Skip to main content
. 2022 Jan 5;13(3):816–833. doi: 10.1039/d1sc05180f

Comparison results of the proposed MGraphDTA and baselines on the Davis and KIBA datasets (regression).

Dataset Davis KIBA
Model Proteins Compounds MSE CI r m 2 index MSE CI r m 2 index
DeepDTAa CNN CNN 0.261 0.878 0.630 0.194 0.863 0.673
WideDTAb CNN + PDM CNN + LMCS 0.262 0.886 0.179 0.875
GraphDTAc CNN GCN 0.254 0.880 0.139 0.889
GraphDTAc CNN GAT 0.232 0.892 0.179 0.866
GraphDTAc CNN GIN 0.229 0.893 0.147 0.882
GraphDTAc CNN GAT–GCN 0.245 0.881 0.139 0.891
DeepAffinityd RNN RNN 0.253 0.900 0.188 0.842
DeepAffinityd RNN GCN 0.260 0.881 0.288 0.797
DeepAffinityd CNN GCN 0.657 0.737 0.680 0.576
DeepAffinityd HRNN GCN 0.252 0.881 0.201 0.842
DeepAffinityd HRNN GIN 0.436 0.822 0.445 0.689
KronRLSa SW PS 0.379 0.871 0.407 0.411 0.782 0.342
SimBoosta SW PS 0.282 0.872 0.655 0.222 0.836 0.629
RF ECFP PSC 0.359 (0.003) 0.854 (0.002) 0.549 (0.005) 0.245 (0.001) 0.837 (0.000) 0.581 (0.000)
SVM ECFP PSC 0.383 (0.002) 0.857 (0.001) 0.513 (0.003) 0.308 (0.003) 0.799 (0.001) 0.513 (0.004)
FNN ECFP PSC 0.244 (0.009) 0.893 (0.003) 0.685 (0.015) 0.216 (0.010) 0.818 (0.005) 0.659 (0.015)
MGraphDTA MCNN MGNN 0.207 (0.001) 0.900 (0.004) 0.710 (0.005) 0.128 (0.001) 0.902 (0.001) 0.801 (0.001)
a

These results are taken from DeepDTA.2

b

These results are taken from WideDTA.28

c

These results are taken from GraphDTA.31

d

These results are taken from DeepAffinity.32 — These results are not reported from original studies.