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SUMMARY The spread of biofilms on medical implants represents one of the principal
triggers of persistent and chronic infections in clinical settings, and it has been the subject
of many studies in the past few years, with most of them focused on prosthetic joint infec-
tions. We review here recent works on biofilm formation and microbial colonization on a
large variety of indwelling devices, ranging from heart valves and pacemakers to urological
and breast implants and from biliary stents and endoscopic tubes to contact lenses and
neurosurgical implants. We focus on bacterial abundance and distribution across different
devices and body sites and on the role of environmental features, such as the presence
of fluid flow and properties of the implant surface, as well as on the interplay between
bacterial colonization and the response of the human immune system.

KEYWORDS biofilms, fluid flow, immune response, medical implants, microbial
contamination

INTRODUCTION

Medical implants are artificial devices partly or entirely inserted into the human body
and intended to remain after the procedure for diagnostic, therapeutic, and rehabilita-

tion purposes. The wealth of functions they offer is continually expanding and evolving and
demand for such implants is expected to increase due to the aging population (1–4). It was
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estimated that, only in 2018, the U.S. market of medical devices alone reached about 90 bil-
lion USD, while the forecast market for 2019 to 2025 would predict a compound annual
growth rate (CAGR) of 6.3%, reaching by 2025 the market value of about 140 billion USD (5).
Intravascular devices are the most employed, with an estimate of approximately 5,000,000
devices implanted in a single year only in the United States, followed by orthopedic
implants (;600,000/year), dental implants (;500,000/year), and cardiovascular devices
(;400,000/year) (Fig. 1) (6). The use of medical devices ameliorated the treatment of
multiple pathologies and, ultimately, patient quality of life. Unfortunately, device-associ-
ated nosocomial infections, often related to biofilm formation (7–10), still represent a sig-
nificant health concern worldwide (11–14), with substantial clinical and economic conse-
quences. In fact, compared to planktonic cells of the same species, bacteria within a
biofilm are up to 1,000 times more resistant to antimicrobial agents (15), thus becoming
the primary cause of persistent and chronic infections, which in turn affect the well-being
of individuals and increase the treatment costs for the national health systems (16, 17).

Biofilms are surface-associated microbial colonies, embedded in a self-secreted matrix of
extracellular polymeric substances (EPS). EPS consists of many types of polymers, including
polysaccharides, extracellular nucleic acids (eDNA), proteins, amyloids, and amphiphilic sur-
factants. Being prevalent on most wet surfaces in nature (18–20), the communal lifestyle of
biofilms favors the emergence of properties substantially different from the ones exhibited
by planktonic cells, mainly due to the presence of the extracellular matrix (21). The sessile
mode of growth, by keeping the cells in proximity, mediates communication between bac-
teria (22), fosters horizontal gene transfer (23) and promotes the sharing of metabolic prod-
ucts within the biofilm community (24). A remarkable property in terms of biofilm survival is
the increased resistance to phagocytosis (25) and biocides (26), which, in a clinical context,
implies resistance to host defense mechanisms (27, 28) and treatments with antibiotics and
antimicrobials (29, 30). The biofilm matrix can retard the diffusion of solutes (31, 32) and of

FIG 1 Most used medical devices. The figure depicts the most common medical devices, their distribution within the
human body, and the number of implants employed per year (/y) in the United States (6, 402, 403). Implants commonly
used in both women and men are listed in the middle, while sex-specific implants are reported at the side of each figure.
The graphic work was done using Smart Servier Medical Art.
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some antibiotics (33) with an efficiency that strongly depends on the specific interaction
between EPS components and antibiotic molecules (34, 35). Moreover, although many anti-
biotics can penetrate the EPS, bacterial cells inside the biofilm are often protected due to
their slower metabolism, which makes them less susceptible to the effects of antimicrobials.
An additional cause of the increased antibiotic tolerance in biofilms is the presence of dor-
mant cells, which can be less susceptible to chemical attacks (36, 37). These cells, called per-
sisters, can survive antibiotic treatments in the absence of specific resistance mechanisms
(38, 39), and their existence is intrinsically related to the physicochemical biofilm heteroge-
neity that promotes the formation of phenotypical niches (40, 41).

An essential aspect of the biofilm-associated infection treatment is the microbiological di-
agnosis (42). The conventional method is to perform microbial cultures using tissue samples
or fluids close to the infection site. However, a more effective approach, which can be applied
when the implant is removed, is the sonication of the device to dislodge the biofilm from the
surface and disperse the cells in sonicate fluid (43). The sonicate fluid culture has a higher sen-
sitivity compared to standard tissues samples since in biofilm-associated infections cells are
retained in the matrix and its dispersion increases their detectability (44, 45). Indeed, the use
of conventional culture methods is not always indicative of biofilm growth: a negative result
may not necessarily indicate the absence of bacterial infection but could be due to the slow
proliferation rate of microbes within a biofilm. Thus, advances in sequencing methods, such as
16S rRNA gene sequencing (46, 47) or metagenomic sequencing (48–50), have begun to iden-
tify pathogens and to provide data describing their composition and function across multiple
sites in the human body (51, 52). Several independent culture techniques could be employed
(53). Denaturing gradient gel electrophoresis (PCR-DGGE) uses a polyacrylamide gel containing
linearly increasing concentrations of a denaturing agent to separate amplicons of ribosomal
DNA having the same size, but different sequences (54, 55). Terminal restriction fragment
length polymorphism (T-RFLP) is based on detecting differences within the pattern
obtained with a single restriction enzyme cut on the 16S rRNA gene. T-RFLP can identify
the dominant community members comprising at least 1% of the total (56); both DGGE
and T-RFLP can assess the community structure and variation over time or space. Fluorescent
in situ hybridization (FISH) probes target large taxonomic groups and can quantify microbial
communities even within complex environmental samples (57). Direct 16S rRNA gene
sequencing can identify a single bacterium species; however, in recent years, thanks to the de-
velopment of next-generation high-throughput sequencing, it is possible to analyze a PCR
mix, including hundreds of different rRNAs from a bacteria community (or the rRNA gene in-
ternal transcribed spacer [ITS] regions for yeast), to identify the different bacteria present and
their relative quantities within this community (48, 49). This identification step is crucial for
undertaking efficacious therapeutic treatments.

This review presents an overview of biofilms associated with implanted medical devices
in different parts of the human body, highlighting the most frequently colonizing microbes,
the environments that promote their growth (including the presence of fluid flow and the
properties of the implant surface), and the human immunological response. Despite the
wealth of research studies in this field, there is a need to collect the most relevant contribu-
tions on device-associated biofilms and start pulling the threads together to guide research
on this complex and critical problem.

BIOFILM FORMATION ANDMICROBIAL COLONIZATION ONMEDICAL DEVICES
Cardiovascular Implants

Implantable cardiac devices are tools for patients with cardiac diseases and are used to
prevent heart failure. They comprise pacemakers, implantable cardioverter–defibrillators
(ICDs), cardiovascular implantable electronic devices (CIEDs), and prosthetic cardiac valves.
The annual number of cardiac devices employed in medicine is constantly increasing (58).
Unfortunately, many of them need to be replaced due to malfunctions or infections: it is
estimated that the rate of infected devices is currently between 1.2 and 2.4% of the total
implanted devices (58–60), with infection rates increasing up to 10-fold after the replace-
ment of the device or after its upgrade (61, 62). Infections occurring within the first 12
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months postoperation are predominantly linked to colonization at the time of surgery,
and 25% of these infections manifest themselves within the first month following the implan-
tation. Overall, CIED infections are associated with morbidity, mortality (especially when
comorbid conditions are present [63]), and substantial health care expenses.

The microbes most frequently identified on the infected device surface or in the skin
pockets of cardiovascular implants are coagulase-negative Staphylococcus spp., accounting
for almost 60 to 80% of the infections (64, 65), and Staphylococcus aureus, which is identi-
fied 11 to 29% of the time (66, 67). Moreover, Enterococcus spp., Streptococcus spp., HACEK
(Haemophilus spp., Aggregatibacter spp., Cardiobacterium hominis, Eikenella corrodens, and
Kingella spp.), and few fungi, particularly Candida albicans (68–71), have been associated
with cardiovascular implants. In cardioverter defibrillators and pacemakers, polymicrobial
colonization are identified 1 to 7% of the time, but the composition of these mixed com-
munities was not investigated (70, 71). Patients with possible CIED infection undergo
blood cultures to identify the aerobic or anaerobic microbe, since most of the contami-
nants are methicillin-resistant S. aureus (MRSA); vancomycin is usually the first antibiotic
administered. Once the contaminant is identified, a more specific cure is undertaken for
10 to 14 days (65, 72), while the device is replaced. To reduce the chance of infections, an-
tibiotic prophylaxis or antibacterial envelopes covering the device have been employed
(73). For example, the use of a polypropylene mesh releasing minocycline and rifampin
has been shown to significantly reduce the occurrence of CIED infections (73). Moreover,
oral pathogens causing periodontitis, such S. mutans (74, 75), can also reach the heart
valve from the bloodstream, causing an infection (76–78). A good oral hygiene in healthy
individuals is usually sufficient to avoid these problems, but in patients at high risk of en-
docarditis an antibiotic prophylaxis is normally suggested before a dental procedure. In
this case, amoxicillin is the most frequently utilized antibiotic (79, 80).

Despite the clinical importance of infections associated with cardiovascular implants,
very little is known on the growth of biofilms on these devices. Some evidence comes
from in vitro studies of biofilm formation from clinical isolates. For instance, Cutibacterium
(formerly Propionibacterium) acnes strains—isolated from the surfaces of explanted pace-
makers with no clinical signs of infection—can form biofilms, as shown using a microtiter
plate assay (81). In addition, cytoplasmic material and a fibrous matrix of eDNA were found
via electron microscopy in C. acnes biofilms, suggesting that eDNA may play a role in
forming biofilms on pacemakers and other cardiovascular devices (81).

Gastrointestinal Implants

Percutaneous endoscopic gastrostomy (PEG) is the most common access route for
enteral nutrition in pediatric and adult populations. However, PEG tubes have been
recognized as risk factors for gastrointestinal colonization and biofilm formation by anti-
biotic-resistant bacteria in long-term care facilities (82, 83). Investigations conducted on
PEG tubes always revealed the presence of bacterial and fungal biofilms (84, 85), despite
their presence not being the cause for removal. Dautle et al. analyzed the microbiota
associated with silicone gastrostomy devices used for long-term (3 to 47 months) enteral
nutrition in children (6 months to 17 years) (84). All devices examined showed the pres-
ence of biofilms; 24 bacterial species were identified, including Bacillus, Enterococcus, and
Staphylococcus species. In that study, scanning electron microscopy (SEM) measurements
showed that defects on the surface of PEG tubes provided protected sites for initial
attachment and the development of biofilms. In another study (85), PEG tubes removed
from 12 patients after 4 to 233 weeks of use were sampled and examined for microbial
colonization and biofilm formation. Cultures were positive for fungal contamination in all
cases (Candida tropicalis was the species most frequently involved), while the inner walls
of the tubes used for more than 12 weeks were always encrusted with a thick biofilm but
with variable thicknesses that did not correlate with the PEG age (85).

Obstructive jaundice is a condition that prevents the normal flow of bile to the duo-
denum. It frequently correlates with symptoms of appetite loss, nausea, recurrent cholangitis,
and renal failure; moreover, it is a common indication of pancreatic or periampullary cancer
(86). Currently, more than 70% of the patients with obstructive jaundice are treated by biliary
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stenting in first-line centers receiving the patient under urgent conditions and later referred to
specialized high-volume centers for surgery (87). Moreover, due to long waiting lists or the
necessity of neoadjuvant chemoradiation therapy, the operation must be postponed by sev-
eral weeks even in referral centers, and biliary stenting becomes mandatory. During this pe-
riod, by gaining access to the biliary system, duodenal bacteria can attach to the stent surface
and start forming biofilms, playing a critical role in the clogging of biliary stents (88, 89).

Endoscopic gastrointestinal devices are associated with a wide and diverse spectrum of mi-
crobial species. Previous works have demonstrated a clear connection between the presence
of biliary stents and a dramatic increase in the contamination of bile, which was predomi-
nantly characterized by species from the duodenal microbiota such as enterococci (90, 91).
In a prospective study, pigtail polyurethane stents and straight polyethylene stents were
retrieved from 120 patients (62.5% males; median age, 64 years) with biliary strictures (35%
malignant, 65% benign) after 1 to 1,274 days of indwelling time. The occlusion rates of the
stents—which significantly increased the risk of cholangitis—were found to be around
11.5% in pigtail stents and 13% in the straight ones. Polymicrobial colonization predomi-
nated (95.8% versus 4.2%), with enterococci (79.3%), Enterobacteriaceae (73.7%), and
Candida spp. (55.9%) as the leading pathogens among 95 different bacterial and 13 fungal
species identified. Interestingly, Candida spp. were more common on stents from patients
previously receiving prolonged antibiotic therapy (63% versus 46.7%) (92).

Orthopedic Implants

Total joint replacement is a safe and standard procedure that can restore functionality
and improve the well-being of patients with hip and knee arthritis (93). Despite its safety,
postoperative complications still occur: the most common is prosthetic joint infection (PJI), a
major mechanism of failure of the implant that often requires surgical revision. In many
cases, if surgical debridement and implant retention are performed or after implant removal
with a two-stage procedure, the treatment of PJI fails (94). In the last decade, a new classifi-
cation has been described based on the pathogenicity and etiology of the infection. PJI can
be recognized as (i) an acute infection characterized by early onset and highly virulent bac-
teria; (ii) a low-grade infection, a chronic type of infection that arises later and is caused
by low virulence or small colony-forming bacterial stains; or (iii) a late hematogenous
high-grade infection.

In general, the bacterial species found most in PJIs are S. aureus, Staphylococcus epidermidis,
and Staphylococcus lugdunensis (95, 96). Several studies identified three different mechanisms
of pathophysiology in staphylococcal chronic PJIs: the formation of small colony variants
(SCVs) (97), bacterial internalization in osteoblasts (98), and the formation of biofilm (99). Both
SCV and biofilm formation have been observed for S. aureus, S. epidermidis, and S. lugdunensis.
An acute PJI is usually caused by S. aureus and, in up to 50% of cases, by MRSA strains (93). In
particular, the presence of biofilms of S. aureus have been observed directly from the bone
cement retrieved during a revision surgery and, in synovial fluid samples, as free-floating bio-
film-like aggregates (100, 101). Moreover, polymicrobial communities have been also identi-
fied in association with PJIs, comprising P. aeruginosa-E. faecalis-K. pneumoniae, MRSA-MSSA,
and MRSE-E. faecalis (93, 95).

Osteomyelitis could occur because of PJIs and biofilm formation; in this case, it is
referred to as contiguous-focus osteomyelitis, and it is usually caused by S. aureus (102).
Considering that the biofilm’s presence complicates the treatment of osteomyelitis, different
approaches have been considered, such as the use of anti-polysaccharide intercellular adhe-
sin (PIA) antibodies to prevent microbial attachment or PIA formation (103, 104) or the coat-
ing of medical devices before implantation. Recently, also the prosthesis surface has been
investigated to prevent bacterial colonization or biofilm formation (105). Among these
approaches, the most studied is silver coating (106, 107), despite its several limitations, espe-
cially its toxicity (108). For this reason, different kinds of nanoparticles with antimicrobial abil-
ities, such as silver, copper, quantum dots, and zinc oxide, have been used on prosthesis
surfaces to reduce cell viability and bacterial adhesion (109–112). For treating osteomyelitis,
Bioactive Glass (BAG-S53P4), a bone substitute with proven antibacterial and bone-bonding
properties (113), is used. Furthermore, Franceschini et al. found that an antibacterial hydrogel
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coating, composed of hyaluronan, poly-D,L-lactide (defensive antibacterial coating [DAC]), could
be used as protective biomaterial, in association also with topic antibiotics, to prevent bacterial
adhesion and biofilm formation (114).

Studies have shown that one of the biofilm persistence mechanisms involved a
crosstalk with myeloid-derived suppressor cells (MDSCs), i.e., immature monocytes and gran-
ulocytes that are involved, during inflammation or injury, in the generation of a mature mye-
loid population (115, 116). During bacterial biofilm infection, MDSCs lose their ability to
mature, and they negatively regulate inflammatory mechanisms through their suppressive
actions (117, 118). Heim and colleagues found that MDSCs improve bacterial persistence
during S. aureus orthopedic biofilm infection via interleukin-10 production (119). As
described above, biofilm can protect pathogens that would otherwise be eradicated in their
planktonic or free-floating form. For these reasons, the treatment of PJI is very complex
because it often involves a two-stage exchange, with implant removal and antibiotic spacer
placement followed by systemic antibiotic therapy and delayed reimplantation. To reduce
morbidity, antibiotic therapy could be improved to a one-stage exchange, or implant reten-
tion may be more feasible. Using a mouse in vivo model, Niska et al. evaluated and com-
pared efficacies of vancomycin-rifampin combination therapy for PJIs and demonstrated an
increased efficacy compared to monotherapy (120).

Neurosurgical Implants

Neurosurgical devices comprise neurostimulators, cerebrospinal fluid (CSF) shunts,
external ventricular CSF drainage, and external lumbar CSF drainage spinal instrumentation.
The rate of infections of these devices ranges, on average, from 3 to 15%, but it can reach
even higher numbers with craniectomies and external ventricular CSF drainages (6, 121–123).
The consequences of these infections are often devastating for the patient and are associated
with an increase in morbidity and mortality (124, 125). Management of this problem is even
more difficult if we consider (i) that diagnosis of infection is challenging; (ii) that biofilms are
easily formed on the implant surface, requiring prolonged antimicrobial treatment; (iii) that
standardized approaches to fight the infections are lacking; and (iv) the impossibility, in some
cases, of removing or replacing the implant (126–128). Most of the infections are related to
microbes found in skin and mucosal flora or disturbance of the wound healing process.
Indeed, preoperative infection prevention protocols have been shown to decrease infection
rates (129). Acute infections present themselves within 6 weeks of operation. Since immature
biofilms are present at this stage, infections are most frequently treated with prolonged anti-
microbial treatment (from 4 to 12 weeks) and shunt removal. Before microbial identification,
general treatment can start with intravenous vancomycin plus ceftriaxone, cefepime, or cefta-
zidime (127). If Gram-positive bacteria are detected, rifampicin is administrated in combination
with co-trimoxazole, levofloxacin, moxifloxacin, or doxycycline to avoid the development of re-
sistance (130), whereas fluoroquinolones are the antimicrobial agents most frequently
used against Gram-negative bacteria. Whenever chronic infections present themselves
more than 6 weeks after the operation, biofilms on the implant surface are usually
mature and stable, and to remove these biofilms, antibiotic treatment is performed,
along with removal or replacement of the device (127, 128). Overall, the most frequently
identified bacteria are Staphylococcus spp., especially S. aureus, which is identified more
than 50% of the time; followed by Cutibacterium spp., where C. acnes is isolated 5.4% of
the time; and Enterobacter spp. (3.78%); among fungi, Candida spp. are isolated 1.63%
of the time (131, 132).

Urological Implants, Nephrostomy Tubes, and Stents

Biofilm formation has been observed in the most used devices in the urogenital
tract: short-term or permanent catheters, ureteral stents, nephrostomy tubes, and penile
implants (133). In current clinical practice, indwelling catheters are widely used to relieve
upper urinary tract obstruction, prevent stricture formation, drain urinary tract leaks, and
hinder postsurgical complications (134). In indwelling stents, which are infected in most
cases, fever and urinary tract infections (UTIs) are the most common complications, followed
by bacteremia and even death (135, 136). Bacterial penetration is probably due to the
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permissive environment; in fact, these devices meet polysaccharides, ions, and glycopro-
teins, which form a conditioning film on the implant surface, allowing various planktonic
bacteria to adhere and form biofilms (137, 138). This event occurs typically within 24 h of
the stent insertion (136, 138). Moreover, encrustation could lead to bacterial biofilm forma-
tion. This process involves the deposition of mineral crystals onto the surface and lumen of
a ureteral stent. As a result, the stent becomes calcified and loses its tensile strength, raising
the risk of stent fracture or ureteral avulsion during removal.

In one of the first papers analyzing encrustation and its relationship with bacterial
biofilm, Wollin et al. found a conditioning biofilm layer on indwelling stents derived from 64
patients, half of whom showed encrustation, and 13% had been coated by a bacterial biofilm
(139). Though the production of urease can lead to encrustation, the relationship between
these two processes is poorly understood. In fact, on one hand, bacterial biofilms may facilitate
precipitation of crystals causing encrustation, and on the other hand, encrustation could con-
stitute a niche for bacteria colonization and bacterial biofilm formation (140).

The most common biofilm-forming pathogens found on these devices are E. coli, P.
mirabilis, P. aeruginosa, E. faecalis, Staphylococcus spp., and C. tropicalis (141, 142). The
latter are considered strong biofilm-forming microbes and are also involved in polymi-
crobial infections (142), since the capacity to form a biofilm could serve as a shelter for
the weak formers. There are several studies on the bacterial adhesion of uropathogens
to host cells. For E. coli, a connection between type I pili, in particular its protein FimH,
and Tamm-Horsfall protein (THP) was found. This protein is usually responsible for
eliminating bacteria, but in permanent stents it becomes an anchor for E. coli via FimH
and for P. mirabilis and P. aeruginosa via different adhesion proteins (141). Antibiotic
treatment is often not sufficient to eliminate or avoid the formation of bacterial bio-
films on ureteral stents (143); thus, the usual approach to eliminate the infection con-
sists of replacement or early removal of the implants (138). Modifications of the surface
material or treatment of the surface itself have been investigated as ways to prevent
bacterial attachment and biofilm formation (143–145).

Different prevention strategies to avoid both encrustation and biofilm formation
are currently under investigation. The most common method is to coat surface devices. The
use of silver and silver nanoparticles, antibiotics, bacteriophages, chlorhexidine, triclosan, anti-
microbials peptides and enzymes, hydrogel, polytetrafluoroethylene (PTFE), polyzwitterions,
and polyethylene glycol (PEG) coatings are the most explored and used techniques (146–149).
Moreover, changes in surface topographies have been studied to avoid bacterial attachment
(146). Recently, Mosayyebi et al. proposed an innovative approach in which a microfluidic
model of the stented and occluded ureter is used to study the effect of stent architecture on
wall shear stress (WSS) distribution and encrustation over its surface (150). Measuring the stent
thickness and the hole vertex angle, a reduction in the encrustation thickness by ;90% was
detected. Penile implants are primarily used for erectile dysfunction (ED), a disease that affects
20 to 25% of men over 40 and 5 to 10% below this age. ED is predominantly linked to medical
conditions such as cardiovascular disease and diabetes (151). Infectious complications are gen-
erally infrequent (about 3% of primary surgeries and up to 18% of revision surgeries [152,
153]) but can cause serious consequences from both a clinical and an emotional perspective
(151). During the revision surgery, bacteria were found in 70% of cases; among these, the ma-
jority are Staphylococcus spp., in particular S. epidermidis (137, 153, 154). Recently, surgeons
have improved the prosthesis insertion procedure: leveraging the experience in the orthope-
dic field, they are implementing the strategy employed for PJIs (151).

Intravascular Devices

Intravascular devices are used for different applications, including intravenous fluids, paren-
teral nutrition, antibiotic therapy, chemotherapy, and hemodialysis. It has been estimated that
over 5 million devices are implanted every year in the United States only (155). Needle-free
connectors, such as split septum connectors, Luer activated valves, and Luer valves with posi-
tive displacement, were introduced to reduce the risk of needlestick injuries and assist catheter
management and nursing care. However, environmental contaminations, lack of disinfection
procedures (70% alcohol and treatments for 5 to 60 s are suggested), and poor scrubbing

Biofilms Associated with Implanted Medical Devices Clinical Microbiology Reviews

April 2022 Volume 35 Issue 2 e00221-20 cmr.asm.org 7

https://cmr.asm.org


techniques increase the risk of infection (156). Colonization of needle-free connectors causes
50% of catheter-related infections (157). To reduce the infection rate, disinfection protocols
should be improved, and the predisposition to contamination of different connectors should
be tested (156, 158). Overall, S. aureus, S. epidermis, E. faecalis, P. aeruginosa, and K. pneumoniae
are the leading infectious agents in intravascular catheters. Within this environment, C. albicans
is again the most frequently isolated fungus (159–161). These microbes are related to blood-
stream infection, a major problem that in the United States alone causes almost 200,000 cases
of infection per year, resulting in prolonged hospitalization and increased costs (162). The first
step to solving this problem is antibiotic therapy. Since the most common source of infections
are MRSA strains, vancomycin is often used since it is active against coagulase-negative staph-
ylococci and S. aureus. Alternatively, when P. aeruginosa is detected, ceftazidime or cefepime,
fourth-generation cephalosporins, are recommended. When a fungal infection is detected, the
use of amphotericin B or fluconazole is recommended (155).

Often, the identified microbes form biofilms along the catheter and display a higher
antibiotic tolerance. To achieve a higher local concentration of the drugs, the “lock
therapy” could also be undertaken. Here, since most infections in tunneled catheters
spread to the lumen, the latter gets filled with the desired drug for a few hours or even
days, also intermittently, to eradicate the contaminant (163–165). Ideally, lock solutions
should be directed against common pathogens or be targeted to specific bacteria, be
able to disrupt a biofilm, be compatible with anticoagulants, have long chemical stabil-
ity and low toxicity, induce no antibiotic resistance, and be cost-effective. Overall, the
main combinations used are vancomycin with the anticoagulant heparin, taurolidine,
and minocycline with EDTA, which can disrupt biofilm integrity and synergize the ac-
tivity of the antibiotic, or ethanol (163, 165, 166). If this strategy fails, the infected cath-
eter should be removed and replaced with a new one.

Breast Implants

Breast implants are used in both postmastectomy breast reconstruction and cosmetic sur-
gical procedures. In addition to other surgical procedures, breast implants also face complica-
tions such as hematoma, seroma, infection, altered nipple sensation, asymmetry, scarring, rup-
ture, and capsular contracture (CC) (167). Implant removal or revision is usually caused by CC
(168), which is also responsible for breast pain and discomfort and affects the breast aesthetic
(169). Moreover, prosthesis revision surgery is often associated with CC recurrence. Several fac-
tors may participate in CC etiopathogenesis: (i) surgical procedure, such as the choice of loca-
tion and incision (170, 171); (ii) genetic predisposition (172); (iii) inflammation resulting from
subclinical infection and biofilm formation (167); and (iv) implant texturization (173). Bacteria
were found in 85% of breast implants that encountered CC, and biofilms, observed using
SEM, were detected in more than half of them (174). Staphylococcus spp. are usually present
in breast implants removed for CC, in particular S. epidermidis and S. aureus (174–176).
However, several bacteria can survive in the periprosthetic environment and form biofilms,
such as C. acnes (a commensal species of the skin and gut), streptococci, Bacillus spp., E. coli,
Mycobacterium spp., Corynebacterium spp., and lactobacilli (174, 175, 177). These studies indi-
cate a possible correlation between bacterial colonization, biofilm formation, and CC (178).

Another factor potentially implicated in biofilm formation and consequent CC is the
breast-implant texture. Although some works did not find a correlation between bacterial col-
onization and the type of textured implants (175), other studies have shown, both in vitro and
in vivo, that biofilm formation is more common on rough surfaces (179, 180). At the same
time, smooth prostheses have also been associated with increased biofilm formation (171,
173, 181, 182). Although CC is considered one of the main problems with breast implants, ana-
plastic large cell lymphoma associated with a breast implant (BIA-ALCL) has also been recently
investigated. BIA-ALCL was identified for the first time in 1997 (183); however, it is not known
whether its formation derives from the formation of biofilms or the specific texture of the
implants. Hu et al. studied the bacterial population present in BIA-ALCL compared to normal
patients and found that Ralstonia spp. are mainly associated with tumor capsule specimens
compared to nontumor ones (184). However, it was recently reported that BIA-ALCL is primar-
ily associated with macrotextured implants (185). In order to prevent biofilm formation and
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also capsular contraction, clinicians have improved the surgical procedures by (i) administering
intravenous antibiotic prophylaxis, avoiding periareolar incision (170, 186), reducing the per-
manence of drainage tube, and using nipple shields to prevent spillage of bacteria into the
pocket (187); (ii) irrigating the pocket with a triple antibiotic solution or betadine (188); and (iii)
using an antibiotic-impregnated mesh during breast reimplants and implementing the “no
touch”methods by an introduction sleeve to minimize skin contact (189).

Dental Implants

The oral microbiota is highly complex since the oral cavity is the site of the human
body with the most bacteria species able to colonize differently specific niches (i.e.,
tongue, cheeks, teeth, and gums). Mouth colonization starts at birth, and it changes
over time due to aging, tooth appearance or extraction, diet, characteristics of saliva,
and the use of antibiotics (190). Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
Spirochaetes, and Fusobacteria are among the most representative taxa. Using the
methods described above, it is now possible to fully describe the microbial diversity
present in the human oral cavity and to assess its composition when health problems
arise. Indeed, oral bacteria have been implicated in cardiovascular disease, pneumonia,
diabetes, and systemic disease (191–195). Therefore, the prevention and control of oral
diseases are essential to prevent these conditions.

Biomaterial surfaces that are employed to restore optimal oral cavity functionality
can be colonized by several microbes, often forming stable biofilm structures leading
to peri-implantitis (196, 197). Consequences can be severe: gingival health can be com-
promised; composite resins could be degraded, leading to the possibility of bacterial
invasion at the interface between the tooth and the restoration; and tooth enamel can
demineralize (198–201). Because of several components present in the saliva, host tis-
sue, and bacterial products, a pellicle is formed around the implant surface within
minutes of its placement (202–204), and early colonization of tooth and implants has
been shown to be different (205). Microbial colonization occurs immediately, with
Gram-positive cocci and rod-like microbes being the primary colonizers (205, 206), pro-
ducing the basic structure that enables secondary colonization thanks to interbacterial
adhesion. Whenever Gram-negative anaerobic bacteria become the main colonizers,
the dominant microbial species are Fusobacterium spp., Porphyromonas gingivalis,
Eikenella corrodens, Prevotella intermedia, Campylobacter spp., and C. albicans (197, 202,
207, 208). Under these conditions, peri-implantitis may develop in less than a year after
implant placement. Antibiotic prophylaxis could avoid this phenomenon (209). Overall,
to prevent implant failure, correct planning of treatments, placement of the implant,
and follow-up visits are extremely important, along with monitoring the overall health
state (i.e., osteoporosis, diabetes, obesity, use of drugs, etc.). In addition, evaluation of
surface modifications and different coating possibilities will help to identify materials
less prone to pathogen colonization (210, 211).

Contact Lenses

Microbial keratitis is an infection of the cornea which, if not properly treated, could
lead to the loss of vision. The main risk factor is the widespread use of contact lenses.
Bacterial keratitis is connected to biofilm-forming bacteria and the following are the most fre-
quently identified genera and species: coagulase-negative staphylococci, Cutibacterium spp.,
Corynebacterium spp., S. aureus, and P. aeruginosa. Fungal infections are more probable in
tropical and subtropical climates, and Fusarium spp., Aspergillus spp., and Candida spp. are of-
ten isolated. Tiny amoebas have also been implicated in this pathogenesis (Acanthamoeba)
(212–215). The origin of the infection is linked to the ability of contact lenses, even cosmetic
ones, to induce alterations of the corneal epithelium and carry organisms to the ocular surface
(216). Organisms on contact lenses form stable biofilms, primarily the Gram-negative bacte-
rium P. aeruginosa, due to its capacity to survive different stress situations and to adhere to
many different surfaces (216, 217). Physical and chemical characteristics, along with the water
retention capacity of the lens’material and its hydrophobicity, are factors influencing the colo-
nization (214, 217). Researchers are constantly looking for new materials able to inhibit this
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process (218–221). Moreover, the presence of neutrophils can enhance P. aeruginosa biofilms,
a stimulation that can be counteracted by treatment with DNase and anionic poly-aspartic
acid (222). Of course, as contact lenses are regularly removed, to avoid their contamination,
special care should be taken in correctly using not only the lenses themselves but also their
cases and the liquid storage solutions. Overall, the storage conditions should provide a clean
environment that prevents microbial growth. The latter represents intensive ongoing research
(223–227).

Other Implants

Intrauterine devices (IUDs) are effective long-term contraception methods. However,
their usage period is between 4 and 5 years unless signs of pelvic inflammatory disease
are detected. Indeed, IUDs represent a foreign body that biofilm-forming bacteria or fungi
can colonize. The most common microbes associated with IUDs and upper genital tract
infections are S. aureus, E. faecalis, E. coli, Streptococcus spp., Actinomyces spp., Prevotella
spp., Bacteroides spp., Clostridium spp., and C. albicans (228–231).

Patients requiring mechanical ventilation can develop ventilator-associated pneumonia
due to the use of breathing machines. This life-threatening infection is often linked with bio-
film formation on the inserted tubes. The principal genera colonizing the oral and respira-
tory tract of intubated patients are Streptococcus, Neisseria, and Prevotella (232). Many factors
contribute to the development of infections; since the tubes prevent the cough reflex,
resulting in an inhibition of mucous clearance, infection damages the tracheal epithelium
and finally provides an easy entrance for bacteria able to reach the lower respiratory tract
and form biofilm around the surface, representing a dangerous reservoir of bacteria poten-
tially able to migrate and develop pneumonia. The main bacteria responsible for this coloni-
zation are S. aureus, K. pneumoniae, E. coli, P. aeruginosa, and Acinetobacter baumannii (159),
often found in a mixed population. Indeed, polymicrobial communities are identified
between 8 and 58% of the time in endotracheal tubes (233). When these bacteria, all high-
grade biofilm formers, stably colonize the tube, they are covered with extracellular poly-
meric substances typical of biofilm growth, which provides higher tolerance to antimicro-
bials (234).

Finally, cochlear implants are also prone to infection, and the incidence of complica-
tions due to this colonization ranges between 1.7 and 4.1% of patients, a problem that
can lead to the removal of the implant and even, in severe cases, be fatal. S. aureus and
C. albicans are the leading agents of such infections (235–238).

MICROBIAL DISTRIBUTION

A detailed overview of the microorganisms found in implanted medical devices is
shown in Table 1. Gastrointestinal and urological implants are devices that can be colonized
by the most diverse strains. S. aureus is the main contaminant in urological implants, along
with E. faecalis and E. coli, while gastrointestinal implants are most frequently infected by
the pan-antibiotic-resistant A. baumannii, a bacterium resistant to desiccation and nutrient
deficiency (239), which forms a stable biofilm resistant to many antimicrobials. A. baumannii
is currently one of the top microbes against which new antibiotics are being developed
(240–243). Microbes colonizing dental implants are quite different from the ones found on
other devices (Table 1). The microbiome colonizing the oral tract has been described as hav-
ing a dynamic “biofilm lifestyle” (204), forming complex communities composed of a differ-
ent combination of bacterial species (between 500 and 700 different species have been
identified as members of the oral microbiome), many of which are still not cultivable (244).
Disequilibrium within the microbial community, the host, and the local microenvironment
results in advantageous conditions for the growth of Fusobacterium spp., P. gingivalis,
Prevotella spp., Selenomonas spp., Staphylococcus spp., and Streptococcus spp. (197, 202, 207,
208, 245, 246).

Moreover, Staphylococcus spp. are the most frequently isolated; among these, S. aureus is
found in essentially all implants. Among the coagulase-negative staphylococci, S. epidermidis,
S. haemolyticus, S. lugdunensis, S. capitis, S. mitis, and S. auricularis are the most commonly
isolated. Streptococcus spp. are very often found on orthopedic, cardiac, neurosurgical
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implants, and contact lenses. Candida spp. are predominant among fungal colonizations, an
observation that was already reported in 2004 by Kojic and Darauiche (247); among these, C.
albicans is the most frequently isolated species. Only contact lenses have been reported to be
infected by other fungi: Fusarium spp. and Aspergillus spp. Interestingly, fungal colonization
has yet to be reported in breast implants (see Table 1 for details and relative references).

Much is known about the most frequently isolated microbes mentioned above.
Indeed, recent outstanding works and reviews have focused on Staphylococcus spp. (in
particular S. aureus) (248–256), Acinetobacter spp. (especially A. baumannii) (239–243, 256–259),
Enterobacteriaceae such as E. coli and K. pneumoniae (243, 256, 260–263), Pseudomonas spp.
(in particular P. aeruginosa and P. fluorescens) (256, 264–267), Enterococcus spp. (256, 268, 269),
and C. acnes (270–273).

Some of the “less known” biofilm-forming microbial contaminants mentioned in
Table 1 are considered emerging pathogens and much future work will be necessary to
understand their biology. Among them, it is worth mentioning Staphylococcus lugdunensis,
which is a newly recognized threat whose biofilm biomass has been recently investigated
(274). S. lugdunensis is connected with hospital-acquired infections, especially in cases of ortho-
pedic infections and aortic prosthetic valve endocarditis (96, 249, 275–277). Cutibacterium avi-
dum is an “under-recognized”microbe (273), an opportunistic pathogen able to invade axillary
regions and wet sites, where it is causing infections difficult to eradicate thanks to its capacity
to form biofilms, particularly in total hip arthroplasty or breast implant surgeries (273, 278,
279). While much is known of C. acnes, very little is currently known regarding the biology of
C. avidum, and many of its features must be better understood to treat C. avidum biofilm-
related infections efficiently. Stenotrophomonas maltophilia is a Gram-negative bacillus and an
opportunistic emergent pathogen isolated in gastrointestinal and urological implants (see
Table 1) and can cause pneumonia in subjects mechanically ventilated, such as COVID-19 hos-
pitalized patients (280). S. maltophilia can form biofilms that are clinically relevant andmore re-
sistant to antibiotic treatment than their planktonic counterparts (281, 282). Finally, special
attention on Corynebacterium striatum, a strain usually found on human skin and nasal mucosa
and able to cause nosocomial diseases, is needed. This organism can colonize orthopedic
implants or catheters due to its strong capacity to adhere to surfaces and form biofilms. In
addition, C. striatum is often isolated as a multidrug-resistant strain, so it is considered a con-
cern within the scientific community (283–285).

ENVIRONMENTAL FEATURES
Fluid Flow

Many environmental factors can shape the development of biofilms on implanted
medical devices. A nearly ubiquitous factor is fluid flow, along with the hydrodynamic forces
and pressure variations that it generates (Fig. 2A). In many human body systems, including
the gut, urinary tract, veins, artery, and eye, liquids are in motion. The shape and compliance
of organs and their cyclic contraction movements make fluid flow in the human body com-
plex and nonuniform; the typical range of values are given in Table 2. Medical implants placed
in these systems are exposed to flow and are often placed to restore the physiological fluid
motion through the systems after surgery or pathological obstructions. Urological catheters,
biliary stents, and cerebrospinal fluid drainages are examples of implants placed to favor fluid
flow (Fig. 2B), while contact lenses and dental implants are examples of devices exposed to
liquids in motion. When considering flow-through medical devices, we must remember that
their shape affects the flow and frequently adds complexity to the fluid flow path, as exempli-
fied previously (286) using numerical simulations for the stented ureter. In all of these systems,
flow can affect both the transport and the physiology of the small resident organisms, and
these can respond to flow with phenotypic and behavioral changes, as extensively discussed
earlier (287). Below, we describe some in vitro studies on bacterial-flow and biofilm-flow inter-
actions, performed in different geometries and flow conditions (see Table 3 for details on ge-
ometry and flow conditions). These studies shed light on general biophysical phenomena trig-
gered by flow in model systems. Given the wide range of flow velocities and shear stresses at
play in the human body (Table 2), these phenomena probably play a role in human
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infections and colonization of medical devices. However, the complexity of the physical
and physiological conditions in the human body and their variability makes it difficult to
compare in vitro studies to their in vivo potential realization.

Bacteria in bulk fluid are transported by flow, which exerts hydrodynamic forces on
their body and, under certain conditions, affects their spatial distribution. In narrow channels,
fluid shear preferentially accumulates motile bacteria in the low-velocity, high-shear regions
close to the sidewalls, creating a depletion in cell concentration by up to 70% in the central
region of the channel and favoring bacterial surface colonization, as shown for both B. subti-
lis and P. aeruginosa (288). The same type of interaction promotes the formation of coloniza-
tion hot spots on curved surfaces (such as pillars; Fig. 3A), creating a heterogeneous bacterial
distribution on the surface, with potential effects on the subsequent biofilm development
(289). These effects depend only on the morphology and motility of bacteria and are inde-
pendent of other traits or physiological conditions.

Once bacteria are on a surface or located nearby, hydrodynamic interactions can
trigger bacterial movement in the direction opposite to the flow: this behavior is observed in
flagellated bacteria with an elongated body, swimming very close to a surface, and in bacteria
moving on the surface thanks to type IV pili, the so-called “twitching motility.” Upstream
swimming has been studied in E. coli (290) and is a faster mechanism for surface coloni-
zation than colony spread by growth (291), with important implications for spreading
infections in catheters and medical devices. Upstream twitching has been observed in P.

TABLE 2 Flow velocities and shear stresses measured in different body fluids and human organsa

Fluid Organ/Device Flow velocity (m s21) Shear stress (Pa) Reference(s)
Urine Bladder-urethra 0–0.3 0–0.4 413

Ureter 0–0.48 0–0.5 414

Blood Blood vessels 0.5–4.3 415
Microcirculation 0.06–1.2 1.3–1.6 415, 416

Saliva Unstimulated average flow 0.018–0.024 417
Around orthodontic brackets 0.069–0.18 329

Bile Bile duct 0–0.2 418, 419
Mucus Airway surface (2–7)� 10–5 420
aSeveral body fluids are considered, and the values characterizing their flow in different organs found in the
literature are reported.

FIG 2 Nonmicrobiological factors affecting biofilm formation in a medical device. (A) When a moving fluid encounters a solid surface,
its speed decreases gradually so that it becomes zero at the surface (i.e., no-slip boundary condition). This variation of the fluid speed in the
layer close to the surface generates flow shear. Looking at the surface with a micrometric resolution, we can see the surface roughness,
which is due to the material itself and the way material is processed. In addition, solid surfaces can have different material properties, as
material mechanical properties and surface charge. Material properties, surface roughness, and flow shear close to the surface potentially
influence the accumulation of bacteria or precipitates on the surface. (B) In conducts, fluid properties, such as viscosity and composition, can
influence the flow regime within the conduct. When stents or catheters are inserted, occlusions can occur due both to biofilm growth and
accumulation of substances transported by the fluid, such as fibers, proteins, and salt crystals. The nature of the precipitates depends on the
type of body fluid and its chemical conditions. Biofilms inside the device can grow with different morphologies depending on the local flow
conditions and geometrical constraints: surface-attached or as filament suspended in the flow, called streamers. The graphic work was done
by modifying elements from Smart Servier Medical Art.

Caldara et al. Clinical Microbiology Reviews

April 2022 Volume 35 Issue 2 e00221-20 cmr.asm.org 14

https://cmr.asm.org


TA
B
LE

3
Fl
ow

ve
lo
ci
ti
es

an
d
sh
ea
rs
tr
es
se
s
m
ea
su
re
d
in

in
vi
tr
o
st
ud

ie
s
of

b
ac
te
ria

l-fl
ow

an
d
b
io
fi
lm

-fl
ow

in
te
ra
ct
io
ns
,p
er
fo
rm

ed
us
in
g
di
ff
er
en

tg
eo

m
et
rie

s
an

d
fl
ow

co
nd

it
io
ns

G
eo

m
et
ry

Ef
fe
ct
(s
)o

ffl
ow

B
ac
te
ri
um

/b
ac
te
ri
a

Fl
ow

ve
lo
ci
ty

(m
m

s2
1
)

Sh
ea

r
ra
te

(s
–
1
)

Re
fe
re
n
ce
(s
)

M
ic
ro
fl
ui
di
c
st
ra
ig
ht

ch
an

ne
l

C
el
la
cc
um

ul
at
io
n
in

hi
gh

sh
ea
r

B.
su
bt
ili
s,
P.
ae
ru
gi
no

sa
0–

10
4

0–
50

28
8

In
cr
ea
se
d
re
si
de

nc
e
ti
m
e

P.
ae
ru
gi
no

sa
75

0–
10

5
50

–1
04

29
7

U
p
st
re
am

sw
im

m
in
g
m
ot
ili
ty

E.
co
li

0.
1–

60
0–

60
0

29
0

29
1

U
p
st
re
am

tw
it
ch

in
g
m
ot
ili
ty

P.
ae
ru
gi
no

sa
X.
fa
st
id
io
sa

M
.m

ob
ile

0–
90

0–
70

0

0.
01

–1
0

29
2

42
1

29
4

C
at
ch

b
on

ds
S.
au

re
us

E.
co
li

S.
ep
id
er
m
id
is

2.
5–

10
2.
5–

10
1–

10

29
8 ,
30

0
29

8
29

9
In
cr
ea
se
d
vi
ru
le
nc

e
up

on
su
rf
ac
e
at
ta
ch

m
en

t
P.
ae
ru
gi
no

sa
30

1
M
ec
ha

no
se
ns
in
g

P.
ae
ru
gi
no

sa
30

2,
30

3
Sh

ap
e
b
io
fi
lm

ar
ch

it
ec
tu
re

E.
co
li

V.
ch
ol
er
ae

2–
2,
00

0
30

6
30

7

M
ic
ro
fl
ui
di
c
cu
rv
ed

su
rf
ac
e

Pr
ef
er
en

ti
al
at
ta
ch

m
en

tt
o
sp
ec
ifi
c
su
rf
ac
e
re
gi
on

s
P.
ae
ru
gi
no

sa
,E
.c
ol
i

15
0–

2,
00

0
28

9
Bi
ofi

lm
st
re
am

er
fo
rm

at
io
n

P.
ae
ru
gi
no

sa
S.
au

re
us

10
3

6–
2
�
10

4

30
8,
30

9,
31

2
31

3
In
te
rp
la
y
b
et
w
ee

n
fl
ow

an
d
b
io
fi
lm

m
at
rix

co
m
p
os
it
io
n

P.
ae
ru
gi
no

sa
15

0–
20

0
31

4

M
ic
ro
fl
ui
di
c
fl
ow

ne
tw

or
k

In
cr
ea
se
d
su
rf
ac
e
co
lo
ni
za
ti
on

ca
p
ab

ili
ty

P.
ae
ru
gi
no

sa
P.
ae
ru
gi
no

sa
an

d
P.
m
ira

bi
lis

16
–2

50
2–

2
�
10

4

29
5

29
6

Biofilms Associated with Implanted Medical Devices Clinical Microbiology Reviews

April 2022 Volume 35 Issue 2 e00221-20 cmr.asm.org 15

https://cmr.asm.org


aeruginosa (292), Xylella fastidiosa (293), and Mycoplasma mobile (294). Despite being
100-fold slower than upstream swimming, twitching still confers P. aeruginosa advan-
tages in the colonization of flow networks (295) and in the competition over its natural
competitor Proteus mirabilis (296). Hydrodynamic interactions not only increase the sur-
face exploration capabilities of E. coli and P. aeruginosa but also increase their residence
time on surfaces (297) by activating, for example, in the case of E. coli specific catch-
bonds between proteins present on type I pili and mannose adsorbed on the surface

FIG 3 Mosaic of representative images. (A) Image of fluorescent P. aeruginosa bacteria attached to a 100-mm pillar in the presence of
flow. Modified from Secchi et al. (289). (B) Maximum intensity projection image of biofilm streamers formed flowing a suspension of
fluorescent P. aeruginosa in a bare-metal stent. Modified from Drescher et al. (312). (C) Bacterial colonization of a biliary polyethylene
stent in a patient with bile duct stenosis, visualized by fluorescence in situ hybridization (FISH). Modified from Yan and Bassler (92). (D)
Fluorescence images of E. coli on titanium (Ti), silanized titanium (Ti-s), nanoflower-coated (NF), and nanoflower-coated surfaces after
silanization (NF-s). Modified from Montgomerie and Poat (333) with permission of Elsevier. (E) Confocal images (X63 magnification) of bone
marrow-derived macrophage phagocytosis of fluorescent microspheres (yellow-white) and cell death with propidium iodide stain (red-
purple) after exposure to S. aureus biofilm-conditioned medium (left-hand side) and S. aureus planktonic culture-conditioned medium (right-
hand side). Modified from Torres et al. (383).
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(298). Similar shear-enhanced adhesion mechanisms have been observed in S. epidermis
(299) and S. aureus (300).

Surface colonization is the starting point for biofilm formation. Surface adhesion
triggers virulence (301) and starts biofilm development in P. aeruginosa due to to
hydrodynamic force-sensing mechanisms allowing bacteria to tune their adhesion
strength (302). Mechanosensing has been recently recognized as an essential resource
that bacteria have developed to optimize biofilm formation and pathogenicity, as dis-
cussed in a recent review (303). Once biofilm development has started, local flow can
influence biofilm architecture, for example, determining the formation of a bacterial
monolayer under high-flow conditions or multilayer structure under low flows (304,
305), affecting cell membrane permeability (306), determining the shape of the colony
(307), or driving the formation of biofilm streamers when obstacles and constrictions
are present (308–311).

Biofilm streamers, which are filamentous bacterial aggregates suspended in the
middle of the flow, can have a more significant impact on the flow itself compared to
classic biofilms, for example, by causing rapid clogging of artificial and natural con-
duits, porous media, and medical devices (Fig. 3B) (312, 313). An in vitro experiment
conducted using a bare-metal stent has shown that streamers rapidly develop and
span the gaps between metal wires (312). Given their potential impact on the clogging
of medical devices, it is worth investigating their formation in in vivo scenarios. If bio-
films are formed by several bacterial species, flow can affect population dynamics and
biofilm morphology by segregating more-adhesive and less-adhesive cells (314). This
interplay could also influence the evolution of biofilm multispecies infection in a medi-
cal context.

EPS is mainly constituted from polysaccharides, proteins, nucleic acids, and lipids
(21, 316). Its composition can vary greatly depending on the microorganisms, nutrient
availability, and environmental conditions, including the presence of fluid flow and the
temperature (317–320). In biofilm formed in complex host environments, such as those
in medical devices, extra-microbial-host-derived components may be incorporated in
the biofilm. Examples of incorporation include fibronectin, a glycoprotein found in the
matrix of eukaryotic cells, which plays a crucial role in the formation of S. aureus biofilm
on devices, and calcium phosphate and magnesium phosphate crystals formed in uri-
nary catheters due to urinary pH and incorporated in biofilms, resulting in a crystalline
structure. However, despite the differences in EPS composition, its functions are uni-
versal: EPS forms the scaffold of the biofilm structure, is responsible for adhesion to
surfaces and internal cohesion, and protects the microbial community from chemical
and mechanical insults (21). In a medical context, surface adhesion is also influenced
by the conditioning film formed by host-derived components attached to the surface
and potentially interacting with the EPS. In addition, the viscoelastic nature of EPS con-
fers biofilm mechanical resistance: when a force is applied, biofilms instantaneously
undergo an elastic deformation as solids and then slowly flow as viscous fluids, further
spreading on surfaces, while maintaining their structural integrity (321). The visco-
elastic behavior increases the surface spreading and allows the formation of streamers
(308, 309).

The number of studies focusing on the influence of local flow on biofilm growth in
medical devices is still limited, despite the benefits of a better understanding of the
role of fluid dynamics. Biliary stents are a primary example of devices subject to severe
occlusion, requiring their removal and replacement. Studies have been conducted on
removed stents (Fig. 3C) to shed light on the parameters affecting the clogging dy-
namics (89, 322, 323). The diameter has been shown to play a primary role since stents
with a smaller diameter are more prone to occlusions, whereas stents with a larger
lumen allow greater bile flow velocity (but lower shear rate) and, in turn, they are less
prone to bile salt precipitation and protein accumulation (89). For this reason, metal
stents, having a larger diameter, seem preferable to plastic stents (324) in this respect.
Bile viscosity is another factor influencing the flow-pressure relation and consequently
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biofilm growth, since a higher viscosity implies a lower flow rate and consequently
increases the probability of occlusion (28). When considering EPS composition, the
flow has been shown to influence the ability to produce specific molecules in S. epider-
midis strains isolated from high-shear and low-shear environments in the human body
(325) and, in turn, the structure of the biofilm, as shown in an in vitro study (326).

Computational fluid dynamic simulations have been used to characterize the flow
field within different configurations of an occluded and stented ureter, and it has been
observed that bacterial attachment occurred preferentially near a ureteric occlusion
(327). In this case, it has been recently recognized that UTIs should be studied in the
context of the bladder’s physical environment, which includes flow (328). For example,
orthodontic appliances bonded to the tooth surface are exposed to salivary flow with
a self-cleaning action. However, the shape of the appliances affects the flow pattern,
potentially favoring the creation of vortexes and a resulting bacterial accumulation, as
investigated using computational fluid dynamic simulations (329). In vivo studies
focused primarily on the effect of the material, showing that plastic and stainless steel
(330) and ceramic and metallic (331) brackets do not influence the composition of the
bacterial population.

Surface Properties

Surface properties represent another critical factor that influences biofilm accumu-
lation and the occlusion of implants. In blood-contacting medical devices, proteins
contained in the blood, upon contact with the surface of the device, adhere to the sur-
face, followed by platelets, and activate an immune response, resulting in the forma-
tion of a fibrin matrix that traps red blood cells and clogs the devices. Biofilm growth
can contribute to speeding up this process. Central venous catheters are blood-con-
tacting medical devices, subject to biofouling. In vitro experiments conducted with S.
epidermidis using glass and polymer catheters have shown that these materials do not
affect biofilm formation or morphology (332). However, very specific surface treat-
ments can reduce biofouling: coating with superhydrophobic titania nanoflowers was
shown to increase hemocompatibility and reduce protein deposition and consequently
biofilm growth in an in vitro study (Fig. 3D) (333); similar results were obtained with a
covalently attached layer of perfluorocarbon (334).

Studies on the influence of the implant material on biofilm formation have been
conducted for biliary stents made of polyethylene and hydrophilic polymer-coated pol-
yurethane (335). Inspection of the biofilms using SEM and confocal scanning micros-
copy (CSM) did not highlight any difference either in the type of biofilm or in the clog-
ging dynamic. Although the type of material does not influence the fouling process,
pilot studies have shown that gold coatings reduce the biofouling of different types of
catheters (336–338). Furthermore, treatment of surface plasma with direct thrombin
inhibitors has been shown to reduce staphylococcal binding, revealing the potential of
these agents for implant surface coatings to prevent device-related infections (339). In
vitro experiments have shown that biofilm formation on the surface of dental implant
materials, such as titanium and zirconium, is comparable to that on hydroxyapatite, a
typical tooth surface (340). These results have been obtained with six different bacterial
species typically found in the human mouth. Not only were biofilms, imaged using
CSM, structurally similar, but the composition of the bacterial community, analyzed by
qPCR, also did not show appreciable differences. In another study of dental plaque for-
mation in a flow chamber under anaerobic conditions (341), zirconia surfaces showed
a statistically significant reduction in bacterial adhesion after 3 days of incubation com-
pared to titanium surfaces. Nevertheless, differences between zirconia and titanium
surfaces with regard to biofilm formation are still under debate.

Surface roughness is an important parameter when considering bacterial surface
colonization. Roughness is a characterizing parameter of breast implants, in which the
introduction of texture to the outer shell was aimed at increasing tissue incorporation.
Based on their texture, breast implants can be divided into smooth (i.e., having a ru-
gosity of ,10 mm), microtextured (with rugosity ranging between 10 and 50 mm), and
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macrotextured (with a rugosity of.50 mm) (342). Several studies confirm that bacterial
colonization on rough textures is generally favored (343), while the exact trend
depends on the model of the implant and the bacterial species considered (343, 344).
Differences in colonization have been recently attributed to different surface areas:
rough textures offer a better surface area to which the bacteria can adhere. Plate
counting, the methodology used to quantify surface colonization, normalized for the
surface area did not show significant differences between textures and bacterial spe-
cies (343). Similar results were obtained on typical surfaces of dental implants (345)
and on biotic surfaces in general (346).

Material properties are essential parameters in controlling the colonization of soft
contact lenses. Contact lenses are characterized by a different water content, which
changes their comfort and long-term usability (347). A high water content (between
58 and 64%) results in softer lenses that are better suited for long-term use and also
reduces biofilm formation (217, 225). Surface wettability is another parameter influenc-
ing bacterial adhesion on contact lenses: in vitro studies have shown that P. aeruginosa,
S. aureus, or S. epidermidis adhere in greater numbers to the hydrophobic silicone
hydrogel lenses compared to hydrophilic hydrogel lenses (217, 348). The same study
revealed that a higher surface roughness increased the colonization by S. epidermidis,
whereas no differences were reported for P. aeruginosa (217). When fungal biofilms are
considered, they have been shown to have different structures on different types of
lenses, but the differences have not been systematically analyzed in terms of surface
properties (349). Finally, bacteria also respond to the mechanical properties of a sur-
face, such as stiffness, which is positively correlated with the adhesion of different bacterial
species, such as S. epidermidis and E. coli, independently of other surface properties (350).
Conversely, another study showed that, when exposed to high-shear conditions, E. coli cells
exhibit stronger adhesion properties on soft silicone substrates than on stiff ones, a differ-
ence that decreased when native silicone surfaces were coated with extracellular matrix mol-
ecules (351).

IMMUNOLOGICAL ASPECTS

Although the interplay between host immune response and biofilms has been
investigated in the last decade (352, 353), very little is known about their crosstalk associated
with medical devices. Most of the literature has focused on the immune response to biofilms
formed by P. aeruginosa under specific pathological conditions, such as, for example, in
cystic fibrosis patients (354, 355). P. aeruginosa biofilms stimulate the host immune response
via extracellular polysaccharides (356), eDNA (357), outer membrane vesicles (OMVs) con-
taining extracellular proteins (358), and small molecules, such as 3-oxo-C12-HSL (359, 360) or
pyocyanin (361, 362). EPS components can impair complement activation (363), inhibit mac-
rophage killing (364), and escape the action of neutrophil extracellular traps (NETs) (365). In
general, it is known that some components of biofilms formed by Salmonella enterica sero-
var Typhi, Burkholderia cepacia, or other probiotic bacteria have displayed anti-inflammatory
properties (366–368), whereas those formed by other bacteria, such as Thermus aquaticus
and some Lactobacillus strains, seemed to be proinflammatory (369, 370). An overview of
devices associated with biofilms and their induced host response mechanisms—which can
result in either an immune response activation or its suppression—is provided in Table 4.

Bacteria belonging to the Staphylococcus genus, such as S. aureus and S. epidermidis,
have been found to form biofilms on implanted medical devices. The immune system
is less able to recognize bacteria belonging to the Staphylococcus genus when grown
as biofilms, especially mature biofilms, compared to their planktonic growth (371, 372);
in fact, biofilm bacteria can resist phagocytosis, the release of toxic granule compo-
nents, and NET-mediated killing (373–375). One of the components of Staphylococcus
biofilms, polysaccharide intercellular adhesin [also known as poly-N-acetyl-b-(1-6)-glu-
cosamine (PIA/PNAG)], can protect against phagocytosis by neutrophils and macro-
phages (373, 376, 377), whereas S. aureus extracellular nuclease can destroy NETs (378,
379). In S. aureus biofilm, several proteins and toxins are highly expressed and are
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associated with immune response evasion, even at the early stage of biofilm formation
(371, 380, 381). The release of Nuc1 protects against NET formation by neutrophils
(382), the secretion of LukAB and Hla induces cell death in macrophages (Fig. 3E) (383),
and the release of the leukocidins PVL and HlgAB allows the evasion of neutrophil-
mediated killing (375).

Results from S. aureus biofilm secretome have demonstrated the presence of pro-
teins with an immunogenic ability (384, 385); however, their presence is not sufficient
to inhibit biofilm formation. In vivo studies on murine S. aureus infections and adaptive
immune response found that inflammatory Th1/Th17 responses result in a link with
biofilm formation; in contrast, protective Th2/Treg responses are associated with spon-
taneous clearance of infection without adjunctive therapy (386, 387). Also, the site of
infection has an impact on the interaction between S. aureus and the host immune sys-
tem (388); therefore, the insertion of a device should consider whether the site chosen
for the surgery can be reached by the pathogens directly, such as through the blood
flow, or indirectly, such as only after passing through the epithelial barrier and draining
lymph nodes. Furthermore, the promotion of an anti-inflammatory and profibrotic
environment derived from staphylococcal biofilm could occur via alternative macro-
phage activation (374) or via a distortion of the macrophage response to promote bac-
terial persistence (389). Between host mechanisms able to clear biofilm, both staphylo-
coccal and that for P. aeruginosa, there is opsonization enhanced by ROS production
(390) and the presence of polymorphonuclear neutrophils (PMN) at the site of infec-
tion, which have shown in vitro the ability to phagocytose bacteria (391, 392). Probiotic
biofilms participate in the formation or destruction of pathological biofilm, depending
on their anti-inflammatory ability (368, 369). For example, L. plantarum can help poly-
morphonuclear leukocytes (PMNs) destroy P. aeruginosa in vitro (393), whereas L. rham-
nosus, when incubated with S. aureus, decreases ROS production and phagocytosis,
helping S. aureus evasion to the host immune system (394).

In the study of biofilms associated with medical devices, the topography and the
implant surface material must be considered as part of the crosstalk with the host
immune system. Implants, also built with biodegradable biomaterials, generally induce
a host reaction (395, 396) that can be recapitulated in four phases: (i) implantation, (ii)
blood-biomaterial interaction, (iii) inflammation, and (iv) tissue remodeling (397). The
foreign body reaction could be responsible for many aseptic device failures (398); for
all the implants in contact with blood, it is necessary to consider the hemocompatibil-
ity of biomaterials (333). Indeed, to prevent thrombosis, an in vitro study using super-
hydrophobic titania nanoflowers recently improved hemocompatibility, as well as
reduced bacterial adhesion compared to both nontextured and unmodified surfaces. A
recent study by Doloff et al. demonstrated that breast implants with a roughness of
;4 mm can induce a greater immune response compared less-rough implants (399).

A better understanding of the interplay between implants and the immune system
may allow treatment of the surfaces of medical devices to trigger the host immune sys-
tem to avoid biofilm formation or implant failure. As a proof of concept, Hanke et al.
(400) targeted MU proinflammatory activity to reduce biofilm formation in a mouse
model of MRSA catheter-associated infection, thus showing the possibility of using the
host’s endogenous innate immune cells to control device-associated biofilm infections.
The role of IL-1b , in a mouse model of postarthroplasty S. aureus joint infection, has
also been demonstrated (401) in controlling bacterial adhesion and biofilm formation
through neutrophil recruitment to the site of infection. Based on this finding, Bernthal
et al. speculate on the possibility of enhancing the early protective IL-1b response
while minimizing any sustained inflammation as a therapeutic strategy to help prevent
postarthroplasty infections.

CONCLUDING REMARKS

The recalcitrance to conventional antibiotic therapies of biofilms grown on medical
devices usually requires revision operations and replacement of the implant, with
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increased morbidity, mortality, and a devastating impact on the patient’s quality of life.
In addition, the spread of multidrug-resistant bacteria is constantly growing, increasing
public concern about the health risks for hospitalized patients due to device-associated
microbial infections. Although much has been done to elucidate the mechanisms by
which biofilm-forming microbes adhere to indwelling devices and interact with the
host immune system, this has been primarily limited to selected pathogens and to a
small number of medical implants. Efforts are needed to advance our knowledge of
the different microbiota compositions that correlate with a particular device and with
the presence of mechanical forces. Furthermore, studies on in vivo biofilms or under
more physiological and clinically relevant conditions—such as, for example, in micro-
fluidic systems—should be pursued to shed more light on the complex interplay
between surface-attached bacteria and the peri-prosthetic microenvironment.
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