistone proteins, there are
several ways for further improving the prediction performance.
For instance, data redundancy is an important issue to consider
prior to model construction. Meanwhile, the window size and
the ratio of positive to negative samples are other important
aspects that need to be considered when training a robust pre-
dictor. Moreover, ensemble learning methods might be useful
for improving the prediction performance. For example, ZincEx-
plorer [61] is a zinc-binding site predictor, which integrates the
outputs from three individual predictors (i.e. an SVM predictor, a
cluster-based predictor and a template-based predictor). In addi-
tion, some predictors employed different methods for different
purposes. For instance, DeepSVM-fold [62] is a powerful tool for
protein fold recognition. It utilized deep learning networks to
effectively extract features and generated a new feature vector,
which was then fed into a SVM algorithm to construct the pre-
dictor. These strategies suggest that the prediction performance
may be significantly improved by introducing the ensemble
learning strategy via the integration of the outputs of multiple
predictors in future work. In addition, a biological sequence is
analogous to a sentence composed of language words; as such,
emerging natural language processing (NLP)-based models have
a great promise to be transformed to sequence-based mod-
els using bidirectional encoder representations from transform-
ers (BERT) [63] and transformers [64] or word embedding-based
methods, such as Word2Vec [65, 66], ELMo [67] and FastText [68,
69]. Furthermore, CNNs are mostly used in image classification
and pattern recognition. Therefore, it would be also of particu-
lar interest to combine CNNs and NLP-based models in future
studies and to examine the possibility of further improving the
prediction performance of crotonylation sites.

Key Points
• As an important type of post-translation modification,

Kcr can occur on both histone and nonhistone pro-
teins; however, there is currently no predictor specif-
ically developed for predicting Kcr sites in human
nonhistone proteins.

• We present nhKcr, a new bioinformatics tool based
on a novel deep learning method termed CNNrgb
to improve the prediction performance of Kcr site
prediction in nonhistone proteins.

• Comparative analysis of nhKcr and different encod-
ing schemes as well as different machine learning
algorithms shows its superior prediction performance.

• Benchmarking analysis on the independent test
shows that nhKcr outperformed the state-of-the-art
predictor Deep-Kcr for Kcr site prediction on nonhi-
stone proteins.

• A user-friendly web server of nhKcr is publicly avail-
able at http://nhKcr.erc.monash.edu.au/.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.

Availability and implementation

To facilitate the cost-effective identification of Kcr sites from
the protein sequences and widespread use by the research
community, we have provided a user-friendly web server
that is freely available at http://nhkcr.erc.monash.edu/. All
the data utilized for training and testing nhKcr can be down-
loaded at this website.

http://nhKcr.erc.monash.edu.au/
https://academic.oup.com/bib
http://nhkcr.erc.monash.edu/
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