Table 3.
Raw material composition | Pyrolysis conditions, reactor type, analytical technique | PIONA | Carbon range, IBP-FBP | Reference |
---|---|---|---|---|
28.9 % LDPE 51.7 % HDPE 11.2 % PP 2.5 % PVC 5.5 % Others |
500 °C Atmospheric pressure Stirred batch reactor GC–MS |
33 % Paraffins 50 % Olefins 4 % Naphthenes 4 % Oxygenates 9 % Others |
C9 – C34 30 °C – 324 °C |
(Miskolczi and Ateş, 2016) |
31 % LDPE 26 % HDPE 8 % PP 16 % PET 4 % PVC 1% PS |
500 °C Atmospheric pressure Fixed bed reactor GC–MS(a) |
3 % Paraffins 28 % Iso-paraffins 9 % Olefins 4 % Naphthenes 28 % Aromatics 29 % Oxygenates |
C5 – C17 | (Anuar Sharuddin et al., 2017) |
Pure waste HDPE | 430 °C Atmospheric pressure Stirred semi-batch reactor GC–MS/FID |
40 % Paraffins 40 % Olefins 15 % Naphthenes 5 % Others |
C5 – C28 35 °C – 431 °C(b) |
(Lee et al., 2003) |
Waste HDPE | 450 °C Atmospheric pressure Batch reactor GC–MS |
41 % Paraffins 40 % Olefins 1 % Aromatics 18 % Naphthenes |
C6 – C33 40 °C – 560 °C |
(Seo et al., 2003) |
Waste HDPE | 450 °C Atmospheric pressure Batch reactor GC-TCD |
45 % Paraffins 49 % Olefins 3 % Aromatics 2 % Others |
C5 – C26 24 °C – 280 °C |
(Miskolczi, 2013) |
Pure waste PE | 400 °C Steel tube GC-FID |
34 % Paraffins(c) 41 % Olefins 6 % Aromatics 19 % Naphthenes 1 % Others |
C7 – C20 | (Demirbas, 2004) |
Pure waste PE | 450 °C Steel tube GC-FID |
40 % Paraffins 39 % Olefins 2 % Aromatics 19 % Naphthenes 1 % Others |
C7 – C20 | (Demirbas, 2004) |
Pure waste PE | 525 °C Steel tube GC-FID |
44 % Paraffins 35 % Olefins 4 % Aromatics 18 % Naphthenes |
C7 – C20 | (Demirbas, 2004) |
Pure waste PE | 600 °C Steel tube GC-FID |
44 % Paraffins 33 % Olefins 6 % Aromatics 17 % Naphthenes |
C7 – C20 | (Demirbas, 2004) |
Pure waste LDPE | 400 °C Atmospheric pressure Stirred semi-batch reactor GC–MS |
36 % Paraffins 42 % Olefins 22 % Naphthenes |
C6 – C26 | (Lee, 2007) |
Pure waste HDPE | 400 °C Atmospheric pressure Stirred semi-batch reactor GC–MS |
52 % Paraffins 33 % Olefins 16 % Naphthenes |
C6 – C26 | (Lee, 2007) |
Pure waste PP | 400 °C Atmospheric pressure Stirred semi-batch reactor GC–MS |
5 % Paraffins 72 % Olefins 22 % Naphthenes |
C6 – C26 | (Lee, 2007) |
Pure waste PP | 400 °C Steel tube GC-FID |
30 % Paraffins 45 % Olefins 1 % Aromatics 22 % Naphthenes 2 % Others |
C7 – C20 | (Demirbas, 2004) |
Pure waste PP | 450 °C Steel tube GC-FID |
28 % Paraffins 42 % Olefins 5 % Aromatics 23 % Naphthenes 2 % Others |
C7 – C20 | (Demirbas, 2004) |
Pure waste PP | 525 °C Steel tube GC-FID |
25 % Paraffins 40 % Olefins 9 % Aromatics 24 % Naphthenes 3 % Others |
C7 – C20 | (Demirbas, 2004) |
Pure waste PP | 600 °C Steel tube GC-FID |
30 % Paraffins 36 % Olefins 10 % Aromatics 24 % Naphthenes 1 % Others |
C7 – C20 | (Demirbas, 2004) |
Municipal plastic waste (mixture of PE, PP and PS) | 400 °C Steel tube GC-FID |
33 % Paraffins 37 % Olefins 8 % Aromatics 21 % Naphthenes 2 % Others |
C7 – C20 | (Demirbas, 2004) |
Municipal plastic waste (mixture of PE, PP and PS) | 450 °C Steel tube GC-FID |
31 % Paraffins(d) 33 % Olefins 13 % Aromatics 21 % Naphthenes 2 % Others |
C7 – C20 | (Demirbas, 2004) |
Municipal plastic waste (mixture of PE, PP and PS) | 525 °C Steel tube GC-FID |
31 % Paraffins 32 % Olefins 13 % Aromatics 23 % Naphthenes 1 % Others |
C7 – C20 | (Demirbas, 2004) |
Municipal plastic waste (mixture of PE, PP and PS) | 600 °C Steel tube GC-FID |
33 % Paraffins 32 % Olefins 12 % Aromatics 23 % Naphthenes 1 % Others |
C7 – C20 | (Demirbas, 2004) |
Plastic solid waste consisting of PE, PP, PS, PA and trace amounts of food residuals. | 430 °C Atmospheric pressure GC × GC-FID |
5 % Paraffins 8 % Iso-paraffins 12 % Olefins and naphthenes 67 % Aromatics 2 % Oxygenates 5 % Nitrogen containing compounds |
C5 – C44 | (Toraman et al., 2014) |
32 % PE 13 % PP 18 % PS 8 % PVC 15 % PET 14 % Others |
420 °C CSTR Niigata waste plastics liquefaction process |
18 % Paraffins and naphthenes(e) 26 % Olefins(f) 56 % Aromatics |
Light fraction 40 °C – 250 °C | (Okuwaki et al., 2006) |
32 % PE 13 % PP 18 % PS 8 % PVC 15 % PET 14 % Others |
420 °C CSTR Niigata waste plastics liquefaction process |
41 % Paraffins and naphthenes(e) 27 % Olefins(f) 32 % Aromatics |
Medium fraction 110 °C – 500 °C |
(Okuwaki et al., 2006) |
38 % PE 16 % PP 16 % PS 3 % PVC 12 % PET 15 % Others |
400 °C Rotary kiln reactor Sapporo waste plastics liquefaction process |
9 % Paraffins and naphthenes(e) 20 % Olefins(f) 71 % Aromatics |
Light fraction C4 – C12 55 °C – 180 °C |
(Okuwaki et al., 2006) |
38 % PE 16 % PP 16 % PS 3 % PVC 12 % PET 15 % Others |
400 °C Rotary kiln reactor Sapporo waste plastics liquefaction process |
21 % Paraffins and naphthenes(e) 52 % Olefins(f) 27 % Aromatics |
Medium fraction C7 – C20 195 °C – 320 °C |
(Okuwaki et al., 2006) |
35 % LDPE 32 % HDPE 24 % PP 4 % PVC 5 % Others |
550 – 560 °C Horizontal tubular reactor GC-FID/TCD |
26 % Paraffins 28 % Olefins 44 % Branched hydrocarbons 2 % Aromatics |
C5 – C35 | (Fekhar et al., 2019) |
Municipal plastic waste (unspecified) | 400 °C CSTR Mikasa waste plastics liquefaction plant |
31 % Paraffins and naphthenes(e) 18 % Olefins(f) 51 % Aromatics |
Light fraction 40 °C – 240 °C |
(Okuwaki et al., 2006) |
Municipal plastic waste (unspecified) | 400 °C CSTR Mikasa waste plastics liquefaction plant |
55 % Paraffins 23 % Olefins 22 % Aromatics |
Heavy fraction 110 °C – >360 °C |
(Okuwaki et al., 2006) |
Mixed plastic packaging waste | CSTR GC × GC-FID |
15 % Paraffins 2 % Iso-paraffins 35 % Olefins 9 % Iso-olefins 4 % Diolefins 26 % Naphthenes 9 % Aromatics |
Light fraction C7 – C22 |
(Dao Thi et al., 2021) |
Mixed plastic packaging waste | CSTR GC × GC-FID |
28 % Paraffins 4 % Iso-paraffins 36 % Olefins 9 % Iso-olefins 4 % Diolefins 17 % Naphthenes 2 % Aromatics |
Heavy fraction C5 – C11 |
(Dao Thi et al., 2021) |
(a)Composition based on GC–MS peak areas reported.
(b)Carbon number range and boiling points based on molar weight distribution of product reported.
(c)PIONA data normalized due to a reported mass balance of 105 %.
(d)PIONA data normalized due to a reported mass balance of 102 %.
(e)Given as “saturated compounds”
(f)Given as “unsaturated compounds”