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Abstract

Recent advances in brain-computer interface technology to restore and rehabilitate neurologic 

function aim to enable persons with disabling neurologic conditions to communicate, interact with 

the environment, and achieve other key activities of daily living and personal goals. Here we 

evaluate the principles, benefits, challenges and future directions of brain-computer interfaces in 

the context of neurorehabilitation. We then explore the clinical translation of these technologies 

and propose an approach to facilitating implementation of brain-computer interfaces for persons 

with neurologic disease.
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I. Introduction

The co-evolution of computer technology, bioengineering and neuroscience over the 

past two decades has enabled the potential for unprecedented advances in facilitating 

neurorecovery through brain-computer interfaces (BCI). The rapidly expanding BCI 

technology field and its implications for clinical research and practice is of growing 

importance for clinicians who seek to deliver optimal care to persons with lasting functional 

deficits resulting from neurologic disease or neurotrauma.1,2 By enabling restoration or 

replacement of lost function, BCIs have the potential to improve quality of life by enhancing 

the autonomy and agency of users, ameliorating isolation, and promoting societal re-

integration.3,4 Here, after reviewing the principles, benefits, challenges and opportunities of 

BCIs in the context of neurorecovery, clinical translation of these technologies is explored, 
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and a practical approach to facilitating access to BCIs for people with neurologic disease 

in different phases of care is proposed. Here, we use the term “neurorestoration” to refer to 

the restored function that results immediately from use of a technology (in this case, a BCI). 

“Neurorehabilitation” is used to refer to the process by which the remaining/intact neural 

system regains the ability to perform a function. “Neurorecovery” is our more general term 

for the goal, which is agnostic to approach.

What is a Brain-Computer Interface?

A brain-computer interface (BCI) is a system that translates central nervous system (CNS) 

signals into command signals for an external or internal device. The historical groundwork 

for BCI technology was set in the 1800s by the pioneering research of Richard Caton, 

Adolf Beck and Hans Berger whose discoveries surrounding continuous electrical activity 

in the brain provided a substrate for the measurement and manipulation of nervous system 

signals.5,6 These discoveries paved the way for the key non-human primate research and 

later development and deployment of EEG neurofeedback and the first BCI prototypes.7–12 

The term BCI has since come to encompass a broad array of technologies that interface with 

the nervous system, from cochlear implants to restore hearing to the NeuroPace device, a 

responsive neurostimulator for the treatment of medically refractory epilepsy.13,14 Broadly 

construed, BCIs serve to restore or rehabilitate function, with the ultimate aim of improving 

users’ capacities to communicate, interact with the environment, and achieve other personal 

goals.15

Restoration of lost function typically entails bypassing a lesion incurred by disease or 

trauma, with the aim of directly supplanting the function lost. Examples of this include 

BCI-enabled prosthetic arm control to supplant lost limb function16–22 or BCI-enabled 

typing or speech to supplant impaired verbal communication capability.23–31 In so doing, 

such technologies facilitate novel means to perform an activity in a manner that bypasses the 

lesioned area that is ordinarily engaged in performing that function.

Rehabilitation of function through BCIs typically involves the use of neurofeedback with or 

without neural stimulation, with the goal of promoting plasticity and enabling re-learning of 

a lost function.32 Instead of bypassing a deficit-producing lesion, rehabilitative BCIs aim to 

promote the nervous system’s ability to re-learn previously lost or deteriorated function.33 

One example is training on a BCI orthosis system with the goal of ultimately restoring native 
upper extremity function for patients with hemiparesis after stroke.34–36 Rehabilitative BCI 

techniques that aim to shape or engage cortical/subcortical/spinal plasticity to facilitate 

neural re-learning and re-mapping may be coupled with restorative BCI systems and operate 

synergistically.37

Another emerging role of BCIs is to improve diagnostic precision in disorders of 

consciousness, thereby illuminating opportunities for neurorehabilitation. BCIs may 

foreseeably aid in assessing covert responsiveness (i.e., responsiveness that is not detectable 

on bedside neurologic exam) in persons with disorders of consciousness; such persons are 

often misdiagnosed with traditional behavioral assessments that rely heavily on intact motor 

systems or higher-order cognitive abilities to infer level of awareness.38–41 For example, one 

BCI system has been used to complement assessment of visual fixation;42 by coupling a 
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computer-based visual fixation task with EEG to detect event-related potentials occurring 

with visual fixation, the system aims to aid in detection of awareness that can sometimes 

evade bedside behavioral assessment.42,43

Populations commonly cared for by neurologists who may benefit from BCIs include people 

with syndromes resulting from disconnection of the pathways to peripheral neuromotor 

targets with resulting severe speech and motor impairments. This includes those who have 

sustained functional deficits due to stroke, spinal cord injury, traumatic brain injury, motor 

neuron disease, multiple sclerosis, locked in syndrome, cerebral palsy, and disorders of 

consciousness.44–46

II. The Components of a BCI: Actuating Cognition

The components of BCIs include the trio of sensor, decoder and effector.47 The BCI sensor 

serves to detect and record neural data, and a decoder then processes and converts this 

data into a command signal that is transmitted to an effector to carry out relevant function. 

Critically, sensory feedback is provided to the user, traditionally in the form of visual 

feedback.48,49 Auditory50 and haptic feedback approaches51,52 are also being explored.

BCI Sensors: Capturing Intention

BCI sensors primarily detect electrical, hemodynamic or magnetic signals from the central 

nervous system. Sensors designed to detect electrical signals utilize methods such as scalp-

based electroencephalography (EEG), brain surface-based electrocorticography (ECoG), 

and intracortical microelectrodes. Sensors designed to detect hemodynamic signals utilize 

methods such as functional magnetic resonance imaging (fMRI) and functional near-infrared 

spectroscopy (fNIR), which rely on changes in blood oxygenation to localize neural activity 

of interest.53,54 Magnetoencephalography (MEG) is the primary modality used to sense 

magnetic brain signals induced by synchronized neural currents.55 Multimodal sensors may 

combine detection of different signals to enhance performance. Examples of multimodal 

sensors include combinations of MEG and EEG56, or of EEG and fMRI.57 Sensors can be 

distinguished by their location (e.g., implanted within deep brain structures, or within cortex, 

or subdural, epidural, intra- or epicranial, on the scalp, or external to the head), temporal 

resolution (i.e., sensing speed), spatial resolution (i.e., sensing detail), signal-to-noise ratio, 

sensor size, and ability to record signals for an extended period of time.58 Electrical sensors, 

and specifically EEG and MEGs, are the two most common types of BCI sensors used 

toward the restoration of movement and communication for people with neurologic disease.

Neural Decoding: Translating Neural Information

After neural activity or its proxy is captured and recorded by a sensor, a BCI decoder uses 

an algorithm to process this information and produce a signal that can be transmitted to 

an effector to actuate a helpful output. Neural decoding algorithms associate patterns of 

neural activity with intended user behavior.47,59 While initial neural decoding algorithms 

relied on linear statistical analyses (such as the Kalman filter, also known as linear 

quadratic estimation), advances in computational power and artificial intelligence are 

leading to improvements in BCI performance through machine learning techniques.60,61 
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These advances in neural decoding hold promise for improved BCI performance by 

accounting for the variability in neural activity that has historically proved to be a challenge 

to some BCI’s consistency in inferring intended user action.29

Neural effector and Feedback: Bringing Intention to Action

BCI effectors process signals received by a neural decoder to produce a desired 

output. Examples of BCI effectors include computer cursors62, robotic orthoses,63–67 

exoskeletons68–70, wheelchairs71–73, virtual reality environments (i.e., computer-generated 

simulations that allow users to interactively practice activities)74–76, artificial voice77,78, 

flash spellers79–83, or reanimation of one’s own limb.84,85 86–88

Neurofeedback is a critical component of both restoration of function (closed-loop control) 

as well as rehabilitation of function. The most common neurofeedback strategy has 

been audiovisual (AV) feedback.89 Real-time AV feedback to subjects has been studied 

in aiding task-specific training and recovery.90 Neurofeedback strategies also include 

neuromodulation techniques, such as adaptive deep brain stimulation, and non-invasive brain 

stimulation, directed at changing the nervous system to achieve improved motor/cognitive/

mood aims.91 For example, through haptic or behavioral feedback techniques, persons with 

limb weakness resulting from stroke may learn to improve ipsilesional mu-rhythm activation 

and upregulate ipsilesional sensorimotor networks.91–93

A critical component of BCIs is the feedback provided, which “closes the loop” between 

the device and user. This could come in the form of pure visual feedback, for example 

a 2-dimensional cursor control on a computer screen or multidimensional robot arm 

movement, or through visual and sensory feedback during functional electrical stimulation 

(FES)-induced movement of one’s own arm and wrist.94 This feedback has been shown 

to influence the tuning properties of individual neurons and cortical networks involved 

in BCI control, a concept called closed-loop neural adaptation.95 BCI neurofeedback has 

been shown to change properties of the neurons and groups of neurons involved in BCI 

control96,97, and the implications of these changes for closed-loop BCI control are being 

further explored.98 Systems-neuroscience level neurofeedback paradigms are currently being 

explored to enhance neurorehabilitation.99

III. BCIs in Neurorecovery and Neurorehabilitation

In the context of neurorecovery and neurorehabilitation, a BCI may aim to restore a 

capacity lost due to injury or disease. Capacities that BCIs may serve to restore include 

communication, motor function, mobility, autonomic functions (bowel, bladder and sexual 

functions), hearing (through cochlear implants), and vision (retinal prostheses).

BCIs may alternatively serve to induce plasticity in neural circuits in order to regain native 
function after neural injury. The brain’s capacity for structural reorganization was studied 

and codified by neuropsychologist Donald Hebb, who proposed that “[w]hen an axon of 

cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing 

it, some growth process or metabolic change takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased…any two cells or systems of cells that 

Young et al. Page 4

Semin Neurol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are repeatedly active at the same time will tend to become ‘associated,’ so that activity in 

one facilitates activity in the other.”100 The notion that co-active cells could form stronger 

synaptic connections in rich learning environments is a principle now known as Hebbian 

plasticity. The short mantra is that “neurons that fire together wire together.”101 In line 

with this principle, some BCIs aim to induce patterned recruitment of neurons to strengthen 

synaptic connections sub-serving functions that have been impaired due to neural damage. 

Approaches to inducing neural plasticity include repetitive stimulation of a neural pathway, 

paired stimulation of multiple points in a neural pathway, or closed-loop stimulation, a 

technique that uses endogenous activity at one point in a pathway to trigger activation of a 

second point in a neural pathway.102

IV. BCIs in Clinical Translation

How may clinicians prescribe a BCI to a person who might benefit?

In order for a BCI system to enter into clinical use in the field of neurorehabilitation, a 

series of complex development phases and checkpoints must be met.103,104 The bench to 

bedside costs of medical device development are substantial.105 From its nascent stages 

of research design and development, a BCI system must pass through clinical trials to 

demonstrate safety and, hopefully, efficacy, attain clearance from relevant regulatory bodies 

(such as the FDA in the United States), and succeed in manufacturing and marketing before 

finally arriving at clinical implementation. This complex landscape may prove challenging 

to navigate not only for researchers but also for clinicians interested in providing BCIs to 

patients in clinical practice.

The FDA has taken a leading role in crafting a roadmap for the regulatory assessment of 

BCIs, releasing draft guidance in February 2019 on “Implanted Brain-Computer Interface 

(BCI) Devices for Patients with Paralysis or Amputation – Non-Clinical Testing and 

Clinical Considerations.”106 The NeuroTech Network (http://www.neurotechnetwork.org) 

is a non-profit organization that promotes advocacy for, access to, and awareness of 

neurotechnology products including BCIs for persons with impairments, and provides 

resources for learning about available categories of neurotechnologies for patients and 

providers. While clinicaltrials.gov captures most ongoing BCI research in the US, to date 

there is no unified, routinely updated repository of clinically actionable knowledge of 

available BCIs for clinicians, patients or surrogates to reference and utilize. Such a resource 

could serve to increase access to the latest in BCI technology. The emergence of consumer 

applications may be valuable in their ability to gather considerable capital to advance 

technology development, but may also confuse consumers regarding the ability of these 

devices to provide efficacy in a medical context.

Clinicians interested in providing BCIs to persons who might benefit from them should 

be aware of the following three categories of products, stratified according to stage of 

development: (1) BCIs approved for clinical use and available through manufacturers (2) 

BCIs under clinical study and available through active clinical trials (3) BCIs in pre-clinical 

development.
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BCIs approved for clinical use

The category of BCIs approved for clinical use includes deep brain stimulation systems 

for persons with movement disorders or epilepsy (including NeuroPace, which relies on 

an implanted ECoG strip electrode to detect epileptogenic activity and responsively deliver 

electric pulses to preempt impending seizures). While open-loop DBS is FDA-approved, 

closed-loop DBS systems whose neuromodulatory outputs are determined in part by brain-

recorded and decoded signals, are still investigational. The NeuroPace system is estimated 

to cost 30,000–40,000 USD and is covered by major insurance companies for patients with 

refractory focal epilepsy who are not candidates for epilepsy surgery.107 The costs of BCIs 

are inclusive of materials, surgical placement (when required) and support services; there is 

no uniform policy of reimbursement for BCIs among insurers and government programs.108

Neurotechnologies for neurorecovery that have been approved for clinical use span beyond 

the class of BCIs, and include myoelectric orthoses for persons who have lost limb function 

due to amputation or spinal cord injury, wearable robotic exoskeletons, and cochlear 

implants. While not the primary focus of this review, clinicians should be aware of several 

of these neurotechnologies given their clinical availability and utility in neurorecovery. The 

first FDA-approved neuroprosthesis was the NeuroControl Freehand System, which restored 

hand function in patients with spinal cord injuries; unfortunately, manufacturing of this 

system is no longer ongoing, despite the technical success of the product and satisfaction 

of its users.104,109 The DARPA-funded DEKA LUKE arm system was FDA-approved for 

clinical use is 2014. It uses EMG electrodes to sense user-intended movement and translates 

these signals into complex movements with multiple degrees of freedom. The cost of 

the LUKE arm is around 150,000 USD and may be a covered service by the Veterans 

Affairs (VA) but is not by most insurance companies.110 Other neuromuscular prostheses, 

including a bone-anchored robotic arm with implanted electrodes in nerves and muscles 

of the upper arm allowing for bidirectional sensorimotor communication with a prosthetic 

hand, are in active development and have been integrated into daily use for some patients.111 

The ReWalk robotic exoskeleton, manufactured by ARGO Medical Technologies (Israel), 

Ekso GT, by Ekso Robotics (California), and Indego, by Parker Hannifin (Ohio), are 

FDA-approved devices that enable user-initiated lower extremity motion through wearable 

robotic support systems.112,113 The cost of ReWalk is around 80,000 USD and is covered 

through the VA Choice program for eligible veterans but is not covered by most insurance 

companies.114 Prerequisites for its use include spinal cord injury; height between 160 cm 

and 190 cm (5’3– 6’2); weight below 100 kg (220 lbs); healthy bone density; absence 

of severe spasticity, cognitive conditions that could interfere with the operation of the 

device, significant contractures, or history of severe neurologic illness other than spinal cord 

injury.115 Ekso GT was the first exoskeleton FDA-approved for stroke patients.116,117 These 

products are available through their respective manufacturers and distributors, and through 

networks of training centers listed online.112,113,115

BCIs under clinical investigation

Most patients using clinical-grade BCIs today are doing so as part of clinical trials. As 

of May 2019, there are currently 93 brain-computer interface projects with registered 

clinical trials. Clinicians can visit www.clinicaltrials.gov and search by eligibility criteria, 
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study type and location to find which trial(s) a patient might be suitable for, and contact 

information for study coordinators to determine patient eligibility and coordinate enrollment. 

Once eligibility has been determined, study coordinators work with patients and families to 

orchestrate necessary steps in enrolling.

The category of BCIs under development contains a broad array of investigational 

technologies. In the context of neurorehabilitation, these include technologies to restore 

communication, motor function and mobility; to enhance sleep, awareness and cognition; 

and to restore autonomic functions including bowel, bladder and sexual functions. Patients, 

families and clinicians should be made aware of BCIs on the horizon which may bear on 

future approaches to neurorecovery while reinforcing realistic expectations. Knowledge of 

available and emerging BCIs that may aid in restoration or rehabilitation of function may 

serve to counter therapeutic nihilism sometimes encountered in settings of acute devastating 

neurologic injury, and aid in optimally informing decision-making for patients, families and 

clinicians.118

There are a variety of research groups actively investigating and improving BCI technology 

in both animal and human research. A milestone in restorative BCI for communication was 

recently achieved with the application of deep-learning methods to reconstruct neural signals 

detected by implanted electrocorticography (ECoG) devices into audible language in human 

subjects.77,78

V. Challenges and Potential Solutions for BCI Translation

Despite significant promise, a variety of scientific, technical, clinical, ethical, and economic 

steps have limited the clinical translation of BCIs.

From an engineering standpoint, the ability of implanted sensors to reliably detect and 

record signals119 may depreciate with time, for a variety of reasons that have been attributed 

to reactive gliosis120 and inflammation121, micromovement, mechanical breakdown122, 

or changes in impedance that may progress as a device remains implanted.123–128 The 

relative contributions of these factors to the decline (which can occur slowly, over many 

months to years) are not clear. Recent advances in materials chemistry, computational 

modeling, and nanotechnology, however, enable construction of more durable sensors to 

withstand the challenges faced by earlier materials.129–131 Coupled with developments in 

sensor calibration and signal decoding utilizing machine learning techniques, these advances 

portend more robust, reliable and accurate BCIs in coming years.

Even if an efficacious, safe and beneficial technology is devised, if the target patient 

population is small or economically disenfranchised, deployment can prove unsustainably 

expensive, especially given the multidisciplinary team required for implementation and 

support. The NeuroControl Freehand System, which restored hand function in patients with 

spinal cord injuries but was discontinued in 1998 despite technical success, is an example 

of this.104 These barriers are especially high in the case of implanted BCIs. Recognizing 

these factors and the unmet public health needs that BCIs promise to meet, the FDA’s 

Center for Devices and Radiological Health (CDRH) has introduced new mechanisms for 
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expedited access, efficient review (including a joint-review mechanism with CMS), and pre-

submission assessments to streamline the development cycle and catalyze clinical translation 

while maintaining safeguards on patient protection.104,106

From a clinical standpoint, many patients and clinicians lack actionable knowledge about 

BCIs and how they can be applied toward care.132 For clinicians actively caring for 

patients with BCIs, relevant outcome measures and methods for evaluating performance 

and patient satisfaction may be opaque. Closer collaboration among engineers, clinicians, 

patient advocates, and other stakeholders will be instrumental in ensuring that clinical 

outcome measures are clear, patient priorities are met, risk-benefit balance is optimized, and 

public-health impact is maximized. Before prescribing a BCI, which might entail referral 

to a specialty center or consultation with an expert in the relevant domain, clinicians and 

researchers should ensure realistic expectations among users and caregivers. This should 

include detailed discussions of the risks, benefits and potential shortcomings of the relevant 

BCI.133

In the absence of a uniform policy of reimbursement for BCIs among insurers and 

government programs, the current costs of BCIs may affect their adoption.108,134 In the 

event that a BCI is not paid for by insurance, patients may be responsible for the costs; 

some have turned to medical crowdfunding for this purpose, a trend that has raised ethical 

and social issues.135 Recognizing these obstacles, more uniform reimbursement policies are 

needed to help ensure that BCIs are affordable and equitably accessible to those in need. 

Such policies will undoubtedly be easier to develop once BCIs demonstrate a consistent and 

reliable benefit to even a small group of people, as portrayed for example in the development 

and deployment of the NeuroPace BCI.136

As BCIs continue to advance in sophistication, ethical questions relating to user 

agency and responsibility137, decision-making capacity138, shaping of personal identity139, 

privacy132,140,141, storage and sharing of recorded neural data142, bio-enhancement 

applications143, access disparities144, and research ethics133,145 are anticipated to grow 

increasingly prevalent and pertinent. Careful anticipation and evaluation of these issues 

can help to ensure bioethical resilience across the BCI development lifecycle and foster 

successful clinical translation into neurorehabilitation practice.146–148

Conclusions

Brain-computer interfaces offer immense potential for neurorecovery and neurorehabilitation 

for patients with neurologic disease. BCIs may serve to measure and restore capacities 

lost due to neurologic injury or disease, or to induce plasticity to improve learning and 

remapping after neural injury. A variety of obstacles and opportunities in successful clinical 

translation can be identified across the lifecycle of BCI development, from early design 

and discovery, to clinical trials, regulatory approval and clinical implementation. Clinicians 

caring for persons with neurologic impairments should be aware of the current landscape of 

BCIs across various stages of the development lifecycle and understand how to match BCI 

technologies with eligible patients. Ongoing collaboration between researchers, engineers, 

clinicians, patient advocates, regulatory bodies, bioethicists, payers and other stakeholders 
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will be essential to ensure that the promises of BCIs for neurorecovery are captured and 

sustained in this evolving era of novel neurotechnologies.
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Figure 1. 
Lifecycle of BCI Development
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Figure 2. 
Schematic of BrainGate BCI Setup. This figure depicts the percutaneous and cable-

connected system used currently. Percutaneous wireless systems are in clinical testing, and 

fully implanted systems are in development.
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Table 1.

Brain-Computer Interface (BCI) clinical trials actively recruiting.

Neurologic Condition BCI Intervention Location ClinicalTrials.gov 
Identifier

Communication

Locked in syndrome
Tetraplegia

Assistive communication device that enables users 
to control a text-entry interface using EEG signals to 
compose messages.

University of Geneva, Campus 
Biotech Geneva, Switzerland NCT03213561

Persons with ALS and 
locked-in syndrome

EEG and/or near-infrared spectroscopy (NIRS) 
based BCI. NIRS will be used train a classifier 
to predict “yes” and “no” answering patterns; for 
patients who can still open eyes, an EEG-controlled 
BCI for communication will be used.

University of Tuebingen 
Tubingen, Baden Wuerttemberg, 
Germany

NCT02980380

Tetraplegia
Locked-in Syndrome
Brainstem Stroke
ALS

CortiCom system of high-channel ECoG grids to 
investigate motor imagery and imagined speech as 
sources for brain-computer interactions

Johns Hopkins Medicine 
Baltimore, Maryland, United 
States

NCT03567213

Tetraplegia
Locked-in Syndrome
ALS

Placement of BrainGate2 Neural Interface System 
into motor-related cortex to identify methods and 
features that could allow for recovery a host of 
abilities that normally rely on the hands.

Stanford; MGH; Case Western; 
Providence VA, United States NCT00912041

Movement Control

Traumatic Tetraplegia 
With Cervical Cord 
Injury

ECoG-enabled motorized exoskeleton CLINATEC Grenoble, France NCT02550522

Quadriplegia Wireless EEG headset to control a virtual keyboard 
using P300 evoked related potentials (ERPs).

Hopital Raymond Poincare 
Garches, France NCT01707498

Chronic Stroke
Hemiparesis

Ipsihand EEG headset designed to use EEG signals 
from the non-lesioned hemisphere to control a 
motorized glove worn on the affected hand that 
moves the according to the type of signal detected.

Washington University in St. 
Louis Saint Louis, Missouri, 
United States

NCT03611855

Acute stroke with severe 
unilateral motor upper 
extremity hemiparesis

Neuromuscular electrical stimulation (NMES) 
applied contingent to voluntary activation of 
primary motor cortex, as detected by a subject-
specific EEG patterns extracted with machine 
learning techniques.

Division of Neurorehabilitation, 
University Hospital of Geneva 
Geneva, GE, Switzerland

NCT03379532

Incomplete tetraplegia 
with injury at level C4–
C8

FES-BCI: Functional electrical stimulation (FES) 
applied contingent to EEG patterns arising from 
patient thinking to move hand.

Queen Elizabeth National Spinal 
Injuries Unit Glasgow, United 
Kingdom

NCT01852279

Locked in syndrome
ECoG sensing device to control assistive technology 
with switch signals (such as operating home 
apparatus or writing text)

University Medical Center 
Utrecht, Netherlands NCT02224469

Tetraplegia
Spinal Cord Injury

Blackrock Microsystems NeuroPort Arrays 
implanted in the motor cortex for long-term neural 
recording and control of external devices.

University of Pittsburgh 
Pittsburgh, Pennsylvania, United 
States

NCT01364480

Spinal Cord Injuries
Tetraplegia
Quadriplegia

Neuroport cortical recording array to determine 
desired grasp patterns for FES; users will be asked 
to think about holding different shaped objects 
and corresponding cortical signal patterns will be 
decoded to match grasp patterns.

Louis Stokes VA Medical Center, 
Cleveland, OH
Cleveland, Ohio, United States

NCT03482310

ALS
SCI
Stroke
Multiple sclerosis
Muscular dystrophies ECoG-based wearable hand robotic exoskelaton

University of California San 
Francisco
San Francisco, California, United 
States

NCT03698149

Stroke
Upper limb impairment

FES-BCI: Functional electrical stimulation (FES) 
applied contingent to EEG patterns arising from 
user thinking to move

Centro de Referencia Estatal 
de Atención al Daño Cerebral NCT03508037
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Neurologic Condition BCI Intervention Location ClinicalTrials.gov 
Identifier

(CEADAC)
Madrid, Spain

ALS
Shoulder trauma

EEG-based neurofeedback based on motor imaging 
in therapeutic videogames

Hopital PITIE SALPETRIERE
Paris, France NCT03545451

Tetraplegia
Spinal Cord Injury
Brainstem Stroke

Blackrock Microsystems CRS Arrays will be 
implanted in the motor cortex and sensory cortex 
and trained to send user-driven neural signals to 
devices or displays; microstimulation used to mimic 
sensory input.

University of Pittsburgh
Pittsburgh, Pennsylvania, United 
States

NCT01894802

Spinal cord injury, 
brainstem stroke, 
muscular dystrophy, 
amyotrophic lateral 
sclerosis or other motor 
neuron disorder with 
complete or incomplete 
tetraplegia

Placement of BrainGate2 Neural Interface System 
into motor-related cortex to identify methods and 
features that could allow for recovery a host of 
abilities that normally rely on the hands.

Stanford; MGH; Case Western; 
Providence VA, United States NCT00912041

Quadriplegia

Neural Communication System - Placement of 
Neuroport arrays into posterior parietal cortex with 
brain-control training of simplified computer or 
tablet computer environments

University of California Los 
Angeles
Los Angeles, California, United 
States

NCT01958086

Quadriplegia

Neural Prosthetic System 2 (NPS2) - Placement 
of Neuroport arrays into posterior parietal and 
somatosensory cortexes with brain-control training 
to perform reach and grasp tasks with sensory 
feedback via intracortical microstimulation.

Rancho Los Amigos National 
Rehabilitation Center Downey, 
California, United States

NCT01964261

Stroke
Arm paralysis

Cortimo Neuromotor Prosthetic to Treat Stroke-
Related Paresis - Placement of Blackrock 
Microsystems Multiport to decode signals to drive 
activity of wearable arm orthosis

Thomas Jefferson University 
Philadelphia, Pennsylvania, 
United States

NCT03913286

Stroke with upper limb 
deficit

Neurofeedback for Upper-limb Recovery After 
Stroke (NeuroFB-AVC) - Coupled EEG-fMRI 
neurofeedback

Rennes University Hospital 
Rennes, France NCT03766113

Pain

Chronic Musculoskeletal 
Pain
Tennis Elbow
Lateral Epicondylitis

Neurofeedback Treatment for Chronic 
Musculoskeletal Pain - EEG-based neurofeedback 
of pain-related neuronal oscillation power as 
a training paradigm for controlling chronic 
musculoskeletal pain

Center For Sensory-Motor 
Interaction Aalborg, Denmark NCT03863847

Cognitive

Brain Injury EEG/SSEP evaluation of attentional modulation in 
different conditions

Hospices Civils de Lyon
Lyon, France NCT02567201

Mild TBI
PTSD

IASIS System - Transcutaneous electrical 
stimulation (TES) paired with resting state MEG 
neurofeedback

VA San Diego Healthcare 
System, San Diego, CA
San Diego, California, United 
States

NCT03244475

Attention Deficit 
Hyperactivity Disorder 
(ADHD)
Autism Spectrum 
Disorders

Computer game that uses eye-tracking and EEG to 
train attention and emotional recognition

Institute of Mental Health 
Singapore, Singapore NCT02618135

ADHD BCI-based cognitive training through P300-based 
controlled games

Hospices Civils de Lyon Bron, 
France NCT03289793

Alzheimer’s disease EEG-based neurofeedback involving intermittent 
audiovisual cues to adjust attentional engagement.

Oregon Health & Science 
University
Portland, Oregon, United States

NCT03790774

Mild Cognitive 
Impairment

Auditory stimulation during slow wave sleep 
detected by polysomnography

Northwestern University 
Chicago, Illinois, United States NCT02608840
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