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Abstract

Background: The motoric cognitive risk (MCR) syndrome is a pre-clinical stage of dementia 

characterized by slow gait and cognitive complaint. Yet, the brain substrates of MCR are not well 

established.

Objective: To examine cortical thickness, volume, and surface area associated with MCR in 

the MCR-Neuroimaging Consortium, which harmonizes image processing/analysis of multiple 

cohorts.

Methods: Two-hundred MRIs (M age 72.62 years; 47.74% female; 33.17% MCR) from four 

different cohorts (50 each) were first processed with FreeSurfer 6.0, and then analyzed using 

multivariate and univariate general linear models with 1,000 bootstrapped samples (n-1; with 

resampling). All models adjusted for age, sex, education, white matter lesions, total intracranial 

volume, and study site.

Results: Overall, cortical thickness was lower in individuals with MCR than in those without 

MCR. There was a trend in the same direction for cortical volume (p = 0.051). Regional 

cortical thickness was also lower among individuals with MCR than individuals without MCR 

in prefrontal, insular, temporal, and parietal regions.
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Conclusion: Cortical atrophy in MCR is pervasive, and include regions previously associated 

with human locomotion, but also social, cognitive, affective, and motor functions. Cortical atrophy 

in MCR is easier to detect in cortical thickness than volume and surface area because thickness is 

more affected by healthy and pathological aging.
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INTRODUCTION

The motoric cognitive risk (MCR) syndrome is characterized by slow gait and cognitive 

complaint, and increases the risk for Alzheimer’s disease (AD), vascular dementia, and 

death [1, 2]. Multi-cohort studies of older adults report an MCR prevalence of 9.7%, an 

MCR incidence of 65.2/1,000 person-years, and the predictive ability of MCR for dementia 

is greater than either slow gait or cognitive complaint alone [3, 4]. The risk for MCR 

increases with age, and MCR is more common among older adults with low education, poor 

social support, depressive symptoms, hypertension, and diabetes, as well as among those 

who are physically inactive, obese, or have a history of stroke or falls [4–8]. Genetic markers 

associated with inflammation and obesity are also associated with MCR [9, 10].

We established the MCR-neuroimaging consortium to examine the brain structures and 

pathologies of MCR in different cohorts. So far, using different subsets of this consortium, 

we have used voxel-based morphometry and multivariate covariance-based statistics to 

associate MCR to a pattern of gray matter volume that includes motor, supplementary 

motor, insular, and prefrontal cortex regions [11]. We have also used manual quantification 

of lacunes to associate MCR with frontal lacunes [12]. Finally, we have used the age-related 

white matter changes (ARWMC) scale to show that white matter hyperintensities are not 

associated with MCR [12–14].

These initial findings suggest that neurodegenerative and some cerebrovascular pathologies, 

primarily in the cognitive control (or motor planning) pathway of human locomotion, 

contribute to MCR [15–17] (see Fig. 2). Cognitive (or executive) control processes beyond 

those needed for human locomotion are also supported by brain regions in this pathway (e.g. 

prefrontal cortex) and are affected by healthy aging and Alzheimer’s disease and related 

dementias [18–25]. These findings are consistent with and extend a previous observation 

linking MCR to gray matter in premotor and prefrontal cortex regions [26]. MCR-related 

atrophy in the cognitive control pathway of human locomotion is also consistent with our 

recent observation that severity of cognitive impairment (not motoric impairment) predict 

transition from MCR to dementia [27].

In this study, we examined the relationships between MCR and the cortical thickness, 

surface area, and volume of different brain regions in the MCR-neuroimaging consortium, 

using a common image processing pipeline (FreeSurfer) [28, 29]. We hypothesized that 

cortical atrophy in MCR (less thickness, volume, and surface area in individuals with MCR 

than those without MCR) would primarily be observed in brain regions that are involved in 

the control or motor planning aspects of gait, including supplementary motor, insular, and 
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prefrontal cortex regions. Cortical thickness is typically quantified in millimeters (mm) and 

reflect the number and/or the complexity (e.g., dendritic branches/spines) of neurons in a 

column or cortical region [30–32]. Cortical surface area is quantified in squared millimeters 

(mm2) and primarily reflect the number of columns in a particular cortical region but can 

also by influenced by intra-cortical elements such as the volume of the neighboring white 

matter [32–34]. Finally, cortical volume is quantified in cubic millimeters (mm3) and is 

therefore the product of cortical thickness and surface area—and hence reflect a combination 

of the number or complexity of neurons and columns in a particular cortical region.

Cortical surface area and thickness are both heritable, yet are associated with different 

genetic and cellular mechanisms, and may therefore be differentially affected in ‘healthy’ 

and pathological aging [33, 35, 36]. More specifically, cortical surface area is associated 

with gene regulation that takes place during early fetal development, cortical thickness 

is associated with post mid-fetal to adult gene regulation and expression (e.g., neural 

complexity and myelination), and cortical volume is influenced by a combination of the 

genetic and cellular mechanisms associated with thickness and surface area. The different 

genetic and cellular origins of cortical measures likely contribute to that age-related and 

AD-related cortical changes are easier to detect in cortical thickness than volume and 

surface area [24, 32, 37–39]. Thus, we further hypothesized that cortical atrophy in MCR 

would be easier to detect in cortical thickness than volume and surface area.

METHODS

Participants

We examined the data of 200 older adults (M Age = 72.62) from 4 different cohorts (50 

from each cohort) in the MCR-neuroimaging consortium: 1) the Central Control of Mobility 

in Aging Study (CCMA; for additional details see [40, 41]) in the US, the Tasmanian 

Study of Cognition and Gait (TASCOG) [42, 43] in Australia, the Gait and Alzheimer’s 

Interactions Tracking study (GAIT) [26, 44] in France, and the National Center for 

Geriatrics and Gerontology–Study of Geriatric Syndromes (NCGG-SGS) [45, 46] in Japan. 

The local institutional review boards at each institution approved all study procedures, and 

the institutional review board at Albert Einstein College of Medicine approved the consortia 

analyses presented in this paper. Within each cohort, participants were matched by age and 

sex. Whenever possible, 25 older adults with MCR and 25 without MCR were selected from 

each cohort. Some (36.36%) older adults with MCR also had mild cognitive impairment 

(MCI; see Table 1). Data from one person with corrupted FreeSurfer results were excluded 

before analyses. Demographic characteristics of the 199 participants that were analyzed are 

summarized in Table 1. All cohorts, except the GAIT cohort, were recruited directly from 

the community. GAIT was recruited in a memory clinic.

Outcomes and covariates

MCR was defined as slow gait and cognitive complaint in older adults without dementia and 

preserved activities of daily living. Individuals with dementia were excluded in all cohorts 

using the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-

IV) [47] and a consensus procedure. In the CCMA cohort, MCI status was determined using 

Blumen et al. Page 3

J Alzheimers Dis. Author manuscript; available in PMC 2022 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DSM-IV and a consensus procedure. In TASCOG, GAIT, and NCGG-SGS, MCI status 

was defined as cognitive (memory or non-memory) performance 1.5 standard deviation 

below the mean and presence of cognitive complaint. Gait speed (cm/s) in all cohorts, 

except NCGG-SGS, was quantified over 20 feet (609.6 cm) with GAITRite instrumented 

walkways (GAITRite System ® Clifton, NJ). Gait speed in NCGG-SGS was quantified over 

240 cm with the WalkWay MW-1000 instrumented walkway (Anima Co., Tokyo, Japan). 

Slow gait was defined as gait speed more than one standard deviation or more below age 

and sex-specific means in each cohort, based on previously established procedures [3, 4]. 

Subjective cognitive complaint was obtained from the Geriatric Depression Scale (GDS) 

[48] and/or the Ascertain Dementia 8-item Informant Questionnaire [49] in CCMA, from the 

GDS and/or Instrumental Activities of Daily Living (I-ADL) in TASCOG and NCGG-SGS, 

and from self-report in GAIT.

Age, sex, education, total intracranial volume, white matter lesions, and study site were 

covariates. Although previous studies suggest that white matter lesions are not associated 

with MCR using the manual/semi-quantitative ARWMC scale [12–14], we included the 

overall white matter lesions measure automatically computed by FreeSurfer as a covariate 

in our statistical models. This is because we wanted to determine if the associations we 

observed between MCR and cortical thickness, volume, and surface area went above and 

beyond those previously observed between white matter lesions and cortical atrophy in 

aging [50, 51]. This is also because white matter lesions have presumed vascular origins, and 

MCR is associated with vascular disease and risk factors. Note, however, that because fluid-

attenuated inversion recovery (FLAIR) MRIs were not available in all cohorts, overall white 

matter lesions were estimated from T1-weighted MRIs, and therefore likely underestimates 

overall white matter lesions burden.

Image acquisition

Images were acquired at each study site, and then transferred to Albert Einstein College 

of Medicine (Bronx, NY) for centralized/harmonized processing. Images were acquired 

with a Philips 3T MRI scanner (Achieva Quasar TX; Philips Medical Systems, Best, 

Netherlands) in CCMA, a General Electric (GE) 1.5 T MRI scanner (GE LX Horizon, 

Milwaukee, WI) in TASCOG, a Siemens 1.5T MRI scanner (Magnetom Avanto; Siemens 

Medical Solutions, Erlangen, Germany) in GAIT, and a Siemens 3T MRI scanner (TIM 

Trio, Siemens, Germany) in NCGG-SGS. Standard three-dimensional T1-weighted images 

were obtained from all cohorts: 1) CCMA: TR/TE of 9.9/4.6 ms, 240 mm2 FOV, and 1 mm 

voxel size (for additional details, see [41]), 2) TASCOG: TR/TE of 37/7 ms, 240 mm2 FOV, 

and 1 mm voxel size [42], 3) GAIT: TR/TE 2170/4.07 ms, 240 mm2 mm FOV, and 1 mm 

voxel size [26], and 4) NCGG-SGS: TR/TE of 1.98/1800 ms and 1.1 mm voxel size [45].

Image processing

Harmonized (or centralized) image processing was performed at Albert Einstein College 

of Medicine by the same person (E.S.) on the same computer using the same processing 

pipeline; FreeSurfer version 6.0: http://surfer.nmr.mgh.harvard.edu/ [28, 29]. FreeSurfer 

automatically reconstructs cortical regions based on the morphology of the gyri and sulci 

in each individual, and involves skull stripping, bias field correction, gray-white matter 
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segmentation, reconstruction of cortical surface, and non-linear registration. Note that while 

FreeSurfer’s fully automated cortical parcellation procedures is comparable to manual 

labeling [52], it is generally recommended that results are manually inspected and corrected 

when necessary. Manual error correction methods, however, vary widely across studies and 

raters, can be quite time-consuming, and may not alter the relationship between cortical 

measures and cognitive outcomes [53, 54]. Thus, to avoid inter-rater variability and provide 

us with the opportunity to examine if manual error correction influenced the relationship 

between cortical measures and MCR, manual error correction was completed by the same 

individual (E.S.) who was blinded to MCR status and involved using FreeView visualization 

tools to inspect gray matter and cerebrospinal fluid boundaries on a slice-by-slice basis. 

Manual error correction included white matter voxel addition or removal, adding white 

matter control points, and pial or skull removal (see Fig. 1). The FreeSurfer pipeline was 

then repeated until satisfactory results were obtained for each participant. Mean cortical 

thickness, volume, and surface area of 34 cortical regions in each hemisphere was then 

obtained using the Desikan-Killiany atlas [55], and subsequently collapsed (or added) across 

hemispheres—because we had no hemisphere-specific analyses and wanted to reduce the 

number of statistical models to be completed.

Statistical approach

Group differences in age, sex, education, white matter lesions, and study site as a function 

of MCR were first examined with student t-test, Mann-Whitney U test, Kruskal-Wallis test, 

or chi-square tests as appropriate after variables were inspected for potential violations 

to normality and other statistical assumptions. Two multivariate general linear models 

(GLM) with 34 brain regions as outcomes were then completed for each cortical measure 

separately (thickness, volume, and surface area); one for uncorrected mean values, and 

one for manually corrected mean values. Each multivariate GLM was followed by 34 

univariate GLMs for each brain region. Univariate GLMs were only interpreted if the overall 

multivariate model was significant (p < 0.05) and univariate results remained significant 

after a false discovery rate (FDR) correction for multiple comparisons [56, 57]. To generate 

more precise estimates of the 95% confidence interval for each univariate model, the 

reliability of each model was further evaluated using 1,000 randomly generated bootstrapped 

samples (n-1, with resampling). Bootstrapping methods has been shown to not only generate 

more precise confidence intervals and error estimates than standard methods, but they also 

protect against potential violations of the normality assumption of GLMs in accordance with 

the central limit theorem [58]. The predictor of interest was MCR, and all models were 

adjusted for age, sex, education, total intracranial volume, white matter lesions, and study 

site. Analyses were completed with STATA version 14.2 (StataCorp LP, College Station, TX, 

USA).

RESULTS

The demographic characteristics of the 199 eligible participants are summarized in Table 1. 

The mean age was 72.62 years, 47.74% female, and 41.71% had 9–12 years of education. 

The prevalence of MCR (33.17%) was higher than in previous reports [3, 5] due to 

our sampling strategy. Relative to individuals without MCR, individuals with MCR were 

Blumen et al. Page 5

J Alzheimers Dis. Author manuscript; available in PMC 2022 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



younger (Student t (197) = 3.73, p < 0.001) and differed in terms of education quartile 

(Pearson χ2 (2) = 14.78. p < 0.01) but did not differ in terms of sex (Pearson χ2 (1) = 

0.21, p = 0.21) or white matter lesions (Mann-Whitney z = −0.82 p = 0.42). Twenty-four 

participants (36.36%) with MCR had MCI. Age (Kruskal Wallis χ2 (3) = 125.59, p < 0.001), 

education quartile (Pearson χ2 (6) = 79.38, p < 0.001), and white matter lesions (Kruskal 

Wallis χ2 (3) = 28.56, p < 0.001) differed between cohorts, and cohorts were marginally 

different in terms of sex (Pearson χ2 (3) = 6.99 p = 0.07).

Cortical thickness

Table 2 summarizes the results of our multivariate and univariate GLMs. Our multivariate 

models were significant for both uncorrected [F (340; 1508) = 4.52, p < 0.0001] and 

corrected [F (340; 1508) = 4.47, p < 0.0001] cortical thickness. Both cortical thickness 

models also showed a main effect of MCR [uncorrected: Wilks’ lambda (Λ) = 0.744, p = 

0.037; corrected: b = 0.730, p = 0.019], age [uncorrected: Λ = 0.614, p < 0.0001; corrected: 

Λ = 0.663, p < 0.0001], education [uncorrected: Λ = 0.536, p = 0.002; corrected: Λ = 0.571, 

p = 0.017], white matter lesions [uncorrected: Λ = 0.745, p = 0.038; corrected: Λ = 0.688, 

p = 0.002], and study site [uncorrected: Λ = 0.036, p < 0.0001; corrected: Λ = 0.037, p < 

0.0001], but no main effect of sex [uncorrected: Λ = 0.781, p = 0.164; corrected Λ = 0.780, 

p = 0.161] or total intracranial volume [uncorrected: Λ = 0.775, p = 0.136; corrected Λ = 

0.830, p = 0.588]. Follow-up univariate models revealed that uncorrected and corrected 

cortical thickness were significantly lower among older adults with MCR than those 

without MCR in prefrontal, insular, temporal and parietal regions—including entorhinal 

[uncorrected 95% CI = −0.508; −0.107; corrected 95% CI = −0.510; −0.106], inferior 

parietal [uncorrected 95% CI = −0.258; −0.052; corrected 95% CI = −0.251; −0.055], 

lateral orbitofrontal [uncorrected 95% CI = −0.273; −0.031; corrected 95% CI = −0.262; 

−0.033], medial orbitofrontal [uncorrected 95% CI = −0.286; −0.042; corrected 95% CI = 

−0.312; −0.067], parstriangularis [uncorrected 95% CI = −0.284; −0.113; corrected 95% CI 

= −0.272; −0.089], and insular [uncorrected 95% CI = −0.291; −0.065; corrected 95% CI 

= −0.278; −0.068] regions (see Table 2). While uncorrected cortical thickness was lower 

among individuals with MCR than those without MCR in isthmus cingulate, pars orbitalis, 

and posterior cingulate regions, they did not survive the FDR adjustment in manually 

corrected cortical thicknesses. Moreover, while manually corrected cortical thickness was 

lower among older adults with MCR in the superior temporal region, it did not survive 

the FDR adjustment for uncorrected cortical thickness. Despite these minor discrepancies 

in significance between regional uncorrected and corrected mean cortical thickness, the 

95% confidence intervals for all 34 regions overlapped (see Table 2)—indicating that the 

estimated relationships between cortical thickness and MCR did not significantly differ 

following manual correction.

Cortical volume

Our multivariate models were significant for both uncorrected [F (340; 1508) = 3.52, p < 

0.0001] and corrected [F (340; 1508) = 3.52, p < 0.0001] cortical volume. Like cortical 

thickness models, both cortical volume models revealed significant main effects of age 

[uncorrected: Λ = 0.708, p = 0.006; corrected: Λ = 0.650, p < 0.001], white matter 

lesions [uncorrected: Λ = 0.637, p < 0.0001; corrected: Λ = 0.668, p < 0.001] and 
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study site [uncorrected: Λ = 0.148, p < 0.0001; corrected: Λ = 0.160, p < 0.0001]. Both 

cortical volume models, however, showed only a marginally significant main effect of MCR 

[uncorrected: Λ = 0.751, p = 0.051; corrected: Λ = 0.763, p = 0.084], and a main effect 

of total intracranial volume [uncorrected: Λ = 0.391, p < 0.0001; corrected: Λ = 0.391, p 
< 0.0001]. The main effect of education was not significant in the uncorrected or corrected 

models [uncorrected: Λ = 0.681, p = 0.566; corrected: Λ = 0.665, p = 0.443]. Finally, there 

was no main effect of sex in the uncorrected model [uncorrected: Λ = 0.770, p = 0.113], 

but there was a main effect of sex in the corrected model [corrected: Λ = 0.746, p = 0.041]. 

Given that the main effect of MCR was only marginally significant in our multivariate 

models, we will not describe the results of the follow-up univariate models (see Table 2) 

beyond that the 95% confidence intervals for all 34 regions overlapped—indicating that 

the estimated relationships between cortical volume and MCR did not significantly differ 

following manual correction.

Cortical surface area

Our multivariate models were significant for both uncorrected [F (340; 1508) = 3.42, p < 

0.0001] and corrected [F (340; 1508) = 3.47, p < 0.0001] cortical surface area. In both 

surface area models, there was a main effect sex [uncorrected: Λ = 0.717, p = 0.009; 

corrected: Λ = 0.711, p = 0.007], white matter lesions [uncorrected: Λ = 0.636, p < 0.0001; 

corrected: Λ = 0.665, p < 0.001], total intracranial volume [uncorrected: Λ = 0.401, p < 

0.0001; corrected: Λ = 0.388, p < 0.0001], and study site [uncorrected: Λ = 0.143, p < 

0.0001; corrected: Λ = 0.135, p < 0.0001]. In both surface area models, however, there was 

no main effect of MCR [uncorrected: Λ = 0.774, p = 0.130; corrected: Λ = 0.757, p = 0.066] 

or education level [uncorrected: Λ = 0.697, p = 0.706; corrected: Λ = 0.690, p = 0.646]. The 

main effect of age was significant for uncorrected cortical surface [uncorrected: Λ = 0.739, p 
= 0.029] and marginally significant for corrected cortical surface [uncorrected: Λ = 0.754, p 
= 0.059]. Since there was nomain effect of MCR on cortical surface areas in our multivariate 

models, we will not describe the results of our follow-up univariate models (see Table 2) 

further than that the 95% confidence intervals for all 34 regions overlapped—indicating that 

the estimated relationships between cortical surface area and MCR did not change following 

manual correction.

DISCUSSION

This study examined the relationships between cortical thickness, volume and surface area 

and a pre-clinical stage of dementia called the motor cognitive risk syndrome, with a 

common image-processing pipeline (Free Surfer). Our key findings are that 1) MCR was 

associated with a widespread pattern of cortical atrophy that included prefrontal, insular and 

parietal regions (see Table 2), 2) cortical thickness was more sensitive to cortical atrophy in 

MCR than volume and surface area, and 3) manual correction did not alter the relationships 

between MCR, cortical thickness, volume, and surface area.

Cortical atrophy in MCR is widespread

As hypothesized, a widespread pattern of cortical atrophy was associated with MCR. 

Cortical atrophy was observed in regions that are part of the control pathway of human 
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locomotion such as prefrontal, insular and parietal regions (Table 2) [16, 59]. These regions 

are also associated with a number of social, cognitive, and affective functions. The prefrontal 

cortex, for example, is primarily associated with executive functions, and particularly 

affected in aging [20, 60–63]. The medial prefrontal cortex has been specifically linked to 

social cognition [62, 63] and the insula is not only associated with drives and emotions, but 

also attention and memory awareness [60, 64]. Cortical atrophy in MCR was also observed 

in the entorhinal cortex (a medial temporal lobe regions that is important for learning and 

memory), which is affected by MCI and is a reliable predictor of the conversion from MCI 

to AD [65, 66]. These results are consistent and extend our previous studies [11, 26]. Taken 

together, it is clear that cortical atrophy in MCR is pervasive, and involve regions not only 

associated with human locomotion, but also social, cognitive and affective functions - which 

is consistent with previous findings that MCR is associated with social [8], cognitive [1, 3, 

4] and affective [4] outcomes and risk factors.

Cortical atrophy in MCR is easier to detect in cortical thickness than volume or surface 
area

As hypothesized, cortical thickness was significantly lower in individuals with MCR than 

in individuals without MCR. Yet, cortical volume and surface area were not significantly 

associated with MCR (although trends were observed in the expected direction). These 

findings are consistent with that cortical thickness and cortical surface area are attributed 

to different genetic and cellular mechanisms, and that cortical volume likely is attributed 

to a combination of both mechanisms [33, 35, 36]. These findings are also consistent with 

that cortical thickness is more sensitive to age-related and AD-related cortical changes than 

cortical volume or cortical surface areas [24, 32, 39]. Note also that the volumetric changes 

that are observed in aging have been primarily attributed to thickness rather than surface 

area [24]. Thus, the cortical atrophy we observed in MCR here likely are more attributed 

to neuronal number and complexity loss rather than the combination of neuronal number, 

neuronal complexity, and column loss. To our knowledge, this is the first time that cortical 

thickness has been examined in the context of MCR and contrasted with other cortical 

measures.

Manual intervention did not alter the relationships between cortical measures and MCR

As hypothesized, the estimated relationships between MCR and cortical thickness, volume, 

and surface area were not significantly altered when manual correction of the cortical 

surface was a component of our image-processing pipeline. This finding is consistent 

with a previous study that found that the relationships between cortical measures and 

cognitive performance does not change following error correction [53]. We observed this 

finding even though inter-rater variability was eliminated by having the same person 

(E.S.) complete the error correction procedure, a feat that is difficult to accomplish in 

larger data sets or consortiums. In such situations, careful development of error checking 

manuals or procedures can reduce inter-rater variability, but the process remains both time 

and labor intensive. The findings of the current study suggest that error correction may 

not be necessary when examining the relationship between cortical measures in the MCR-

neuroimaging consortium.
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Strength and weaknesses

There are a number of notable strengths and weaknesses of this study. Pooling data 

and resources from four different cohorts allowed us to quickly and efficiently examine 

the relationships between different cortical measures and MCR. Variability unrelated to 

the relationships of interest were reduced by 1) using a harmonized image processing 

pipeline, 2) adjusting for key confounders (age, sex, education, total intracranial volume, 

and study site) and other major contributors to age-related cortical atrophy (white matter 

lesions), and 3) employing a sensitive (multivariate) statistical approach that permitted us 

to formally assess the reliability of our findings (bootstrap). Inter-rater reliability for the 

manual component of our image-processing pipeline was further eliminated by having one 

person complete the error correction procedure. This approach afforded us the ability to link 

a pervasive pattern of cortical atrophy to MCR that included regions previously associated 

with human locomotion, and social, cognitive, and affective functions. This approach also 

allowed us to show that cortical atrophy in MCR may be easier to detect in cortical thickness 

than cortical volume and surface area—and that the relationship between MCR and different 

cortical measures does not change following manual intervention.

Despite concerted efforts to reduce unwanted variability, pooling data and resources from 

different cohorts introduces variability that is difficult to adjust for with any statistical 

approach, particularly when sample size is limited. Future studies using a larger subset 

of the MCR-neuroimaging consortium will determine the reliability of these findings and 

permit us to consider other potential confounders and interactions. A more precise measure 

of overall white matter lesion burden, for example, may provide a more precise picture of 

the association between MCR and cortical atrophy (recall that our estimates came from 

T1-weighted images because FLAIR images were not available in all cohorts, and therefore 

likely underestimates overall white matter lesion burden). It is also important to note that 

while cortical thickness has good reliability across measures and study sites (intra-class 

correlation coefficients > 0.80), cortical thickness has been shown to be less reliable across 

studies than cortical volume using an earlier version of the FreeSurfer 6.0 software used in 

this study (version 5.1) [67, 68]. Again, future studies using FreeSurfer and other imaging 

pipelines (e.g., CAT12 [69], are needed to confirm the reliability of these cross-sectional 

findings. Longitudinal studies are also needed to examine changes in cortical thickness, 

volume and surface area in individuals with MCR.

CONCLUSION

Establishing the brain substrates of MCR provides insights into the pathogenesis of MCR 

and provides the foundation for future biological and intervention studies. Given that MCR 

has been associated with some vascular pathologies in the past [12], and is associated 

with cortical atrophy in regions previously linked to human locomotion as well as social, 

cognitive, and affective functions in the current study—multi-modal interventions that are 

socially, carodiovascularly, and cognitively demanding (e.g., social dancing) may be a 

promising avenue of intervention.
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Fig. 1. 
Examples of cortical error corrections made following FreeSurfer Version 6.0 processing. 

Panel A shows a topographical error that was corrected by adding white matter voxels. Panel 

B shows intensity bias errors that were corrected by adding control points. Panel C shows a 

pial displacement that was corrected by removing voxels.
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Fig. 2. 
Abbreviated schematic of the motoric (A) and the control (B) pathway of human 

locomotion.
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