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Detection of Respiratory Infections Using
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Abstract—CoronavirusDisease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronaviruses 2 (SARS-
CoV-2) has become a serious global pandemic in the past few
months and caused huge loss to human society worldwide.
For such a large-scale pandemic, early detection and isolation
of potential virus carriers is essential to curb the spread of
the pandemic. Recent studies have shown that one important
feature of COVID-19 is the abnormal respiratory status caused
by viral infections. During the pandemic, many people tend to
wear masks to reduce the risk of getting sick. Therefore, in this
paper, we propose a portable non-contact method to screen
the health conditions of people wearing masks through analy-
sis of the respiratory characteristics from RGB-infrared sen-
sors. We first accomplish a respiratory data capture technique for people wearing masks by using face recognition. Then,
a bidirectional GRU neural network with an attention mechanism is applied to the respiratory data to obtain the health
screening result. The results of validation experiments show that our model can identify the health status of respiratory
with 83.69% accuracy, 90.23% sensitivity and 76.31% specificity on the real-world dataset. This work demonstrates that
the proposed RGB-infrared sensors on portable device can be used as a pre-scan method for respiratory infections, which
provides a theoretical basis to encourage controlled clinical trials and thus helps fight the current COVID-19 pandemic.
The demo videos of the proposed system are available at: https://doi.org/10.6084/m9.figshare.12028032.
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I. INTRODUCTION

TO TACKLE the outbreak of the COVID-19 pandemic,
early control is essential. Among all the control measures,

efficient and safe identification of potential patients is the
most important part. Existing researches show that the human
physiological state can be perceived through breathing [1],
which means respiratory signals are vital signs that can reflect
human health conditions to a certain extent [2]. Many clinical
literature suggests that abnormal respiratory symptoms may
be important factors for the diagnosis of some specific dis-
eases [3]. Recent studies have found that COVID-19 patients
have obvious respiratory symptoms such as shortness of
breath fever, tiredness, and dry cough [4], [5]. Among those
symptoms, atypical or irregular breathing is considered as
one of the early signs according to the recent research [6].
For many people, early mild respiratory symptoms are diffi-
cult to be recognized. Therefore, through the measurement
of respiration conditions, potential COVID-19 patients can
be screened to some extent. This may play an auxiliary
diagnostic role, thus helping find potential patients as early
as possible.

Traditional respiration measurement requires attachments of
sensors to the patient’s body [7]. The monitor of respiration
is measured through the movement of the chest or abdomen.
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Contact measurement equipment is bulky, expensive, and time-
consuming. The most important thing is that the contact during
measurement may increase the risk of spreading infectious dis-
eases such as COVID-19. Therefore, the non-contact measure-
ment is more suitable for the current situation. In recent years,
many non-contact respiration measurement methods have been
developed based on image sensors, doppler radar [8], depth
camera [9] and thermal camera [10]. Considering factors such
as safety, stability and price, the measurement technology of
thermal imaging is the most suitable for extensive promotion.
So far, thermal imaging has been used as a monitoring tech-
nology in a wide range of medical fields such as estimations of
heart rate [11] and breathing rate [12]–[14]. Another important
thing is that many existing respiration measurement devices
are large and immovable. Given the worldwide pandemic,
the portable and intelligent screening equipment is required to
meet the needs of large-scale screening and other application
scenarios in a real-time manner. For thermal imaging-based
respiration measurement, nostril regions and mouth regions
are the only focused regions since only these two parts have
periodic heat exchange between the body and the outside
environment. However, until now, researchers have barely con-
sidered measuring thermal respiration data for people wearing
masks. During the epidemic of infectious diseases, masks
may effectively suppress the spread of the virus according to
recent studies [15], [16]. Therefore, to develop the respiration
measurement method for people wearing masks becomes quite
practical. In this study, we develop a portable and intelligent
health screening device that uses thermal imaging to extract
respiration data from masked people, which is then used
to do the health screening classification via deep learning
architecture.

In classification tasks, deep learning has achieved state-
of-the-art performance in most research areas. Compared
with traditional classifiers, classifiers based on deep learning
can automatically identify the corresponding features and
their correlations rather than extracting features manually.
Recently, many researchers have developed detection methods
of COVID-19 cases through medical imaging techniques such
as chest X-ray imaging and chest CT imaging [17]–[19].
These studies have proved that deep learning can achieve
high accuracy in detection of COVID-19. Based on the
nature of the above methods, they can only be used for
the examination of highly suspected patients in hospitals,
and may not meet the requirements for the larger-scale
screening in public places. Therefore, this paper pro-
poses a scheme based on breath detection via a thermal
camera.

For breathing tasks, deep learning-based algorithm can also
better extract the corresponding features such as breathing rate
and inhale-to-exhale ratio, and make more accurate predic-
tions [20]–[23]. Recently, many researchers made use of deep
learning to analyze the respiratory process. Cho et al. used a
convolutional neural network (CNN) to analyze human breath-
ing parameters to determine the degree of nervousness through
thermal imaging [24]. Romero et al. applied a language model
to detect acoustic events in sleep-disordered breathing through
related sounds [25]. Wang et al. utilized deep learning and

depth camera to classify abnormal respiratory patterns in
real-time and achieved excellent results [9].

In this paper, we propose a remote, portable and intelli-
gent health screening system based on respiratory data for
pre-screening and auxiliary diagnosis of respiratory diseases
like COVID-19. To be more practical in situations where
people often choose to wear masks, the breathing data capture
method for people wearing masks is introduced. After extract-
ing breathing data from the videos obtained by the thermal
camera, a deep learning neural network is performed to work
on the classification between healthy and abnormal respiration
conditions. To verify the robustness of our algorithm and the
effectiveness of the proposed equipment, we analyze the influ-
ence of mask type, measurement distance and measurement
angle on breathing data collection.

The main contributions of this paper are threefold. First,
we combine the face recognition technology with dual-mode
imaging to accomplish a respiratory data extraction method for
people wearing masks, which is quite essential for the current
situation. Based on our dual-camera algorithm, the respiration
data is successfully obtained from masked facial thermal
videos. Subsequently, we propose a classification method
to judge abnormal respiratory states with a deep learning
framework. Finally, based on the two contributions mentioned
above, we have implemented a non-contact and efficient health
screening system for respiratory infections using the collected
data from the hospital, which may contribute to finding the
possible cases of COVID-19 and keeping the control of
the second spread of SARS-CoV-2.

II. METHOD

A brief introduction to the proposed respiration condition
screening method is shown below. We first use the portable
and intelligent screening device to get the thermal and the
corresponding RGB videos. During the data collection, we also
perform a simple real-time screening result. After getting the
thermal videos, the first step is to extract respiration data
from faces in thermal videos. During the extraction process,
we use the face detection method to capture people’s masked
areas. Then a region of interest (ROI) selection algorithm is
proposed to get the region from the mask that stands for
the characteristic of breath most. Finally, we use a bidi-
rectional GRU neural network with an attention mechanism
(BiGRU-AT) model to work on the classification task with the
input respiration data. A key point in our method is to collect
respiration data from facial thermal videos, which has been
proved to be effective by many previous studies [26]–[28].

A. Overview of the Portable and Intelligent Health
Screening System for Respiratory Infections

Our data collection obtained by the system is shown in
Fig. 1. The whole screening system includes a FLIR one
thermal camera, an Android smartphone and the corresponding
application we have written, which is used for data acquisition
and simple instant analysis. Our screening equipment, whose
main advantage is portable, can be easily applied to measure
abnormal breathing in many occasions of instant detection.
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Fig. 1. Overview of the portable and intelligent health screening system
for respiratory infections: a) device appearance; b) analysis result of
the application. (Notice that the system can simultaneously collect body
temperature signals. In the current work, this body temperature signal
is not considered in the model and is only used as a reference for the
users.)

As shown in Fig. 1, the FLIR one thermal camera consists
of two cameras, an RGB camera and a thermal camera.
We collect the face videos from both cameras and use face
recognition method to get the nostril area and forehead area.
The temperatures of the two regions are calculated in time
series and shown in the screening result page in Fig. 1(b).
The red line stands for the body temperature and the blue line
stands for breathing data. From the breathing data, we can
predict the respiratory pattern of the test case. Then, a simple
real-time screening result is given directly in the application
according to the extracted features shown in Fig. 1. We use the
raw face videos collected from both RGB camera and thermal
camera as the data for further study to ensure accuracy and
higher performance.

B. Detection of Masked Region From Dual Mode Image
When continuous breathing activities perform, there is a

fact that periodic temperature fluctuations occur around the
nostril due to the inspiration and expiration cycles. Therefore,
respiration data can be obtained by analyzing the temperature
data around the nostril based on the thermal image sequence.
However, when people wear masks, many facial features are
blocked because of this. Merely recognizing the face through
thermal image will lose a lot of geometric and textural facial
details, resulting in recognition errors of the face and mask
parts. In order to solve this problem, we adopt the method
based on two parallel located RGB and infrared cameras for
face and mask region recognition. The masked region of the
face is first captured in the RGB camera, then such a region is
mapped to the thermal image with a related mapping function.

The algorithm for masked face detection is based on the
pyramidbox model created by Tang et al. [29]. The main
idea is to apply tricks like the Gaussian pyramidbox in deep
learning to get the context correlations as further character-
istics. The face image is first used to extract features of
different scales using the Gaussian pyramid algorithm. For
those high-level contextual features, a feature pyramid network

is proposed to further excavate high-level contextual features.
Then, the output and those low-level features are combined in
low-level feature pyramid layers. Finally, the result is obtained
after another two layers of deep neural network. For faces
that a lot of features are lost due to the cover of a mask,
such a context-sensitive structure can obtain more feature
correlations and thus improve the accuracy of face detection.
In our experiment, we use the open-source model from the
paddle hub which is specially trained for masked faces to
detect the face area on RGB videos.

The next step is to extract the masked area and map the area
from RGB video to thermal video. Since the position of the
mask on the human face is fixed, after obtaining the position
coordinates of the human face, we obtain the mask area of the
face by scaling down in equal proportions. For a detected face
with width w, and height h, the location of left-up corner is
defined as (0, 0), the location of right-bottom corner is then
(w, h). The corresponding coordinate of the two corners of
the mask region is declared as (w/4, h/2) and (3w/4, 4h/5).
Considering that the background to the boundary of the mask
will produce a large contrast with the movement, which is
easy to cause errors, we choose the center area of the mask
through this division. Then the selected area is mapped from
the RGB image to thermal image to obtain the masked region
in thermal videos.

C. Extract Respiration Data From ROI
After getting the masked region in thermal videos, we need

to get the region of interest (ROI) that represents breathing fea-
tures. Recent studies often characterize breathing data through
temperature changes around the nostril [11], [30]. However
when people wear masks, there exists another problem that
the nostrils are also blocked by the masks, and when people
wearing different masks, the ROI may be different. Therefore,
we perform an ROI tracking method based on maximizing the
variance of thermal image sequence to extract a certain area
on the masked region of the thermal video which stands for
the breath signals most.

Due to the lack of texture features in masked regions com-
pared to human faces, we judge the ROI from the temperature
change of the thermal image sequence. The main idea is to
traverse the masked region in the thermal images and find a
small block with the largest temperature change as the selected
ROI. The position of a certain block is fixed in the masked
region among all the frames since the nostril area is fixed on
the face region. We do not need to consider the movement of
the block since our face recognition algorithm can detect the
mask position in each frame’s thermal image. For a certain
block with height m, and width n, we define the average pixel
intensity at frame t as:

s̄(t) = 1

mn

m−1∑
i=0

n−1∑
j=0

s(i, j, t) (1)

For thermal images, s̄(t) represents the temperature value
at frame t . For every block we obtained, we calculate their
s̄(t) on time line. Then, for each block n, the total variance
of the list of average pixel intensity with T frames σ 2

s (n) is
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Fig. 2. The pipeline of the respiration data extraction: a) record the RGB video and thermal video through a FLIR one thermal camera; b) use face
detection method to detect face and mask region in the RGB frames and then map the region to the thermal frames; c) capture the ROIs in the
thermal frames of mask region by tracking method; d) extract the respiration data from the ROIs.

Fig. 3. The structure of the BiGRU-AT network: the network consists of four layers: the input layer, the bidirectional layer, the attention layer and an
output layer. The output is a 2 dimension tensor which indicates normal or abnormal respiration condition.

calculated as shown in Eq. 2, where μ stands for the mean
value of s̄(t).

σ 2
s (n) =

∑
(s̄(t)− μ)2

T
(0 < t < T ) (2)

Since respiration is a periodic data spread out from the
nostril area, we can consider that the block with the largest
variance is the position where the heat changes most in
both frequency and value within the mask, which stands for
the breath data mostly in the masked region. We adjust the
corresponding block size according to the size of the masked
region. For a masked region with N blocks, the final ROI is
selected by:

RO I = arg max
1≤n<N

σ 2
s (n) (3)

For each thermal video, we traverse all possible blocks
in the mask regions of each frame and find the ROIs for
each frame by the method above. The respiration data is then
defined as s̄(t)(0 < t < T ), which is the pixel intensities of
ROIs in all the frames.

D. BiGRU-AT Neural Network
We apply a BiGRU-AT neural network to do the classi-

fication task on judging whether the respiration condition is

healthy or not as shown in Fig. 3. The input of the network is
the respiration data obtained by our extraction method. Since
the respiratory data is time series, it can be regarded as a
time series classification problem. Therefore, we choose the
Gate Recurrent Unit (GRU) network with the bi-direction and
attention layer to work on the sequence prediction task.

Among all the deep learning structures, recurrent neural
network (RNN) is a type of neural network which is specially
used to process time series data samples [31]. For a time step
t , the RNN model can be represented by:

h(t) = φ
(

U x (t) + Wh(t−1)+ b
)

(4)

o(t) = V h(t) + c (5)

ŷ(t) = σ
(

o(t)
)

(6)

where x (t), h(t) and o(t) stand for the current input state,
hidden state and output at time step t respectively. V , W, U
are parameters obtained by training procedure. b is the bias
and σ and φ are activation functions. The final prediction
is ŷ(t).

Long-short term memory network is developed based on
RNN [32]. Compared to RNN, which can only memorize
and analyze short-term information, it can process relatively
long-term information, and is suitable for problems with
short-term delays or long time intervals. Based on LSTM,
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many related structures are proposed in recent years [33]. GRU
is a simplified LSTM which merges three gates of LSTM (for-
get, input and output) into two gates (update and reset) [34].
For tasks with a few data, GRU may be more suitable than
LSTM since it includes less parameters. In our task, since the
input of the neural network is only the respiration data in time
sequence, the GRU network may perform a better result than
LSTM network. The structure of GRU can be expressed by
the following equations:

rt = σ
(
Wr ·

[
ht−1, xt

]+ br
)

(7)

zt = σ
(
Wz ·

[
ht−1, xt

]+ bz
)

(8)

h̃t = tanh
(
Wh̄ ·

[
rt ∗ ht−1, xt

]+ bh
)

(9)

ht = (1− zt ) ∗ ht−1 + zt ∗ h̃t (10)

where rt is the reset gate that controls the amount of infor-
mation being passed to the new state from the previous states.
zt stands for the update gate which determines the amount
of information being forgotten and added. Wr , Wz and Wh are
trained parameters that vary in the training procedure. h̃t is the
candidate hidden layer which can be regarded as a summary
of the above information ht−1 and the input information xt at
time step t . ht is the output layer at time step t which will be
sent to the next unit.

The bidirectional RNN has been widely used in natural
language processing [35]. The advantage of such a network
structure is that it can strengthen the correlation between the
context of the sequence. As the respiratory data is a periodic
sequence, we use bidirectional GRU to obtain more infor-
mation from the periodic sequence. The difference between
bidirectional GRU and normal GRU is that the backward
sequence of data is spliced to the original forward sequence
of data. In this way, the hidden layer of the original h(t) is
changed to:

ht = [−→ht ,
←−
ht ] (11)

where
−→
ht is the original hidden layer and

←−
ht is the backward

sequence of
−→
ht .

During the analysis of respiratory data, the entire waveform
in time sequence should be taken into consideration. For some
specific breathing patterns such as asphyxia, several particular
features such as sudden acceleration may occur only at a
certain point in the entire process. However, if we only use
the BiGRU network, these features may be weakened as the
time sequence data is input step by step, which may cause a
larger error in prediction. Therefore, we add an attention layer
to the network, which can ensure that certain keypoint features
in the breathing process can be maximized.

Attention mechanism is a choice to focus only on those
important points among the total data [36]. It is often com-
bined with neural networks like RNN. Before the RNN model
summarizes the hidden states for the output, an attention layer
can make an estimation of all outputs and find the most
important ones. This mechanism has been widely used in many

research areas. The structure of attention layer is:
ut = tanh (Wuht + bw) (12)

at = exp
(
u�t uw

)
∑

t exp
(
u�t uw

) (13)

s =
∑

t

αt ht (14)

where ht represents the BiGRU layer output at time step t ,
which is bidirectional. Wu and bw are also parameters that
vary in the training process. at performs a softmax function
on ut to get the weight of each step t . Finally, the output of the
attention layer s is a combination of all the steps from BiGRU
with different weights. By applying another softmax function
to the output s, we get the final prediction of the classification
task. The structure of the whole network is shown in Fig. 3.

III. EXPERIMENTS

A. Dataset Explanation and Experimental Settings
Our goal is to distinguish whether there is an epidemic

of infectious disease such as COVID-19 according to the
abnormal breathing in the respiratory system. We collect the
healthy dataset from people around our authors. And the
abnormal dataset was obtained from the inpatients of the respi-
ratory disease department and cardiology department in Ruijin
Hospital. Most of the patients we collected data from caught
basic or chronic respiratory diseases. Only some of them have
a fever, which is one of the typical respiratory symptoms of
infectious diseases. Therefore, the body temperature is not
taken into consideration in our current screening system.

We use a FLIR one thermal camera connected to an Android
phone to work on the data collection. We collected data
from 73 people. For each person, we collected two 20-second
infrared and RGB videos with a sampling frequency of 10 Hz.
During the data collection process, all testers were required to
be about 50 cm away from the camera and face the camera
directly to ensure data consistency. The testers were asked
to stay still and breathe normally during the whole process,
but small movements were allowed. For each infrared and
RGB videos collected, we sampled in step of 100 frames with
a sampling interval of 3 frames. Thus we finally obtained
1,925 healthy breathing data and 2,292 abnormal breathing
data, a total of 4,217 data. Each piece of data consists
of 100 frames of infrared and RGB videos in 10 seconds.

In the BiGRU-AT network, the hidden cells in the BiGRU
layer and attention layers are 32 and 8 respectively. The
breathing data is normalized before input into the neural
network and we use cross-entropy as the loss function. During
the training process, we separate the dataset into two parts.
The training set includes 1,427 healthy breathing data and
1,780 abnormal breathing data. And the test set contains
498 healthy breathing data and 512 abnormal breathing data.
Once this paper is accepted, we will release the dataset used
in the current work for non-commercial users.

Among the whole dataset, we choose 4 typical respiratory
data examples as shown in Fig. 4. Fig. 4(a) and Fig. 4(b) stand
for the abnormal respiratory patterns extracted from patients.
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Fig. 4. Comparison of normal and abnormal respiratory data extracted
by our method: a), b) are abnormal data collected from patients in the
general ward of the respiratory department in Ruijin Hospital; c), d) are
normal data collected from healthy volunteers.

TABLE I
EXPRIMENTAL RESULTS ON THE TEST SET

Fig. 4(c) and Fig. 4(d) represent the normal respiratory pat-
tern called Eupnea from healthy participants. By comparison,
we can find that the respiratory of normal people are in strong
periodic and evenly distributed while abnormal respiratory
data tend to be more irregular. Generally speaking, most
abnormal breathing data from respiratory infections have faster
frequency and irregular amplitude.

B. Experimental Result
The experimental results are shown in Table. I. We consider

four evaluation metrics viz. Accuracy, Sensitivity, Specificity
and F1. To measure the performance of our model, we com-
pare the result of our model with three other models which
are GRU-AT, BiLSTM-AT and LSTM respectively. The result
of sensitivity reaches 90.23% which is far more higher than
the specificity of 76.31%. This may have a positive effect
on the screening of potential patients since the false nega-
tive rate is relatively low. Our method performs better than
any other network in all evaluation metrics with the only
exception in the sensitivity value of GRU-AT. By comparison,
the experimental result demonstrates that attention mechanism
is well-performed in keeping important node features in the
time series of breathing data since the networks with attention
layer all perform a better result than LSTM. Another point is
that GRU based networks achieve better results than LSTM
based networks. This may because our data set is relatively
small which can’t fill the demand of the LSTM based net-
works. GRU based networks require less data than LSTM and
perform better result in our respiration condition classification
task.

To figure out the detailed information about the classifica-
tion of the respiratory state, we plotted the confusion matrix
of the four models as demonstrated in Fig. 5. As can be seen

Fig. 5. Confusion matrices of the four models. Each row is the number
of real labels and each column is the number of predicted labels. The left
one is the result of BiGRU-AT, the right one is the result of LSTM.

from the results, the performance improvement of BiGRU-AT
compared to LSTM is mainly in the accuracy rate of the
negative class. This is because many scatter-like abnormalities
in the time series of abnormal breathing are better recognized
by the attention mechanism. Besides, the misclassification rate
of the four networks is relatively high to some extent which
may be because many positive samples do not have typical
respiratory infections characteristics.

C. Analysis
During the data collection process, all testers were required

to be about 50 cm away from the camera and face the
camera directly to ensure data consistency. However, in real-
time conditions, the distance and angles of the testers towards
the device cannot be so accurate. Therefore, in the analysis
section, we give 3 comparisons from different aspects to prove
the robustness of our algorithm and device.

1) Influence of Mask Types on Respiratory Data: To measure
the robustness of our breathing data acquisition algorithm and
the effectiveness of the proposed portable device, we analyze
the breathing data of the same person wearing different
masks. We design 3 mask-wearing scenarios that cover most
situations: wearing one surgical mask (blue line); wearing one
KN95 (N95) mask (red line) and wearing two surgical masks
(green line). The results are shown in Fig. 6. It can be seen
from the experimental results that no matter what kind of
mask is worn, or even two masks, the respiratory data can be
well recognized. This proves the stability of our algorithm and
device. However, since different masks have different thermal
insulation capabilities, the average breathing temperature may
vary as the mask changes. To minimize this error, respiratory
data are normalized before input into the neural network.
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Fig. 6. The raw respiratory data obtained through the breathing data
extraction algorithm with different types of masks.

Fig. 7. The raw respiratory data which is obtained under the distance
between camera and device from 0 to 2 meters. During the 200 frames’
acquisition process, the distance between the tester and the device
varies from 0.1 meters to 2 meters at a stable speed.

2) Limitation of Distance to the Camera During Measurement:
To verify the robustness of our algorithm and device in dif-
ferent scenarios, we design experiments to collect respiratory
data at different distances. Considering the limitations of
handheld devices, we test the collection of facial respiration
data from a distance of 0 to 2 meters. During one 20 seconds’
data collection process, the distance between the tester and
the device varies from 0 to 2 meters at a stable speed.
The result is demonstrated in Fig. 7. The signal tends to be
periodic from the position of 0.1 meters, and it does not
lose regularity until about 1.8 meters. At a distance of about
10 centimeters, the complete face begins to appear in the
camera video. When the distance comes to 1.8 meters, our
face detection algorithm begins to fail gradually due to the
distance and pixel limitation. This experiment verifies that
our algorithm and device can guarantee relatively accurate
measurement results in the distance range of 0.1 meters to
1.8 meters. In future research, we will improve the effec-
tive distance through improvements in algorithm and device
precision.

Fig. 8. The raw respiratory data obtained while the rotation angle varies
from 45 degrees to 0 degrees at a stable speed. The blue line stands for
the rotation in pitch axis and the red line stands for the rotation in yaw
axis.

3) Limitation of Rotations Toward the Camera During Mea-
surement: Considering that breath detection will be applied
in different scenarios, we cannot assure that the testers would
face the device directly with no error angle. Therefore, this
experiment is designed to show the respiratory data extraction
performance when faces rotate in pitch axis and yaw axis.
We define the camera directly towards the face to be 0 degrees,
and design an experiment in which the rotation angle gradually
changed from 45 degrees to 0 degrees. We consider the
transformation of two rotation axes: yaw and pitch, which
respectively represent left and right turning and nodding.
The results in the two cases are quite different as shown in
Fig. 8. Our algorithm and device maintain good results in
yaw rotation, but it is difficult to obtain precise respiratory
data in pitch rotation. This means participants can turn left
or turn right during the measurement but can’t nod or head
up a lot since this may impact the current measurement
result.

IV. CONCLUSION

In this paper, we propose an abnormal breathing detection
method based on a portable dual-mode camera which can
record both RGB and thermal videos. In our detection method,
we first accomplished an accurate and robust respiratory data
detection algorithm which can precisely extract breathing data
from people wearing masks. Then, a BiGRU-AT network is
applied to work on the screening of respiratory infections.
In validation experiments, the obtained BiGRU-AT network
achieves a relatively good result with an accuracy of 83.7% on
the real-world dataset. For patients caught respiratory diseases,
the sensitivity value is 90.23%. It is foreseeable that among
patients with COVID-19 who have more clinical respiratory
symptoms, this classification method may yield better results.
The result of our experiments provide a theoretical basis for
scanning respiratory diseases through thermal respiratory data,
which serves as an encouragement for controlled clinical trials
and call for labeled breath data. During the current spread of
COVID-19, our research can work as a pre-scan method for
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abnormal breathing in many scenarios such as communities,
campuses and hospitals, contributing to distinguishing the
possible cases, and then slowing down the spreading of the
virus.

In future research, based on ensuring portability, we plan
to use a more stable algorithm to minimize the effects caused
by different masks on the measurement of breathing condi-
tions. Besides, temperature may be taken into consideration to
achieve a higher detection accuracy on respiratory infections.
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