Skip to main content
. 2021 Apr 19;8(16):12826–12846. doi: 10.1109/JIOT.2021.3073904

TABLE II. Performance of the Different Trained Models for COVID-19 Diagnosis and the Clinical Condition Classification Problems.

M-I
Method #Features Accuracy F1 Score Sensitivity Precision Specificity
MLP (ReLu) 16 81.99 62.43 56.22 70.19 91.31
SVM (Linear) 15 79.81 65.03 70.76 60.41 83.21
Decision Tree using Entropy 9 74.75 59.1 68.65 52.72 77.22
Random Forest using Entropy 11 75.21 59.52 68.50 52.71 77.68
lightgray Logistic Regression 15 78.97 64.47 71.84 58.60 81.63
SVM (Polynomial) 14 77.05 62.29 71.22 55.43 79.2
M-II
SVM (Linear) 30 72.34 79.14 80.29 78.24 57.12
Decision Tree using Entropy 6 67.59 74.53 72.32 76.93 58.54
Logistic Regression 28 72.01 77.88 75.32 80.84 65.71
MLP (ReLu) 10 72.17 80.32 86.53 74.95 44.69
AdaBoost 7 71.36 77.36 74.56 80.38 65.21
Bagging KNN 23 73.32 80.46 83.77 77.45 53.25