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N E T W O R K  S C I E N C E

Lack of practical identifiability may hamper reliable 
predictions in COVID-19 epidemic models
Luca Gallo1,2, Mattia Frasca3,4*, Vito Latora1,2,5,6, Giovanni Russo7

Compartmental models are widely adopted to describe and predict the spreading of infectious diseases. The 
unknown parameters of these models need to be estimated from the data. Furthermore, when some of the model 
variables are not empirically accessible, as in the case of asymptomatic carriers of coronavirus disease 2019 
(COVID-19), they have to be obtained as an outcome of the model. Here, we introduce a framework to quantify 
how the uncertainty in the data affects the determination of the parameters and the evolution of the unmeasured 
variables of a given model. We illustrate how the method is able to characterize different regimes of identifiability, 
even in models with few compartments. Last, we discuss how the lack of identifiability in a realistic model for 
COVID-19 may prevent reliable predictions of the epidemic dynamics.

INTRODUCTION
The pandemic caused by severe acute respiratory syndrome 
coronavirus-2 is challenging humanity in an unprecedented way 
(1), with the disease, which in a few months has spread around the 
world, affecting large parts of the population (2, 3) and often requir-
ing hospitalization or even intensive care (4, 5). Mitigating the impact 
of coronavirus disease 2019 (COVID-19) urges synergistic efforts to 
understand, predict, and control the many, often elusive, facets of 
the complex phenomenon of the spreading of a previously unknown 
virus, from RNA sequencing to the study of the virus pathogenicity 
and transmissibility (6,  7) to the definition of suitable epidemic 
spreading models (8) and the investigation of nonpharmaceutical 
intervention policies and containment measures (9–12). In particu-
lar, a large number of epidemic models have recently been proposed 
to describe the evolution of COVID-19 and evaluate the effectiveness 
of different counteracting measures, including social distancing, 
testing, and contact tracing (13–19). However, even the adoption of 
well-consolidated modeling techniques, such as the use of mecha-
nistic models at the population level based on compartments, poses 
fundamental problems. First of all, the very same choice of the 
dynamical variables to use in a compartmental model is crucial; 
as such, variables should adequately capture the spreading mecha-
nisms and need to be tailored to the specific disease. This step is not 
straightforward, especially when the spreading mechanisms of the 
disease are still unknown or only partially identified. In addition, 
some of the variables considered might be difficult to measure and 
track as, for instance, in the case of COVID-19, it occurred in 
the number of individuals showing mild or no symptoms. Second, 
compartmental models, usually, involve a number of parameters, 
including the initial values of the unmeasured variables, which are 
not known and need to be estimated from data.

Having at disposal a large amount of data, unfortunately, does 
not simplify the problem of parameter estimation and prediction of 
unmeasured states. Once a model is formulated, it may occur that 
some of its unknown parameters are intrinsically impossible to 
determine from the measured variables or that they are numerically 
very sensitive to the measurements themselves. In the first case, it is 
the very same structure of the model to hamper parameter estima-
tion as the system admits infinitely many sets of parameters that fit 
the data equally well; for this reason, this problem is referred to as 
structural identifiability (20, 21). In the second case, although under 
ideal conditions (i.e., noise-free data and error-free models) the 
problem of parameter estimation can be uniquely solved for some 
trajectories, it may be numerically ill conditioned, such that from a 
practical point of view, the parameters cannot be determined with 
precision even if the model is structurally identifiable (22). This 
situation typically occurs when large changes in the parameters entail 
a small variation of the measured variables, such that two similar 
trajectories may correspond to very different parameters (23). The 
term practical identifiability is adopted in this case.

Identifiability in general represents an important property of a 
dynamical system, as in a nonidentifiable system, different sets of 
parameters can produce the same or very similar fits of the data. 
Consequently, predictions from a nonidentifiable system become 
unreliable. In the context of epidemics forecasting, this means that 
even if the model considered is able to reproduce the measured 
variables, a large uncertainty may affect the estimated values of 
the parameters and the predicted evolution of the unmeasured 
variables (24).

The problem of practical identifiability of model parameters has 
been investigated using different methodologies based on Fisher’s 
information theory (25,  26), profile likelihood (27), Monte Carlo 
simulations (28), and other computational approaches (29). How-
ever, the lack of practical identifiability can also affect the reliability 
of the prediction of the unmeasured variables dynamics (27), an 
issue of utmost importance in the context of COVID-19, which 
nevertheless still requires a systematic investigation. In particular, 
an approach to simultaneously characterize the problem of sensitivity 
to parameters and that of the reliability of predictions of unmeasured 
variables is still missing.

In more detail, in this paper, we investigate the problem of the 
practical identifiability of dynamical systems whose state includes 
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not only measurable but also hidden variables, as is the case of com-
partment models for COVID-19 epidemic. We present a general 
framework to quantify not only the sensitivity of the measured 
variables of a given model on its parameters but also the sensitiv-
ity of the unmeasured variables on the parameters and on the 
measured variables. This will allow us to introduce the notion of 
practical identifiability of the hidden variables of a model. As a 
relevant and timely application, we show the variety of different 
regimes and levels of identifiability that can appear in epidemic 
models, even in the simplest case of a four compartment system. 
Last, we study the actual effects of the lack of practical identifiability 
in more sophisticated models introduced for COVID-19.

RESULTS
Dynamical systems with hidden variables
Consider the n-dimensional dynamical system described by the 
following equations

   
 m ̇  

  
=
  

f(m, h, q ) ,
   

 h ̇  
  
=
  

g(m, h, q)
    (1)

where we have partitioned the state variables into two sets: the variables 
m ∈ ℝnm that can be empirically accessed (measurable variables) 
and those h ∈ ℝnh, with nm + nh = n, that cannot be measured (hidden).

The dynamics of the system is governed by the two Lipschitz- 
continuous functions f and g, which also depend on a vector of 
structural parameters q ∈ q ⊂ ℝnq. The trajectories m(t) and h(t) of 
system in eq. 1 are uniquely determined by the structural parameters 
q and by the initial conditions m(0) = m0, h(0) = h0. Here, we 
assume that some of the quantities q are known, while the others 
are not known and need to be determined by fitting the trajectories 
of measurable variables m(t).

We denote by p ∈ p ⊂ ℝnp, the set of unknown parameters that 
identify the trajectories, which comprises the unknown terms of q 
and the unknown initial conditions h0. The initial values of the 
hidden variables are not known and act indeed as parameters for the tra-
jectories generated by system in eq. 1. The initial conditions of the 
measurable variables m0 may be considered fitting parameters as well.

System in eq. 1 is said to be structurally identifiable when the 
measured variables satisfy (21)

  m(t,  ̂  p  ) = m(t, p ) , ∀ t ≥ 0 ⇒  ̂  p  = p  (2)

for almost any p ∈ p. Notice that, as a consequence of the existence 
and uniqueness theorem for the initial value problem, if system 
in eq. 1 is structurally identifiable, the hidden variables can also be 
uniquely determined.

Structural identifiability guarantees that two different sets of 
parameters do not lead to the same time course for the measured 
variables. When this condition is not met, one cannot uniquely 
associate a data fit to a specific set of parameters or, equivalently, 
recover the parameters from the measured variables (23).

Assessing the practical identifiability of a model
Structural identifiability, however, is a necessary but not sufficient 
condition for parameters estimation, so that when it comes to use a 
dynamical system as a model of a real phenomenon, it is fundamen-
tal to quantify the practical identifiability of the dynamical system.

To do this, we consider a solution,   m ̄  (t ) = m(t,   p ̄  )  and    h ̄  (t ) = h(t,   p ̄  ) , 
obtained from parameters  p =   p ̄   , and we explore how much the func-
tions m(t) and h(t) change as we vary the parameters    p ̄     by a small amount 
p. To first order approximation in the perturbation of the parame-
ters, we have  m =  𝛛m _ 𝛛p   p + O(∥ p  ∥   2 )  and  h =  𝛛h _ 𝛛p  p + O(∥ p  ∥   2 ) .

Hence, by dropping the higher order terms, we have  
∥ m  ∥   2  =   ∫ 

0
  
∞

    ∣ m ∣   2  dt =   p   T  Mp  and  ∥ h  ∥   2  =   ∫ 
0
  

∞
    ∣ h ∣   2  dt =  p   T  Hp , 

where the entries of the sensitivity matrices  M = M( p ̄   ) ∈  ℝ    n  p  × n  p     and  
H = H( p ̄   ) ∈  ℝ    n  p  × n  p     for the measured and unmeasured variables are 
defined as

   (M)  ij   =   ∫ 
0
  
∞

     ∂  m   T  ─ ∂  p  i  
     ∂ m ─ ∂  p  j  

   dt ;  (H)  ij   =   ∫ 
0
  
∞

     ∂  h   T  ─ ∂  p  i  
     ∂ h ─ ∂  p  j  

   dt  (3)

Note that these matrices are positive semidefinite by con-
struction. The smallest change in the measured variables m(t) will 
take place if p is aligned along the eigenvector v1 of M correspond-
ing to the smallest eigenvalue 1(M). Hence, we can consider   =  
√ 
_

    1  (M)    to quantify the sensitivity of the measured variables to the 
parameters. Practical identifiability requires high values of  as 
these indicate cases where small changes in the parameters may 
produce considerable variations of the measurable variables, and 
therefore, the estimation of the model parameters from fitting is 
more reliable.

Suppose now we consider a perturbation, p1, of the parameters 
aligned along the direction of v1. We can evaluate the change in h(t) 
due to this perturbation by

      2  =   
  p 1  T  H  p  1  

 ─ 
  p 1  T    p  1  

    (4)

The value of  quantifies the sensitivity of the hidden variables to 
the parameters of the model, when these parameters are estimated 
from the fitting of the observed variables since ∥h ∥ =  ∥ p1∥.

Notice that in this case, and differently from , lower values of 
 are desirable because they imply a better prediction on the hidden 
variables.

Last, with the help of the sensitivity matrices defined above, we 
can also evaluate the sensitivity of the hidden variables to the mea-
sured variables as

      2  =   max  
∥p∥=1

       p   T  Hp ─ 
  p   T  Mp

    (5)

This parameter is of particular relevance here, since it provides a 
bound on how the uncertainty on the measured variables affects the 
evolution of the hidden variables. In addition, the parameter 2 can 
be efficiently computed as it corresponds to the maximum general-
ized eigenvalue of matrices (H, M), as shown in Materials and 
Methods.

The sensitivity matrices are useful in studying the effect of 
changing the number of hidden variables and unknown parameters 
on the practical identifiability of a model. Assume that we have 
access to one more variable, thus effectively increasing the size of 
the set of measured variables to nm′ = nm + 1 and, correspondingly, 
reducing that of the unmeasured variables to nh′ = nh − 1. This cor-
responds to considering new variables m´ and h´. From the defini-
tion in Eq. 3, the new sensitivity matrix can be written as M′ = M + 
M1, where M1 is the sensitivity matrix for the newly measured 
variable. Given Weyl’s inequality [page 239 of (30)], we have that 
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1(M′) ≥ 1(M) + 1(M1) and since M1 is also positive semidefinite, 
1(M′) ≥ 1(M). This means that measuring one further variable (or 
more than one) of the system increases the practical identifiability 
of a model, as expected. As H′ = H − M1, it is also possible to demon-
strate that (M′) ≤ (M) (see Materials and Methods). Let us now 
consider a different scenario: Suppose we have a priori knowledge 
of one of the model parameters so that we do not need to estimate 
its value by fitting the model to the data. In this case, we can define 
new sensitivity matrices   ̃  M ,  ̃  H  ∈  ℝ   ( n  p  −1)×( n  p  −1)   for the measured and 
unmeasured variables, respectively. Given the Cauchy’s interlacing 
theorem [page 242 of (30)], we have that     1  ( ̃  M  ) ≥    1  (M) , which im-
plies that practical identifiability is improved by acquiring a priori in-
formation on some of the model parameters. For instance, in the 
context of COVID-19 models, one may decide to fix some of the 
parameters, such as the rate of recovery, to values derived from 
medical and biological knowledge (24,  31–33) and to determine 
from fitting the more elusive parameters, such as the percentage of 
asymptomatic individuals or the rates of transmission.

The sensitivity measures we have introduced point out that prior 
knowledge of some of the parameters, or a larger set of measurable 
variables, reduces the sensitivity of the measured variables to the 
parameters and that of the hidden variables to a variation in the 
measured ones. However, gathering further knowledge can be diffi-
cult or even not possible so that these results, which should not be 
interpreted as an oversimplified solution to the problem of identifi-
ability, have to be considered in the light of practical issues that 
might arise in the measurement of the model variables and pa-
rameters.

The sensitivity measures reveal different regimes 
of identifiability
As a first application, we study the practical identifiability of a four 
compartment mean-field epidemic model (34) in the class of SIAR 
models (35), developed to assess the impact of asymptomatic carriers 
of COVID-19 (8, 36, 37) and other diseases (38–40). In such a model 
(Fig. 1), a susceptible individual (S) can be infected by an infectious 
individual who can either be symptomatic (I) or asymptomatic (A). 
The newly infected individual can either be symptomatic (S → I) or 
asymptomatic (S → A). Furthermore, we also consider the possibility 
that asymptomatic individuals develop symptoms (A → I), thus 
accounting for the cases in which an individual can infect before 
and after the onset of the symptoms (41). Last, we suppose that 
individuals cannot be reinfected as they acquire a permanent 
immunity (R).

One of the crucial aspects of COVID-19 is the presence of 
asymptomatic individuals who are difficult to trace as the individuals 
themselves could be unaware about their state. Consequently, we 
assume that the fraction of asymptomatic individuals, a(t), is not 
measurable, while the fractions of symptomatic, (t), and recovered, 
r(t), are measured variables, that is, m ≡ [, r] and h ≡ [s, a]. As 
mentioned above, practical identifiability is a property of the trajec-
tories of the system, which are uniquely determined by the values of 
the unknown parameters p. Here, we illustrate how the sensitivity 
of both measured and unmeasured variables changes with the 
probability  that a newly infected individual shows no symptoms 
when all the other parameters of the model are fixed (to the values 
reported in Materials and Methods). Concerning the choice of 
vector p, here, we consider the following case. First, as the number 
of symptomatic infectious and recovered individuals are supposed 

to be measurable, we have assumed the initial conditions (0), r(0), 
and the recovery rate of the symptomatic individuals, i.e., IR,to be known 
quantities. Second, we assume to be able to measure, for instance, 
through backward contact tracing, the rate at which asymptomatic 
individuals develop symptoms, i.e., AI. Hence, the parameters to be 
determined are the remaining ones, i.e., p = [a(0), I, A, , AR].

Figure 2A shows a nontrivial nonmonotonic dependence of 
our sensitivity measures,  and , on . The value of  has a peak at 
 = 0.51, in correspondence of which  takes its minimum value. This 
represents an optimal condition for practical identifiability, as the 
sensitivity to parameters of the measured variables is high, while 
that of the unmeasured ones is low, and this implies that the 
unknown quantities of the system (both the model parameters and 
the hidden variables) can be estimated with small uncertainty. On 
the contrary, for  = 0.86, we observe a relatively small value of  
and a large value of , meaning that the measured variables are 
poorly identifiable, and the unmeasured variables are sensitive to a 
variation of parameters. This is the worst situation in which the 
estimated parameters may substantially differ from the real values, 
and the hidden variables may experience large variations even for 
small changes in the parameters. Furthermore, the quantity , 
which measures the sensitivity of the hidden variables to the 
measured ones, reported in Fig. 2B, exhibits a large peak at the value 
of  for which  is minimal. This is due to the fact that the vector 
that determines  is almost aligned with v1. When this holds, we 
have that  = η/, which explains the presence of the spike in the  
curve. Similarly, the sensitivity  takes its minimum almost in 
correspondence of the maximum of . The behavior of the model 
for  = 0.86 is further illustrated in Fig. 2C, where the trajectories 
obtained in correspondence to the unperturbed values of the 
parameters, i.e., m(t, p) and h(t, p) (solid lines), are compared with 
the dynamics observed when p undergoes a perturbation with 
∥p∥ = 0.3∥p∥ along v1 (dashed lines). The small sensitivity  of 
the measured variables (t, p) and r(t, p) to parameters is reflected 
into perturbed trajectories that remain close to the unperturbed ones, 
whereas the large sensitivity  of the unmeasured variables s(t, p) 
and a(t, p) yields perturbed trajectories that significantly deviate 
from the unperturbed ones.

We now illustrate the different levels of identifiability that 
appear in the SIAR model for diverse settings of the parameters. Its 
analysis, in fact, fully depicts the more complete perspective on the 

Fig. 1. Graphical representation of a SIAR model in which infectious individuals 
can either be symptomatic (I) or asymptomatic (A) (see also Eq. 21 in Materials 
and Methods). 
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problem of practical identifiability offered by simultaneously 
inspecting the sensitivity measures,  and . As the two sensitivity 
measures are not necessarily correlated, there can be cases for which 
a high identifiability of the measured variables to the parameters, 
i.e., large values of , corresponds to either a low or a high identifi-
ability of the hidden variables to the parameters. Analogously, for 
other system configurations, in correspondence of small values of , 
namely, to nonidentifiable parameters, one may find large values of 
, meaning that the hidden variables are nonidentifiable as well or, 
on the contrary, small values of , indicating that the hidden 
variables are poorly sensitive to parameter perturbations. Together, 
four distinct scenarios of identifiability can occur, and all of them 
effectively appear in the SIAR model (Fig. 3): (A) low identifiability of 
the model parameters p and high identifiability of the hidden variables 
h, (B) high identifiability of both p and h, (C) low identifiability of 
both p and h, and (D) high identifiability of p and low identifiability 
of h. To illustrate them, we have considered four distinct configura-
tions of the model (with parameters as given in Table 3 and illus-
trated in Materials and Methods) and, for each case study, compared 
the unperturbed trajectories to the perturbed ones, with the vector 
of parameters undergoing a variation ∥p ∥ = 0.3 ∥ p∥ along v1. 
As regard cases (A) and (C), we have considered the vector of param-
eters to determine to be p = [(t), a(0), r(t), I, A, , IR, AR, AI], 
while for the cases (B) and (D), we have p = [a(0), I, A, , AR], 
which is the same choice of p adopted in Fig. 2. Figure 3 shows the 
results obtained for each parameter configuration. In each panel, 
the solid lines represent the unperturbed trajectories, while the 
dashed lines correspond to the perturbed dynamics. In cases (A) and 
(B), we see that, under the variation p, the perturbed trajectories of 

Fig. 2. Practical identifiability of the SIAR model in Fig. 1 as a function of the fraction  of asymptomatic new infectious individuals. (A) Sensitivity  and  of 
measured and hidden variables, respectively, to the parameters of the model. (B) Sensitivity  of the hidden variables to the measured ones. (C) State variables for unper-
turbed values of parameters (with  = 0.86, solid line) and for a perturbation with ∥p ∥ = 0.3 ∥ p∥ along the first eigenvector of M (dashed lines).

Fig. 3. Four scenarios of identifiability for the SIAR model of Fig. 1. All panels 
show the system dynamics (solid line) and the evolution of the system when the 
vector of parameters undergoes a variation p such that ∥p ∥ = 0.3 ∥ p∥ along the 
first eigenvector of M (dashed lines). (A) and (C) display configurations for which 
the observed variables (, r) are not sensitive to the variation, i.e., the model parame-
ters are not identifiable, while (B) and (D) show the opposite case. Furthermore, (A) 
and (B) present scenarios for which the unobserved variables (s, a) are insensitive 
to the variation, meaning that they are predictable; vice-versa, (C) and (D) show the 
case in which the variables s and a are sensitive.
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the hidden variables remain close to the unperturbed dynamics. 
Hence, the hidden variables are highly identifiable. Conversely, in 
cases (C) and (D), the perturbed trajectories substantially differ from 
the unperturbed dynamics, meaning that the hidden variables are 
poorly identifiable as they are sensitive to a variation of the model 
parameters. As concerns the measured variables, in cases (A) and 
(C), the perturbed trajectories slightly differ from the unperturbed 
dynamics. Therefore, as the measured variables are insensitive to 
the perturbation p, the model parameters have a low degree of 
identifiability. On the other hand, in cases (B) and (D), the perturba-
tion of the parameters significantly affects the trajectories of the 

measured variables, meaning that the set of parameters reproducing 
the observed data is more identifiable.

Last, Table 1 illustrates the values of the sensitivity measures , 
, and  for each case. In particular, case (C) represents the worst 
scenario as the value of  is relatively small, meaning that the model 
parameters p are poorly identifiable, and the value of  is large, 
indicating a high sensitivity of the hidden variables to the parameters. 
Conversely, the best scenario is represented by case (B), for which 
both the model parameters and the hidden variables are highly 
identifiable as the value of  is large compared to the other cases, 
while the value of  remains relatively small.

Poorly identifiable models may provide unreliable 
predictions when the parameters are estimated from data
So far, we have illustrated how variations on the parameters affect 
the trajectories of measurable and hidden variables under different 
degrees of identifiability. However, a high sensitivity of the hidden 
variables to measured ones has relevant practical consequences, 
especially when the parameters are unknown and need to be fitted 
from data. In these conditions, a small uncertainty in the measurable 
variables due to the presence of noise in the data can propagate 
markedly and make the prediction of the hidden variables unreliable. 
Hence, in this section, we study how the lack of practical identifiability 

Table 1. Values of , , and  for the four configurations of the SIAR 
model shown in Fig. 3.  

Case A Case B Case C Case D

 0.0096 0.15 0.013 0.091

 0.012 0.16 0.36 1.4

 34 5.2 29 15

Fig. 4. Dynamics of the SIAR model when two different methods to estimate the model parameters from data are used. (A to D) display the results obtained by a 
least square error minimization procedure, while (E to H) show the outcome of Bayesian inference. The time evolution of both measured and hidden variables 
(solid lines) is reported together with the data. Data are shown with different markers if they pertain to measured variables (full circles, used for fitting) or unmeasured 
ones (empty circles, not used for fitting).
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can affect the predictions of the SIAR model when this is fitted to 
empirical data. The reliability of the model predictions has been 
investigated by means of two different fitting techniques: a least 
square error minimization procedure (42), which provides a point 
estimate of the parameters, and a Bayesian inference approach (43), 
which, conversely, gives an estimate of the probability distribution 
in the parameter space. To carry out the numerical analysis, we 
consider the model under the same settings (i.e., fixing the values of 
the six parameters and the initial values of three variables) as those 
adopted in case (C) in the previous section, which correspond to the 
case of low identifiability of both the parameters and the hidden 
variables. We then generate from such a model a synthetic dataset 
of trajectories, which we fit using the two approaches mentioned 
above (see Materials and Methods for further details). All the model 
parameters are considered unknown and thus need to be deter-
mined through the fit.

First, we consider the least square error minimization approach. 
To show how, because of the lack of identifiability of the model, 
significant variations in the dynamics of the hidden variables can be 
obtained when fitting the measured variables, we have performed 
the following analysis. As the estimation procedure (based on a 
nonlinear optimization algorithm; see Materials and Methods) 
starts from an initial guess of the fitting parameters, indicated as p0, 
instead of fitting a single set of values, we have repeated the proce-
dure under the very same conditions of the algorithm, for 500 runs, 
randomly selecting p0 from a Gaussian distribution centered on a 
fixed point of the parameter space and with variance equal to 0.25. 
We then discarded those runs yielding a fitting error d > 0.015, 
which corresponds to a relative error of 2.5%, thus keeping a total of 
65 sets of parameters fitting the measured variables with a similar 
value of the error. The fact that different sets of parameters are 
obtained in this way may indicate that the error function has several 
local minima. Figure 4 (A to D) displays the average trajectories 
(over the 65 sets of parameters) of the four state variables (solid 
lines) and the respective regions where 95% of the trajectories lie 
(shadowed area). While the dynamics of the measured variables 
(Fig.  4,  C  and  D) produced by the SIAR model are in very good 
agreement with the data, the same is not true for the temporal 
evolution of the hidden variables (Fig. 4, A and B). In particular, the 

number of newly asymptomatic infected individuals is substantially 
overestimated.

We now consider the Bayesian inference approach. To imple-
ment it, we used the Delayed Rejection Adaptive Metropolis (DRAM) 
(44), a Markov Chain Monte Carlo (MCMC) algorithm, with set-
tings as described in Materials and Methods. In particular, since we 
have here assumed to have no a priori information on the value of 
the model parameters, we have considered uniform prior probability 
distributions, representing the less informative conditions for 
the model (further details are given in Materials and Methods). 
Figure  4  (E  to  H) shows the temporal evolution of the SIAR 
variables. Solid lines represent the average trajectory obtained by 
sampling 500 sets of parameters from the posterior distributions, 
while the shadowed areas indicate the regions where 95% of the 
trajectories lie.

Similarly, to the case of the least square minimization, while the 
dynamics of the measured variables (Fig. 4, G and H) is in a good 
agreement with the synthetic data, the prediction of the hidden 
variables (Fig. 4, E and F) is not. At variance with the previous 
example, the number of newly asymptomatic infected individuals is 
here largely underestimated. Hence, these results indicate that the 
lack of identifiability can lead to unreliable results even when a 
Bayesian approach is adopted.

In the analysis presented in this section, we have assumed to 
have no a priori information on the values of the model parameters. 
Therefore, when performing the least square error minimization, 
we have extracted all the parameters from fitting, while, following 
the same reasoning, we have chosen a uniform prior probability 
distribution in the Bayesian approach. When instead we have strong 
a priori knowledge of a disease, this can be used to inform the 
models, by fixing the values of certain parameters while estimating 
the others, in the case of the least square error method, or by 
considering more informative prior distributions, in the case of 
Bayesian inference. When a priori information on the values of the 
parameters can be obtained, for instance, through medical and 
biological studies, the model predictions are expected to become 
less affected by uncertainty. The analysis of the sensitivity matrices 
(see also Materials and Methods) confirms this expectation as we 
have demonstrated that additional knowledge of the parameters, or 

Fig. 5. Graphical representation of a nine-compartment model for the propagation of COVID-19 (see also Eq. 24 in Materials and Methods).  
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the measurement of a hidden variable, can reduce the sensitivity to 
the measured variables, thus improving the reliability of the predic-
tion. However, there are cases in which a priori knowledge is not 
available, and the analysis of identifiability becomes crucial. As an 
example, one could estimate the percentage of asymptomatic indi-
viduals according to serological surveys or to longitudinal studies. 
However, these data can be unavailable at an early stage of an 
epidemic outbreak (45, 46), preventing their use to inform the 
epidemiological models. These considerations hallmark once again 
the need for a synergistic approach to study newly discovered infec-
tious diseases and stress the importance of assessing the reliability 
of mathematical modeling when the amount of available informa-
tion is limited.

Lack of identifiability in COVID-19 modeling prevents 
reliable predictions
As a second application, we show the relevance of the problem of 
practical identifiability in the context of COVID-19 pandemic 
modeling. We consider a realistic model (Fig.  5) of the disease 
propagation, that is a variant of the SIDARTHE model (16) and is 
characterized by nine compartments accounting respectively for 
susceptible (S), exposed (E), undetected asymptomatic (IA), un-
detected symptomatic (IS), home isolated (H), treated in hospital (T), 
undetected recovered (Ru), detected recovered (Rd), and deceased 

(D) individuals. Following the study of Giordano et al. (16), to account 
for the different nonpharmaceutical interventions and testing strat-
egies issued during the COVID-19 outbreak in Italy (47, 48), the 
model parameters have been considered piece-wise constant and 
estimated using nonlinear optimization by fitting of the official 
data provided by the Civil Protection Department (49). As the data-
set provides the evolution in time of the daily number of home iso-
lated, hospitalized, detected recovered, and deceased individuals, 
we have considered four measured and five hidden variables in 
the model, namely, m ≡ [H, T, Rd, D] and h ≡ [S, E, IA, IS, Ru].

It is here worth discussing an important issue that concerns the 
model parameters. We have considered that different policy strategies 
affect, according to their nature, only specific parameters. In particu-
lar, we have assumed that a change in the containment strategy 
leads to a variation in the transmission rates , while an adjustment 
in the testing strategy affects the values of the parameters ISH, HT, 
and HRd (further details are reported in Materials and Methods). 
As both the containment and the testing strategies in Italy have 
frequently changed during the pandemic, most of the parameters to 
estimate consist of transmission and detection rates. While other 
parameters, such as the death or the recovery rates, can be derived 
from the current literature (50), very limited information is available 
on the transmission and detection rates that are difficult to measure 
directly and, therefore, need to be estimated by fitting available 

Fig. 6. Modeling the COVID-19 outbreak in Italy. The evolution of both measured (A to D) and hidden variables (E to H) of the model in Fig. 5 (solid lines) is reported 
together with the official data from the Civil Protection Department (circles).
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data. Hence, as in (16), we have assumed all the model parameters 
to be unknown.

To show how significant variations in the evolution of the 
hidden variables can arise when fitting the measured variables, we 
have performed a numerical analysis similar to the one of the previous 
section. Again, rather than fitting a single set of values, we have 
repeated the minimization procedure under the same conditions of 
the algorithm, for 500 runs, randomly selecting the initial guess p0 
from a Gaussian distribution centered on a fixed point of the pa-
rameter space, with variance equal to 0.25. We discarded the runs 
yielding a fitting error e > 900, corresponding to a relative error of 
1.4%, thus keeping a total of 40 sets of parameters. Figure 6 shows 
the dynamical trajectories that we have obtained for each of the 
40 sets of parameters (solid lines). Both measured (Fig. 6, A to D) 
and hidden (Fig. 6, E to H) variables are reported. While the time 
evolution of the measured variables produced by the model is in 
very good agreement with the empirical data, reported as circles in 
Fig. 6, significant differences in the trend of the hidden variables 
appear. A large variability is observed, confirming that the lack of 
identifiability yields a high sensitivity of the hidden variables to the 
measured one.

These findings have relevant implications. The large uncertainty 
on the size of the asymptomatic population makes questionable the 
use of the model as a tool to decide the policies to adopt.

DISCUSSION
The practical identifiability of a dynamical model is a critical, but 
often neglected, issue in determining the reliability of its predic-
tions. In this paper, we have introduced a novel framework to 
quantify: (i) the sensitivity of the dynamical variables of a given 
model to its parameters, even in the presence of variables that are 
difficult to access empirically and (ii) how changes in the measured 
variables affect the evolution of the unmeasured ones.

The measures we have proposed are easy to compute and enable 
to assess, for instance, if and when the model predictions on the 
unmeasured variables are reliable or not, even in the cases in which 
the parameters of the model can be fitted with high accuracy from 
the available data.

As we have shown with a series of case studies, practical identifi-
ability can critically affect the predictions of even very refined 
epidemic models introduced for the description of COVID-19, 
where dynamical variables, such as the population of asymptomatic 
individuals, are impossible or difficult to measure. This by no means 
should question the importance of these models—in that they 
enable a scenario analysis, otherwise impossible to carry out, and a 
deeper understanding of the spreading mechanisms of a novel 
disease—but should hallmark the relevance of a critical analysis of 
the results that takes into account sensitivity measures. It also high-
lights the importance of cross-disciplinary efforts that can provide a 
priori information on some of the parameters, ultimately improv-
ing the reliability of a model (8, 24).

A problem related to the one studied in our paper is that of 
observability, which investigates how to reconstruct the internal 
state of a system from measurements on the input and output, 
under the hypothesis that the model and its parameters are known 
(51, 52). Techniques based on the observability problem are clearly 
extremely important and may be applied, for instance, to derive the 
time evolution of asymptomatic individuals from measurements on 

infected and recovered individuals, when it is possible to develop a 
fully observable model with known parameters.

MATERIALS AND METHODS
The sensitivity matrices and their properties
The sensitivity matrices considered in this paper are given by

   M  ij   =   ∫  
0
  
∞

     ∂ m   T  ─ ∂ p  i  
     ∂m ─ ∂ p  j  

   dt ;  H  ij   =   ∫  
0
  
∞

     ∂ h   T  ─ ∂ p  i  
     ∂h ─ ∂ p  j  

   dt  (6)

where the vector functions m = m(t, p) and h = h(t, p) are obtained 
integrating system in eq. 1. The derivative of measurable and hidden 
variables with respect to the parameters p

   m  i   ≡ ∂ m / ∂ p  i  ,  h  i   ≡ ∂ h / ∂ p  i    

can be obtained by integrating the system

   
  d  m  i   ─ dt  

  
=
  

  ∂ f ─ ∂ m   ·  m  i   +   ∂ f ─ ∂ h   ·  h  i   +   ∂ f ─ ∂  p  i  
  
    

  d  h  i   ─ dt  
  

=
  

  ∂ g ─ ∂ m   ·  m  i   +   ∂ g ─ ∂ h   ·  h  i   +   ∂ g ─ ∂  p  i  
  
    (7)

where i = 1, …np.
The numerical evaluation of the sensitivity matrices is carried 

out first by integrating system in eq. 7 (for this step we use a fourth-order 
Runge-Kutta solver with adaptive step size control), resampling the 
trajectories with a sampling period of 1 day, and then performing a 
discrete summation over the sampled trajectories. Moreover, inte-
gration is carried out over a finite time interval [0, ], with large 
enough . In the context of our work, as we have considered 
SIR (susceptible infected removed)-like epidemic models, we set the 
value of  such that the system has reached a stationary state, i.e., the 
epidemic outbreak has ended, as every infected individual has 
eventually recovered (or dead, depending on the model).

We now present an important property of the sensitivity matri-
ces. We will only take into account the set of measured variables m, 
as similar considerations can be made for the hidden variables. Let 
us assume to be able to measure only a single variable, so that the 
vector m collapses into a scalar function, which we call m1(t). In this 
case, the element Mij of the sensitivity matrix would be simply 
given by

   (M)  ij   =   ∫ 
0
  
∞

     ∂ m  1   ─ ∂ p  i  
     ∂ m  1   ─ ∂ p  j  

   dt  (8)

Let us call this sensitivity matrix M1.
Consider now a larger set of measured variables m = (m1, m2, …, 

mnm). The quantity ∂mT/∂pi∂m/∂pj in Eq. 6 is given by

    ∂ m   T  ─ ∂ p  i  
     ∂m ─ ∂ p  j  

   =   ∂ m  1   ─ ∂ p  i  
     ∂ m  1   ─ ∂ p  j  

   +   ∂ m  2   ─ ∂ p  i  
     ∂ m  2   ─ ∂ p  j  

   + … +   
∂ m   n  m     ─ ∂ p  i  

     
∂ m   n  m     ─ ∂ p  j  

    (9)

Therefore, integrating over time in the interval [0, ∞ ] and given 
the linearity property of the integrals, we find that the sensitivity 
matrix M of the set of the measured variables is given by the sum of 
the sensitivity matrices of the single measured variables. Formally, 
we have that
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  M =  M  1   +  M  2   + … +  M   n  m      (10)

This property of the sensitivity matrices is useful to demonstrat-
ing how measuring a further variable affects the sensitivity mea-
sures  and , as discussed in the following subsection and in 
Results. Last, because matrices M and H are positive semidefinite, 
their eigenvalues are nonnegative. For any positive semidefinite 
matrix A of order m, we shall denote its eigenvalues as 0 ≤ 1(A) ≤ 
2(A) ≤ … ≤ m(A).

Sensitivity measures and their properties
Here, we discuss in more detail the sensitivity measures introduced 
in Results. First, we want to propose a measure to quantify the 
practical identifiability of the model parameters given the measured 
variables. To do this, we need to evaluate the sensitivity of the 
trajectories of the measured variables to a variation of the model 
parameters. If this sensitivity is small, then different sets of parame-
ters will produce very similar trajectories of the measured variables, 
meaning that the parameters themselves are poorly identifiable. In 
particular, as a measure of the parameters identifiability, we can 
consider the worst scenario, namely, the case in which the perturba-
tion of the parameters minimizes the change in the measured vari-
ables. This happens when the variation of the model parameters 
p is aligned along the eigenvector v1 of M corresponding to the 
minimum eigenvalue 1(M). Given the definition of M, we have that 
 ∥ m ∥ =  √ 

_
    1  (M)   ∥ p ∥ ; hence, we can consider the quantity

   =  √ 
_

    1  (M)    (11)

as an estimate of the sensitivity of the measured variables to the 
parameters. Note that, here and in the rest of the paper, ∥v∥ denotes 
the Euclidean norm of a finite dimensional vector v, ∥v∥2 = v · v, 
while for a function u(t), ∥u∥ denotes the L2 norm of u in [0, ∞ ], 
i.e., ∥ u  ∥   2  =  ∫0  

∞
    u · u dt .

Let us now focus on the hidden variables h. In general, as the 
hidden variables are not directly associated to empirical data, the 
largest uncertainty on the hidden variables is obtained in corre-
spondence of a variation of the parameters along the eigenvector of 
H associated to the largest eigenvalue, namely,      n  p     (H).

Hence, to quantify the sensitivity of the hidden variables to the 
parameters, one may consider

     MAX   =  √ 
_

     n  p    (H)    (12)

However, it is crucial to note that the hidden variables ultimately 
depend on the parameters of the model, which are estimated by 
fitting data that are available for the measured variables only. As a 
consequence, it is reasonable to consider a quantity that evaluates 
how the uncertainty on the model parameters (determined by the 
uncertainty of the measured variables and by their sensitivity to the 
parameters) affects the identifiability of the hidden variables. There-
fore, as a measure of the sensitivity of the hidden variables to the 
parameters, we consider

      2  =   
  p 1  T  H  p  1  

 ─ 
  p 1  T    p  1  

    (13)

where p1 is a perturbation of the parameters along the eigenvector 
v1 of M corresponding to the minimum eigenvalue 1(M). Note 
that, when v1 and the eigenvector of H corresponding to the largest 
eigenvalue      n  p     (H) are aligned, by definition, we have  = MAX.

Last, we want to define a quantity to estimate how much the 
hidden variables are perturbed given a variation of the measured 
ones. In particular, as a measure of the sensitivity of the hidden variables 
to the measured variables, we consider the maximum perturbation 
of the hidden variables given the minimum variation of the measured 
ones, which is

      2  =   max  
∥p∥=1

       p   T  Hp ─ 
  p   T  Mp

    (14)

Note that 2 can be computed considering the following gener-
alized eigenvalue problem

  H u  k   =    k   M u  k    (15)

where H and M are the sensitivity matrices for the hidden and the 
observed variables respectively, and k = k(M, H) denotes the k-th 
generalized eigenvalue of matrices M and H. We will denote by      n  p      
the largest generalized eigenvalue and u the corresponding general-
ized eigenvector. Note that, since both matrices are symmetric, if u 
is a right eigenvector, then uT is a left eigenvector. Multiplying each 
member of the equation by uT and dividing by uTMu, we obtain

      n  p     =    u   T  Hu ─ 
 u   T  Mu

   =   max  
∥v∥=1

      v   T  Hv ─ 
 v   T  Mv

    (16)

where one can recognize the definition of 2 provided in Eq. 14. In 
other words, 2 represents the largest eigenvalue of the matrix M−1H.

It is worth noting two aspects about the sensitivity measure . First, 
given the definitions in Eqs. 11 and 12, for any p with ∥p∥ = 1, we 
have that    p   T  Hp  ≤   MAX  2    and pTMp ≥ 2. As a consequence, 
we have that

      2  ≤   
  MAX  2  

 ─ 
    2 

    (17)

Second, when the vector p that determines  is aligned with the 
eigenvector v1 of M, it is possible to express  in terms of the sensi-
tivity measures  and . When p = ∥ p ∥ v1 = v1, recalling defini-
tions in Eqs. 11 and 13, one obtains   v 1  T  M  v  1   =     2  , while   v 1  T  H  v  1   =     2  , 
from which it follows

   =    ─     (18)

In addition, we note that if v1 and the eigenvector of H correspond-
ing to its largest eigenvalue are aligned, one obtains that  = MAX/, 
which is the maximum value for the sensitivity measure .

We now demonstrate that the sensitivity of the hidden variables 
to the measured ones, 2, decreases as we measure one further vari-
able. Let us assume now that we are able to measure one further 
variable, thus increasing the size of the set of measured variables to 
nm′ = nm + 1 and, correspondingly, reducing that of the unmeasured 
variables to nh′ = nh − 1. Given the property in Eq. 10, the new 
sensitivity matrices can be written as M′ = M + M1 and H′ = H − M1, 
where by M1, we denote the sensitivity matrix for the newly mea-
sured variable. The new generalized eigenvalue problem is
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  H′u′= ′M′u′ ⇔ (H −  M  1   ) u′= ′(M +  M  1   ) u′  (19)

where, for simplicity, we have denoted by ′ the largest generalized 
eigenvalue of matrices M′ and H′.

Left multiplying by u′T and dividing by u′TMu′, we obtain

               
 λ   n  p     =    u   T  Hu ─ 

 u   T  Mu
   ≥    u′   T  Hu′ ─ 

 u′   T  Mu′
   =    u′   T  H’u′+  u′   T   M  1   u′  ───────────  

 u′   T  Mu′− u′T  M  1   u′
   ≥

    
   u′   T  H’u′ ─ 
 u′   T   M    ̓   u′

   = λ′
         (20)

where the first inequality comes from the definition of      n  p     , while the 
second comes from the fact that H, M, H′, M′, and M1 are positive 
semidefinite. In short, we find that      n  p      ≥ ′, meaning that, by mea-
suring one variable, the sensitivity of the hidden variables to the 
measured ones decreases.

SIAR model and setup for numerical analysis
The SIAR model of Fig. 1 is described by the following equations

                 

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

 s ̇   = − s(   I    +    A   a)

     ̇   = (1 −  ) s(   I    +    A   a ) +    AI   a −    IR       
 a ̇   = s(   I    +    A   a ) − (   AI   +    AR   ) a

    

 r ̇   =    IR    +    AR   a

                  (21)

where s(t), (t), a(t), and r(t) represent population densities, i.e., 
s(t) = S(t)/N, (t) = I(t)/N, a(t) = A(t)/N, and r(t) = R(t)/N, where 
S(t), I(t), A(t), and R(t) represent the number of susceptible, infec-
tious, asymptomatic, and recovered individuals, and N is the size of 
the population, so that s(t) + (t) + a(t) + r(t) = 1. Here, I and A are 
the transmission rates for the symptomatic and the asymptomatic 
individuals, respectively,  is the probability for newly infected indi-
viduals to show no symptoms, AI is the rate at which asymptomatic 
individuals become symptomatic, and IR and AR are the recovery 
rates for the two infectious populations. Note that all these parame-
ters are positive quantities.

Asymptomatic individuals are difficult to trace as the individuals 
themselves could be unaware about their state. As a consequence, 
we assume that the density of asymptomatic individuals is not 
measurable, while the densities of symptomatic and recovered indi-
viduals are measured variables. According to the notation intro-
duced in Eq. 1, we therefore have that m ≡ [, r] and h ≡ [s, a]. Note 
that, as a first approximation, here, we assume to be able to trace the 
asymptomatic individuals once they recover.

The results presented in Fig. 2 have been obtained considering 
the following setup. As the number of symptomatic infectious and 
recovered individuals are considered measurable, we have assumed 
that the initial conditions (0), r(0), and the rate of recovery IR 
are known parameters. Second, we have supposed to be able to 
measure, for instance, through backward contact tracing the rate at 
which asymptomatic individuals develop symptoms, i.e., AI. Hence, 
the vector of parameters to determine by calibrating the model is 
given by p = [a(0), I, A, , AR]. Table 2 displays the value of the 
model parameters used to obtain the results shown in Fig. 2.

For the analysis of the four scenarios considered in Fig. 3, the 
values of the model parameters have been set as given in Table 3. 
Furthermore, to better contrast the results arising in the different 
case studies, in (A) and (C), we have considered p = [(0), a(0), 

r(0), I, A, , IR, AR, AI], while in (B) and (D), we have set 
p = [a(0), I, A, , AR].

Estimating the parameters of the SIAR model
The SIAR model parameters have been estimated from data by 
adopting two different approaches, i.e., a nonlinear least square 
error minimization and a Bayesian inference. To generate a synthetic 
dataset, we have integrated the deterministic model in Eq. 21. To 
mimic measurement errors, we have adopted the following proce-
dure. First, we compute   r ̄  (t)  by adding to r(t) a uniform noise in the 
interval (− t/2, t/2), where t = ∣r(t + 1) − r(t)∣, checking that the 
synthetic time series remains monotonically nondecreasing. We 
have then generated the data   s ̄  (t)  in a similar fashion, this time 
controlling that the synthetic time series remains monotonically 
nonincreasing. To generate the data    ̄  (t) , we have added a Gaussian 
noise with zero mean and standard deviation (SD) equals to 3% to the 
time series, making sure that   s ̄  (t ) +   ̄  (t ) +  r ̄  (t ) ≤ 1 . Last, the data   a ̄  (t)  
have been evaluated using the fact that   s ̄  (t ) +   ̄  (t ) +  a ̄  (t ) +  r ̄  (t ) = 1 .

The integration of Eq. 21 has been carried out by using the lsoda 
ordinary differential equation (ODE) solver (53, 54) and then resa-
mpling the data with a sampling period of one time unit. We assumed 
that the density of asymptomatic individuals a is not measurable, 
while the densities of symptomatic and recovered individuals, i.e.,  and 
r, are measured variables.

As regard to the least square error minimization approach, the 
model parameters have been estimated using a nonlinear optimiza-
tion procedure (implemented via the function fmincon in MATLAB) 
with the following objective function to minimize

  d =  √ 

______________________________

     1 ─ 2     ∑ 
k=1

  

     (     ((k ) −  _  (k ) )   2  +  (r(k ) −   _ r  (k ) )   2  )      (22)

where    ̄  (k)  and   r ̄  (k)  with k = 1, …,  (with  = 50) represent the noisy 
synthetic time series of the densities of infectious and recovered 
individuals, respectively, while (k) and r(k) are the values of the 
corresponding variables obtained from the integration of Eq. 21.

The core idea of Bayesian inference is to provide an a posteriori 
probability distribution for the model parameter vector, p, given an 
a priori probability distribution on the value of p and a likelihood 
function, which quantifies the goodness of a model in reproducing 
empirical data D. The relationship between these is given by the 
Bayes’ theorem, which reads

Table 2. Values of the model parameters used for the case study in 
Fig. 2. 

0 a0 r0 I A IR AR AI

0.05 0.1 0 0.6 0.3 0.1 0.2 0.03

Table 3. Values of the model parameters used for the case study in 
Fig. 3.  

0 a0 r0 I A  IR AR AI

Case A 0.1 0.2 0.05 0.3 0.4 0.26 0.1 0.2 0.03

Case B 0.05 0.1 0 0.6 0.3 0.51 0.1 0.2 0.03

Case C 0.1 0.2 0.05 0.6 0.8 0.77 0.1 0.2 0.1

Case D 0.1 0.2 0.05 0.3 0.4 0.53 0.1 0.2 0.03
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  (p ∣ D ) =    ℒ(D ∣ p ) (p)   ────────────  
 ∫ p     ℒ(D ∣ p ) (p ) dp

    (23)

where (p) indicates the prior distribution, ℒ(D∣p) the likelihood, 
and (p∣D) the posterior distribution. Usually, it is not possible to 
evaluate analytically the integral appearing in the denominator, es-
pecially when a large number of parameters are considered. There-
fore, one relies on MCMC algorithms, which allow one to approximate 
of the posterior distribution. The MCMC algorithm we used to 
implement the Bayesian inference is the DRAM (44). As the likeli-
hood function ℒ(D∣p), we have considered the root mean square 
error, evaluated on the measurable variables only, i.e. (t) and r(t), 
which corresponds to Eq. 22, namely, to the objective function of 
the nonlinear optimization procedure. As we have assumed to have 
no a priori knowledge of the values of the model parameters, for 
the Bayesian inference, we have considered uniform prior probability 
distributions, which are the simplest and least informative choice 
(55, 56). Flat priors do not require any additional information apart 
from setting the interval of possible parameter values. These inter-
vals have been defined taking into account the following consider-
ations. On the one hand, we have the initial conditions of the 
dynamical variables. As in the SIAR model, these represent popula-
tion densities, we can assume the uniform prior distribution for 
their initial conditions to be defined in the interval [0,1]. Similarly, 
the parameter , which indicates the fraction of newly infected indi-
viduals not developing symptoms, can be assumed to be defined in 
the same interval. As regard the remaining parameters, since we 
have assumed to not have any other information except for the fact 
that they are positive quantities, we can consider the uniform distri-
bution to be extended in the interval [0, ∞ ].

Nine-compartment model for COVID-19
The nine-compartment model of Fig. 5 can be considered as a variant 
of the SIDARTHE model (16). It is characterized by the presence of 
an incubation state, in which the individuals have been exposed to 
the virus (E) but are not yet infectious, and by infectious individuals, 
that, in addition to being symptomatic or asymptomatic, can be either 
detected or undetected. The model, therefore, includes four classes 
of infectious individuals: undetected asymptomatic (IA), undetected 
symptomatic and pauci-symptomatic (IS), home isolated (H, corre-
sponding to detected asymptomatic and pauci-symptomatic), and treated 
in hospital (T, corresponding to detected symptomatic). Last, removed 
individuals can be undetected (Ru), detected (Rd), or deceased (D).

The model dynamics is described by the following equations

    

⎧

 

⎪
 ⎨ 

⎪
 

⎩

   

 S ̇   = − S(    I  A      I  A   +     I  S      I  S   +    H   H +    T   T ) / N

    

 E ̇   = S(    I  A      I  A   +     I  S      I  S   +    H   H +    T   T ) / N

    

− (    EI  A     +     EI  S     ) E

   

  I ̇    A   =     EI  A     E − (    I  A   I  S     +     I  A   R   u    )  I  A   −   I  A  

    
  I  S   ˙   =     EI  S     E +     I  A   I  S      I  A  

   − (    I  S  H   +     I  S  T   +     I  S   R   u    +     I  S  D   )  I  S      
 H ̇   =     I  S  H    I  S   +   I  A   − (   HT   +     HR   d    ) H

    

 T ̇   =     I  S  T    I  S   +    HT   H − (   T  R   d    +    TD   ) T

    

  R ̇     u  =     I  A   R   u     I  A   +     I  S   R   u     I  S  

   

  R ̇     d  =     HR   d    H +     TR   d    T

   

 D ̇   =     I  S  D    I  S   +    TD   T

     (24)

where the state variables represent the number of individuals in 
each compartment, N = 60 · 106 and S + E + IA + IS + H + T + Ru + 
Rd + D = N. The official data on the spreading of COVID-19 in Italy 
made available by the Civil Protection Department [Dipartimento 
della Protezione Civile, (49)] provide information only on four of 
the nine compartments of the model, namely, the home isolated 
(H), hospitalized (T), detected recovered (Rd), and deceased indi-
viduals (D). These compartments constitute the set of the measured 
variables, while the other variables have to be considered as hidden, 
i.e., m ≡ [H, T, Rd, D] and h ≡ [S, E, IA, IS, Ru].

All the parameters appearing in (24) are considered unknown; 
thus, they need to be determined through fitting the model to the 
available data. It should also be noted that, as many nonpharmaceu-
tical interventions have been issued/lifted, and the testing strategy 
has been changed several times over the course of the epidemics 
(47, 48), not all parameters can be considered constant in the whole 
period used for the fitting. Hence, similarly to (16), we have divided 
the whole period of investigation (which in our case ranges from 
24 February to 06 July 2020) into different windows, within each of 
which the parameters are assumed to be constant. In each time 
window, one allows only some parameters to vary according to 
what is reasonable to assume will be influenced by the government 
intervention during that time window.

We distinguish two kinds of events that may require an adapta-
tion of the model parameters. On the one hand, there are the non-
pharmaceutical containment policies aimed at reducing the disease 
transmission. When these interventions are issued, the value of the 
parameters  may vary. On the other hand, the testing strategy, 
which affects the probability of detecting infected individuals, was 
also not uniform in the investigated period. When the testing policy 
changes, the value of the parameters      I  S  H   , HT, and      HR   d     may vary. 
Here, we notice two important points. First, the value of      I  S  T    is 
assumed to be constant in the whole period, as we suppose that 
there are no changes in how the symptomatic individuals requiring 
hospitalization are detected. Second, as a change in the sole param-
eter      I  S  H    would affect too much the average time an individual 
remains infected, then HT and      HR   d     also have to be included in the 
set of parameters that may change. On the basis of these consider-
ations, the intervals in which each parameter remains constant or 
may change are identified. This defines the specific piece-wise 
waveform assumed for each of the parameters appearing in the 
model and, consequently, the effective number of values that need 
to be estimated for each parameter.

Hereafter, we summarize the events defining the different 
windows in which the whole period of investigation is partitioned:

1) On 02 March, a policy limiting screening only to symptomatic 
individuals is introduced.

2) On 12 March, a partial lockdown is issued.
3) On 18 March, a stricter lockdown, which further limits 

nonessential activities, is imposed.
4) On 29 March, a wider testing campaign is launched. Starting 

from this date, as the number of tests has constantly increased while 
the number of new infections was decreasing, the parameters are 
allowed to change every 14 or 28 days, namely, on 11 April, 25 April, 
and 23 May.

5) On 04 May, a partial lockdown lift is proclaimed.
6) On 18 May, further restrictions are relaxed.
7) On 03 June, interregional mobility is allowed. This is the last 

time the model parameters are changed.
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Note that, for the time period until 5 April, we have followed the 
same time partition used in (16).

The model parameters have been estimated using a nonlinear 
optimization procedure (implemented via the function fmincon in 
MATLAB) with the following objective function to minimize

                                  e = 
        √ 

______________________________________________________________

        1 ─ 4τ     ∑ 
k=1

  
τ
   ( (H(k) −   

_
 H  (k ) )   2  +  (T(k ) −   

_
 T  (k ) )   2  +  ( R   d (k ) −    

_
 R     d (k ) )   

2
  +  (D(k ) −   

_
 D  (k ) )   2 )    

(25)
where   H ̄  (k) ,   T ̄  (k) ,    R ̄     d (k) , and   D ̄  (k)  with k = 1, …,  ( = 134 days) 
represent the time series of daily data for isolated, hospitalized, 
detected recovered, and deceased individuals provided by the Civil 
Protection Department (49), and H(k), T(k), Rd(k), and D(k) are the 
values of the corresponding variables obtained from the integration of 
Eq. 24. The integration of Eq. 24 has been carried out by using a suitable 
ODE solver with maximum integration step size equal to 10−2 days 
and then resampling the data with a sampling period of 1 day.

REFERENCES AND NOTES
 1. R. M. Anderson, H. Heesterbeek, D. Klinkenberg, T. D. Hollingsworth, How will 

country-based mitigation measures influence the course of the covid-19 epidemic? 
Lancet 395, 931–934 (2020).

 2. World Health Organization (WHO), Coronavirus disease (covid-19): Weekly 
epidemiological update (2020); https://who.int/emergencies/diseases/novel-coronavirus-2019/
situation-reports[accessed 15 October 2020].

 3. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track covid-19 in real 
time. Lancet Infect. Dis. 20, 533–534 (2020).

 4. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, 
T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, 
G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features of patients infected 
with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

 5. N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, 
X. Zhang, L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel 
coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 395, 507–513 (2020).

 6. W. J. Wiersinga, A. Rhodes, A. C. Cheng, S. J. Peacock, H. C. Prescott, Pathophysiology, 
transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. 
JAMA 324, 782–793 (2020).

 7. L. Wang, Y. Wang, D. Ye, Q. Liu, Review of the 2019 novel coronavirus (SARS-CoV-2) based 
on current evidence. Int. J. Antimicrob. Agents 55, 105948 (2020).

 8. E. Estrada, COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. 
Phys. Rep. 869, 1–51 (2020).

 9. M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. Pastore y Piontti, 
K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. Longini Jr., 
A. Vespignani, The effect of travel restrictions on the spread of the 2019 novel 
coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020).

 10. K. Leung, J. T. Wu, D. Liu, G. M. Leung, First-wave covid-19 transmissibility and severity 
in China outside hubei after control measures, and second-wave scenario planning: 
A modelling impact assessment. Lancet 395, 1382–1393 (2020).

 11. P. Castorina, A. Iorio, D. Lanteri, Data analysis on coronavirus spreading by macroscopic 
growth laws. Int. J. Mod. Phys. C 31, 2050103 (2020).

 12. D. Lanteri, D. Carcò, P. Castorina, M. Ceccarelli, B. Cacopardo, Containment effort 
reduction and regrowth patterns of the COVID-19 spreading. arXiv:2004.14701 (2020).

 13. D. Fanelli, F. Piazza, Analysis and forecast of covid-19 spreading in china, italy and france. 
Chaos Solitons Fractals 134, 109761 (2020).

 14. A. Arenas, W. Cota, J. Gomez-Gardeñes, S. Gómez, C. Granell, J. T. Matamalas, D. Soriano, 
B. Steinegger, A mathematical model for the spatiotemporal epidemic spreading 
of COVID19. medRxiv (2020).

 15. A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R. M. Eggo, F. Sun, 
M. Jit, J. D. Munday, N. Davies, A. Gimma, K. van Zandvoort, H. Gibbs, J. Hellewell, 
C. I. Jarvis, S. Clifford, B. J. Quilty, N. I. Bosse, S. Abbott, P. Klepac, S. Flasche, Early 
dynamics of transmission and control of COVID-19: A mathematical modelling study. 
Lancet Infect. Dis. 20, 553–558 (2020).

 16. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri, 
Modelling the COVID-19 epidemic and implementation of population-wide interventions 
in Italy. Nat. Med. 26, 855–860 (2020).

 17. A. Aleta, D. Martín-Corral, A. Pastore y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, 
N. E. Dean, M. E. Halloran, I. M. Longini Jr., S. Merler, A. Pentland, A. Vespignani, E. Moro, 

Y. Moreno, Modelling the impact of testing, contact tracing and household quarantine 
on second waves of COVID-19. Nat. Hum. Behav. 4, 964–971 (2020).

 18. F. Della Rossa, D. Salzano, A. Di Meglio, F. De Lellis, M. Coraggio, C. Calabrese, A. Guarino, 
R. Cardona-Rivera, P. De Lellis, D. Liuzza, F. L. Iudice, G. Russo, M. di Bernardo, A network 
model of italy shows that intermittent regional strategies can alleviate the COVID-19 
epidemic. Nat. Commun. 11, 5106 (2020).

 19. D. Proverbio, F. Kemp, S. Magni, A. Husch, A. Aalto, L. Mombaerts, A. Skupin, J. Gonçalves, 
J. Ameijeiras-Alonso, C. Ley, Dynamical SPQEIR model assesses the effectiveness 
of non-pharmaceutical interventions against COVID-19 epidemic outbreaks. PLOS ONE 
16, e0252019 (2021).

 20. T. Heinemann, A. Raue, Model calibration and uncertainty analysis in signaling networks. 
Curr. Opin. Biotechnol. 39, 143–149 (2016).

 21. A. F. Villaverde, A. Barreiro, A. Papachristodoulou, Structural identifiability of dynamic 
systems biology models. PLOS Comput. Biol. 12, e1005153 (2016).

 22. G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: 
A primer for parameter uncertainty, identifiability, and forecasts. Infect. Dis. Model. 2, 
379–398 (2017).

 23. T. Quaiser, M. Mönnigmann, Systematic identifiability testing for unambiguous 
mechanistic modeling–application to JAK-STAT, MAP kinase, and NF- B signaling 
pathway models. BMC Syst. Biol. 3, 50 (2009).

 24. W. C. Roda, M. B. Varughese, D. Han, M. Y. Li, Why is it difficult to accurately predict 
the COVID-19 epidemic? Infect. Dis. Model. 5, 271–281 (2020).

 25. M. C. Eisenberg, S. L. Robertson, J. H. Tien, Identifiability and estimation of multiple 
transmission pathways in cholera and waterborne disease. J. Theor. Biol. 324, 84–102 
(2013).

 26. N. Tuncer, T. T. Le, Structural and practical identifiability analysis of outbreak models. 
Math. Biosci. 299, 1–18 (2018).

 27. A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, J. Timmer, 
Structural and practical identifiability analysis of partially observed dynamical models by 
exploiting the profile likelihood. Bioinformatics 25, 1923–1929 (2009).

 28. N. Tuncer, M. Marctheva, B. LaBarre, S. Payoute, Structural and practical identifiability 
analysis of zika epidemiological models. Bull. Math. Biol. 80, 2209–2241 (2018).

 29. K. Roosa, G. Chowell, Assessing parameter identifiability in compartmental dynamic 
models using a computational approach: Application to infectious disease transmission 
models. Theor. Biol. Med. Model. 16, 1–15 (2019).

 30. R. A. Horn, C. R. Johnson, Matrix Analysis (Cambridge Univ. press, 2012).
 31. K. Mizumoto, K. Kagaya, A. Zarebski, G. Chowell, Estimating the asymptomatic proportion 

of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, 
Yokohama, Japan, 2020. Eurosurveillance 25, 2000180 (2020).

 32. Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S. A. Truelove, T. Zhang, W. Gao, 
C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun, J. Zhang, T. Ma, J. Lessler, T. Feng, 
Epidemiology and transmission of covid-19 in shenzhen china: Analysis of 391 cases 
and 1,286 of their close contacts. medRxiv (2020).

 33. E. Lavezzo, E. Franchin, C. Ciavarella, G. Cuomo-Dannenburg, L. Barzon, C. Del Vecchio, 
L. Rossi, R. Manganelli, A. Loregian, N. Navarin, D. Abate, M. Sciro, S. Merigliano, 
E. Decanale, M. C. Vanuzzo, F. Saluzzo, F. Onelia, M. Pacenti, S. Parisi, G. Carretta, 
D. Donato, L. Flor, S. Cocchio, G. Masi, A. Sperduti, L. Cattarino, R. Salvador, 
K. A. M. Gaythorpe; Imperial College London COVID- Response Team, A. R. Brazzale, 
S. Toppo, M. Trevisan, V. Baldo, C. A. Donnelly, N. M. Ferguson, I. Dorigatti, A. Crisanti, 
Suppression of COVID-19 outbreak in the municipality of Vo, Italy. medRxiv (2020).

 34. C. Liu, X. Wu, R. Niu, X. Wu, R. Fan, A new SAIR model on complex networks for analysing 
the 2019 novel coronavirus (COVID-19). Nonlinear Dyn., 1–11 (2020).

 35. R. H. Chisholm, P. T. Campbell, Y. Wu, S. Y. Tong, J. McVernon, N. Geard, Implications 
of asymptomatic carriers for infectious disease transmission and control. R. Soc. Open Sci. 
5, 172341 (2018).

 36. L. Pribylova, V. Hajnova, SEIAR model with asymptomatic cohort and consequences to 
efficiency of quarantine government measures in COVID-19 epidemic. arXiv:2004.02601 
(2020).

 37. J. B. Aguilar, J. S. Faust, L. M. Westafer, J. B. Gutierrez, Investigating the impact 
of asymptomatic carriers on COVID-19 transmission. medRxiv (2020).

 38. M. Robinson, N. I. Stilianakis, A model for the emergence of drug resistance 
in the presence of asymptomatic infections. Math. Biosci. 243, 163–177 (2013).

 39. D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J. J. Ramasco, D. Paolotti, N. Perra, 
M. Tizzoni, W. Van den Broeck, V. Colizza, A. Vespignani, Seasonal transmission potential 
and activity peaks of the new influenza A(H1N1): A Monte Carlo likelihood analysis based 
on human mobility. BMC Med. 7, 45 (2009).

 40. D. Balcan, B. Gonçalves, H. Hu, J. J. Ramasco, V. Colizza, A. Vespignani, Modeling 
the spatial spread of infectious diseases: The global epidemic and mobility 
computational model. J. Comput. Sci. 1, 132–145 (2010).

 41. X. He, E. H. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, 
X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, 

https://who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports


Gallo et al., Sci. Adv. 8, eabg5234 (2022)     19 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 13

B. J. Cowling, F. Li, G. M. Leung, Temporal dynamics in viral shedding and transmissibility 
of COVID-19. Nat. Med. 26, 672–675 (2020).

 42. H. T. Banks, M. Davidian, J. R. Samuels, K. L. Sutton, G. Chowell, M. Hyman, L. M. A. Bettencourt, 
C. Castillo-Chavez, Chapter 11: Mathematical and Statistical Estimation Approaches in 
Epidemiology, in Mathematical and Statistical Estimation Approaches in Epidemiology, 
G. Chowell, J. M. Hyman, L. M. A. Bettencourt, and C. Castillo-Chavez, Eds. (Springer 
Netherlands, 2009) pp. 249–302.

 43. T. Toni, D. Welch, N. Strelkowa, A. Ipsen, M. P. H. Stumpf, Approximate Bayesian 
computation scheme for parameter inference and model selection in dynamical systems. 
J. R. Soc. Interface 6, 187–202 (2009).

 44. H. Haario, M. Laine, A. Mira, E. Saksman, DRAM: Efficient adaptive MCMC. Stat. Comput. 
16, 339–354 (2006).

 45. A. Vespignani, H. Tian, C. Dye, J. O. Lloyd-Smith, R. M. Eggo, M. Shrestha, S. V. Scarpino, 
B. Gutierrez, M. U. G. Kraemer, J. Wu, K. Leung, G. M. Leung, Modelling COVID-19. Nat. Rev. 
Phys. 2, 279–281 (2020).

 46. J. Lourenço, R. Paton, M. Ghafari, M. Kraemer, C. Thompson, P. Simmonds, P. Klenerman, 
S. Gupta, Fundamental principles of epidemic spread highlight the immediate need for 
large-scale serological surveys to assess the stage of the SARS-CoV-2 epidemic. MedRxiv 
2020.03.24.20042291 (2020).

 47. Presidenza del Consiglio dei Ministri (Presidency of the Council of Ministers), 
Governmental containment policies; http://governo.it/it/coronavirus-misure-del-
governo[accessed 6 July 2020].

 48. Presidenza del Consiglio dei Ministri (Presidency of the Council of Ministers), Legislation 
issued in response to covid-19 epidemic; http://governo.it/it/coronavirus-
normativa[accessed 6 July 2020].

 49. Dipartimento della Protezione Civile (Civil protection department), Data on the national 
trend; https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-
nazionale[accessed 06 July 2020].

 50. R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-Dannenburg, 
H. Thompson, P. G. T. Walker, H. Fu, A. Dighe, J. T. Griffin, M. Baguelin, S. Bhatia, 
A. Boonyasiri, A. Cori, Z. Cucunubá, R. F. John, K. Gaythorpe, W. Green, A. Hamlet, 
W. Hinsley, D. Laydon, G. Nedjati-Gilani, S. Riley, S. van Elsland, E. Volz, H. Wang, Y. Wang, 
X. Xi, C. A. Donnelly, A. C. Ghani, N. M. Ferguson, Estimates of the severity of coronavirus 
disease 2019: A model-based analysis. Lancet Infect. Dis. 20, 669–677 (2020).

 51. E. W. Griffith, K. S. P. Kumar, On the observability of nonlinear systems: I. J. Math. Anal. Appl. 
35, 135–147 (1971).

 52. W. S. Gray, J. P. Mesko, Observability functions for linear and nonlinear systems.  
Syst. Control Lett. 38, 99–113 (1999).

 53. A. C. Hindmarsh, Odepack, a systematized collection of ODE solvers. Sci. Comput. 1, 55–64 (1983).
 54. L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems 

of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136–148 (1983).
 55. F. Kemp, D. Proverbio, A. Aalto, L. Mombaerts, A. Fouquier d’Hérouël, A. Husch, C. Ley, 

J. Gonçalves, A. Skupin, S. Magni, Modelling COVID-19 dynamics and potential for herd immunity 
by vaccination in Austria, Luxembourg and Sweden. J. Theor. Biol. 530, 110874 (2021).

 56. G. E. P. Box, G. C. Tiao, Bayesian Inference in Statistical Analysis, vol. 40 (John Wiley & Sons, 2011).

Acknowledgments: We would like to thank V. Simoncini for pointing out the relation 
between the sensitivity  and the generalized eigenvalue and D. Proverbio for the useful 
discussion on the Bayesian approach for parameter estimation. V.L. acknowledges support 
from the Leverhulme Trust Research Fellowship 278 “CREATE: The network components of 
creativity and success.” V.L. and G.R. acknowledge support from University of Catania project 
“Piano della Ricerca 2020/2022, Linea d’intervento 2, MOSCOVID.” G.R. acknowledges support 
from Italian Ministry of Instruction, University and Research (MIUR) through PRIN project 2017, 
no. 2017KKJP4X. G.R. is a member of the “Istituto Nazionale di Alta Matematica Francesco Severi 
(INdAM) and “Gruppo Nazionale per il Calcolo Scientifico (GNCS). Author contributions: L.G., 
M.F., V.L., and G.R. conceived the research and developed the theory. L.G. carried out the 
numerical analysis. All authors wrote the manuscript. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: 
Epidemiological data displayed in Fig. 6 are publicly available data at the Italian Civil 
Protection repository (https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-
nazionale). Information about governmental containment policies in Italy are available at the 
Presidency of the Council of Ministers website (http://governo.it/it/coronavirus-misure-del-
governo and http://governo.it/it/coronavirus-normativa). All the codes to perform the 
analyses discussed in the study and to produce Figs. 4 and 6 are made publicy available in the 
Zenodo repository (DOI: https://doi.org/10.5281/zenodo.5639320). All remaining data needed 
to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials.

Submitted 11 January 2021
Accepted 24 November 2021
Published 19 January 2022
10.1126/sciadv.abg5234

http://governo.it/it/coronavirus-misure-del-governo
http://governo.it/it/coronavirus-misure-del-governo
http://governo.it/it/coronavirus-normativa
http://governo.it/it/coronavirus-normativa
https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale
https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale
https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale
https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale
http://governo.it/it/coronavirus-misure-del-governo
http://governo.it/it/coronavirus-misure-del-governo
http://governo.it/it/coronavirus-normativa
https://doi.org/10.5281/zenodo.5639320

